Answer:
y-1 = 3(x +2)
Step-by-step explanation:
Ok, so the point-slope form is:
y-k = m(x-h) where m is the slope and (h,k) is the given point.
Since you are given m = 3 , and (h,k) = (-2,1)
y-1 = 3(x +2)
Since your question specified using the point-slope form, make sure you use this equation when answering it. Otherwise, you may get it wrong.
A random sample of 13 items is drawn from a population whose standard deviation is unknown. The sample mean is x¯ = 950 and the sample standard deviation is s = 10. Use Appendix D to find the values of Student’s t.
1. Construct an interval estimate of mu with 99% confidence. (Round your answers to 3 decimal places.)
The 99% confidence interval is from_____ to ______ .
2. Construct an interval estimate of mu with 99% confidence, assuming that s = 20. (Round your answers to 3 decimal places.)
The 99% confidence interval is from_____ to ______ .
3. Construct an interval estimate of mu with 99% confidence, assuming that s = 40. (Round your answers to 3 decimal places.)
The 99% confidence interval is from_____ to ______ .
Answer:
1. The 99% confidence interval is from 941.527 to 958.473
2. The 99% confidence interval is from 933.054 to 966.946
3. The 99% confidence interval is from 916.108 to 983.892
Step-by-step explanation:
The confidence interval is given by
[tex]\text {confidence interval} = \bar{x} \pm MoE\\\\[/tex]
Where [tex]\bar{x}[/tex] is the sample mean and Margin of error is given by
[tex]$ MoE = t_{\alpha/2}(\frac{s}{\sqrt{n} } ) $ \\\\[/tex]
Where n is the sample size,
s is the sample standard deviation,
[tex]t_{\alpha/2[/tex] is the t-score corresponding to some confidence level
The t-score corresponding to 99% confidence level is
Significance level = α = 1 - 0.99 = 0.01/2 = 0.005
Degree of freedom = n - 1 = 13 - 1 = 12
From the t-table at α = 0.005 and DoF = 12
t-score = 3.055
1. 99% Confidence Interval when s = 10
The margin of error is
[tex]MoE = t_{\alpha/2}(\frac{s}{\sqrt{n} } ) \\\\MoE = 3.055\cdot \frac{10}{\sqrt{13} } \\\\MoE = 3.055\cdot 2.7735\\\\MoE = 8.473\\\\[/tex]
So the required 99% confidence interval is
[tex]\text {confidence interval} = \bar{x} \pm MoE\\\\\text {confidence interval} = 950 \pm 8.473\\\\\text {confidence interval} = 950 - 8.473, \: 950 + 8.473\\\\\text {confidence interval} = (941.527, \: 958.473)\\\\[/tex]
The 99% confidence interval is from 941.527 to 958.473
2. 99% Confidence Interval when s = 20
The margin of error is
[tex]MoE = t_{\alpha/2}(\frac{s}{\sqrt{n} } ) \\\\MoE = 3.055\cdot \frac{20}{\sqrt{13} } \\\\MoE = 3.055\cdot 5.547\\\\MoE = 16.946\\\\[/tex]
So the required 99% confidence interval is
[tex]\text {confidence interval} = \bar{x} \pm MoE\\\\\text {confidence interval} = 950 \pm 16.946\\\\\text {confidence interval} = 950 - 16.946, \: 950 + 16.946\\\\\text {confidence interval} = (933.054, \: 966.946)\\\\[/tex]
The 99% confidence interval is from 933.054 to 966.946
3. 99% Confidence Interval when s = 40
The margin of error is
[tex]MoE = t_{\alpha/2}(\frac{s}{\sqrt{n} } ) \\\\MoE = 3.055\cdot \frac{40}{\sqrt{13} } \\\\MoE = 3.055\cdot 11.094\\\\MoE = 33.892\\\\[/tex]
So the required 99% confidence interval is
[tex]\text {confidence interval} = \bar{x} \pm MoE\\\\\text {confidence interval} = 950 \pm 33.892\\\\\text {confidence interval} = 950 - 33.892, \: 950 + 33.892\\\\\text {confidence interval} = (916.108, \: 983.892)\\\\[/tex]
The 99% confidence interval is from 916.108 to 983.892
As the sample standard deviation increases, the range of confidence interval also increases.
Could someone explain how to find square roots please?
Answer: graphing calculator!
Step-by-step explanation: if you’re looking for the square root of a # that isn’t a perfect square (ie. sqrt4, sqrt 36) then you have to use a calculator for that. however the idea behind square roots is just a # multiplied by itself to give the original #. just ask yourself “what can i multiply by itself to get the original number”. hope that helped !
Answer:
By multiplying the number by its power 2.
E.g= 4^2
i will give brainliest and 50 points pls help ASP
Answer:
Step-by-step explanation:
A trapezoid and two rectangulars are in the opening form of the geometric shapes and you should calculate their surface areas seperately which is:
12 cm and 30 cm first rectangular and its surface area is 12 x 30 = 360 cm^2second rectangular has 30 cm and 26 cm and 30 x 26 = 780 cm^2A trapezoid surface area is = [(24+29) /2] * 25 = 662.5 cm^2total surface area = 360 + 780 + 662.5 = 1802.5Answer:
Total surface area = 3744 cm^2
Step-by-step explanation:
All linear measurements are in cm
Surface area of BOTH bases
Ab = 2* (12+29)*24/2
= 984
Circumference of base
Cb = (25+12+26+29)
= 92
Height of prism
H = 30 (given)
Surface area of sides of prism
As= Cb*H
= 2760
Total Surface area of Prism
A = Ab + As
= 984 + 2760
= 3744 cm^2
What is the measure of angle S?
480
56°
930
101°
Answer:
m∠s = 93°
Step-by-step explanation:
We know that any quadrilateral's sum of angles adds up to 360°. In that case,
360 - (56 + 132 + 79) = m∠s
m∠s = 93°
Answer:
S° = 93 °
Step-by-step explanation:
[tex]The- diagram- is- a- trapezoid (quadrilateral)\\Sum- of- angles-in a- quadrilateral = 360\\ 132\° + 56\° + 79\° + x\° = 360\° \\267\° + x\° = 360\° \\x = 360 \° - 267 \° \\x\° = 93\°[/tex]
What is jc ? (Picture included)
Answer:
jc is 40 i think
Step-by-step explanation:
Answer:
40(Maybe)
Step-by-step explanation:
I'm not 100% sure that 40 is correct but I'm pretty sure it is.
A 6-digit number has at least one even digit in its record. How many such numbers are there? (0 is an even digit)
Answer:
884,375
Step-by-step explanation:
The first digit can't be 0, so there are 9×10⁵ = 900,000 possible six-digit numbers.
Of those, the number of six-digit numbers that have only odd digits is 5⁶ = 15,625.
Numbers with at least one even digit are all numbers that don't have only odd digits. So the number of six-digit numbers with at least one even digit is:
900,000 − 15,625 = 884,375
Two identical decks of 52 cards are mixed together, yielding a stack of 104 cards. How many different ways are there to order this stack of 104 cards?
Answer:
here the order will be 104! =[tex]1.029e^{166}[/tex]
Step-by-step explanation:
since the cards are to arranged in no particular order that is why we used combination to find the result.
Combination can simply be explained as the method of selecting items from a collection of items where the order of the selections does not matter.
Solve the system of linear equations.
Answer:
dependent systemx = 2 -ay = 1 +az = aStep-by-step explanation:
Let's solve this by eliminating z, then we'll go from there.
Add 6 times the second equation to the first.
(3x -3y +6z) +6(x +2y -z) = (3) +6(4)
9x +9y = 27 . . . simplify
x + y = 3 . . . . . . divide by 9 [eq4]
Add 13 times the second equation to the third.
(5x -8y +13z) +13(x +2y -z) = (2) +13(4)
18x +18y = 54
x + y = 3 . . . . . . divide by 18 [eq5]
Equations [eq4] and [eq5] are identical. This tells us the system is dependent, and has an infinite number of solutions. We can find them in terms of z:
y = 3 -x . . . . solve eq5 for y
x +2(3 -x) -z = 4 . . . . substitute into the second equation
-x +6 -z = 4
x = 2 - z . . . . . . add x-4
y = 3 -(2 -z)
y = z +1
So far, we have written the solutions in terms of z. If we use the parameter "a", we can write the solutions as ...
x = 2 -a
y = 1 +a
z = a
_____
Check
First equation:
3(2-a) -3(a+1) +6a = 3
6 -3a -3a -3 +6a = 3 . . . true
Second equation:
(2-a) +2(a+1) -a = 4
2 -a +2a +2 -a = 4 . . . true
Third equation:
5(2-a) -8(a+1) +13a = 2
10 -5a -8a -8 +13a = 2 . . . true
Our solution checks algebraically.
Tammy and Lawrence like to bike competitively. Tammy biked seven less than three times the number of miles that Lawrence biked. If c represents the number of miles Lawrence biked, write an expression for the number of miles Tammy biked.
Answer:
3c - 7
Step-by-step explanation:
c - the number of miles Lawrence biked
Tammy biked seven less than three times the number of miles that Lawrence biked.
So, 3 x c (the # of miles Lawrence biked) - 7 (she biked seven less)
The answer is 3c - 7.
Diane's bank is offering 5% interest, compounded monthly. If Diane invests $10,500 and wants $20,000 when she withdrawals, how long should she keep her money in for? Round to the nearest tenth of a year.
Answer:
The time period is 13 years.
Step-by-step explanation:
Interest rate (r )= 5% or 5%/12 = 0.42% per months
The investment amount (Present value) = $10500
Final expected amount (future value) = $20000
Since we have given the initial amount and final amount. Therefore we have to calculate the time period for which the initial amount is kept in the bank.
Use the below formula to find the time period.
Future value = present value (1 + r )^n
20000 = 10500(1+0.0042)^n
1.9047619 = (1+0.0042)^n
1.9047619 = 1.0042^n
n = 153.74 months.
Time in years = 153.74 / 12 = 12.8 years or 13 years (round off)
How do I calculate velocity?
Answer:
v = Δs/Δt
Step-by-step explanation:
Velocity is equal to the displacement/distance (delta symbol s) over the change of time (delta symbol t).
Two random samples are taken from private and public universities
(out-of-state tuition) around the nation. The yearly tuition is recorded from each sample and the results can be found below. Test to see if the mean out-of-state tuition for private institutions is statistically significantly higher than public institutions. Assume unequal variances. Use a 1% level of significance.
Private Institutions (Group 1 )
43,120
28,190
34,490
20,893
42,984
34,750
44,897
32,198
18,432
33,981
29,498
31,980
22,764
54,190
37,756
30,129
33,980
47,909
32,200
38,120
Public Institutions (Group 2)
25,469
19,450
18,347
28,560
32,592
21,871
24,120
27,450
29,100
21,870
22,650
29,143
25,379
23,450
23,871
28,745
30,120
21,190
21,540
26,346
Hypotheses:
H0: μ1 (?) μ2
H1: μ1 (?) μ2
What are the correct hypotheses for this problem?
-A. H0: μ1 = μ2 ; H1: μ1 ≠ μ2
-B. H0: μ1 = μ2 ; H1: μ1 > μ2
-C. H0: μ1 ≤ μ2 ; H1: μ1 ≥ μ2
-D. H0: μ1 < μ2 ; H1: μ1 = μ2
-E. H0: μ1 ≠ μ2 ; H1: μ1 = μ2
-F. H0: μ1 ≥ μ2 ; H1: μ1 ≤ μ2
Answer:
Step-by-step explanation:
For private Institutions,
n = 20
Mean, x1 = (43120 + 28190 + 34490 + 20893 + 42984 + 34750 + 44897 + 32198 + 18432 + 33981 + 29498 + 31980 + 22764 + 54190 + 37756 + 30129 + 33980 + 47909 + 32200 + 38120)/20 = 34623.05
Standard deviation = √(summation(x - mean)²/n
Summation(x - mean)² = (43120 - 34623.05)^2+ (28190 - 34623.05)^2 + (34490 - 34623.05)^2 + (20893 - 34623.05)^2 + (42984 - 34623.05)^2 + (34750 - 34623.05)^2 + (44897 - 34623.05)^2 + (32198 - 34623.05)^2 + (18432 - 34623.05)^2 + (33981 - 34623.05)^2 + (29498 - 34623.05)^2 + (31980 - 34623.05)^2 + (22764 - 34623.05)^2 + (54190 - 34623.05)^2 + (37756 - 34623.05)^2 + (30129 - 34623.05)^2 + (33980 - 34623.05)^2 + (47909 - 34623.05)^2 + (32200 - 34623.05)^2 + (38120 - 34623.05)^2 = 1527829234.95
Standard deviation = √(1527829234.95/20
s1 = 8740.22
For public Institutions,
n = 20
Mean, x2 = (25469 + 19450 + 18347 + 28560 + 32592 + 21871 + 24120 + 27450 + 29100 + 21870 + 22650 + 29143 + 25379 + 23450 + 23871 + 28745 + 30120 + 21190 + 21540 + 26346)/20 = 25063.15
Summation(x - mean)² = (25469 - 25063.15)^2+ (19450 - 25063.15)^2 + (18347 - 25063.15)^2 + (28560 - 25063.15)^2 + (32592 - 25063.15)^2 + (21871 - 25063.15)^2 + (24120 - 25063.15)^2 + (27450 - 25063.15)^2 + (29100 - 25063.15)^2 + (21870 - 25063.15)^2 + (22650 - 25063.15)^2 + (29143 - 25063.15)^2 + (25379 - 25063.15)^2 + (23450 - 25063.15)^2 + (23871 - 25063.15)^2 + (28745 - 25063.15)^2 + (30120 - 25063.15)^2 + (21190 - 25063.15)^2 + (21540 - 25063.15)^2 + (26346 - 25063.15)^2 = 1527829234.95
Standard deviation = √(283738188.55/20
s2 = 3766.55
This is a test of 2 independent groups. Let μ1 be the mean out-of-state tuition for private institutions and μ2 be the mean out-of-state tuition for public institutions.
The random variable is μ1 - μ2 = difference in the mean out-of-state tuition for private institutions and the mean out-of-state tuition for public institutions.
We would set up the hypothesis. The correct option is
-B. H0: μ1 = μ2 ; H1: μ1 > μ2
Since sample standard deviation is known, we would determine the test statistic by using the t test. The formula is
(x1 - x2)/√(s1²/n1 + s2²/n2)
t = (34623.05 - 25063.15)/√(8740.22²/20 + 3766.55²/20)
t = 9559.9/2128.12528473889
t = 4.49
The formula for determining the degree of freedom is
df = [s1²/n1 + s2²/n2]²/(1/n1 - 1)(s1²/n1)² + (1/n2 - 1)(s2²/n2)²
df = [8740.22²/20 + 3766.55²/20]²/[(1/20 - 1)(8740.22²/20)² + (1/20 - 1)(3766.55²/20)²] = 20511091253953.727/794331719568.7114
df = 26
We would determine the probability value from the t test calculator. It becomes
p value = 0.000065
Since alpha, 0.01 > than the p value, 0.000065, then we would reject the null hypothesis. Therefore, at 1% significance level, the mean out-of-state tuition for private institutions is statistically significantly higher than public institutions.
Q‒1. [5×4 marks] a) How many three-digit numbers can be formed from the digits 0, 1, 2, 3, 4, 5, and 6? (150) b) How many three-digit numbers can be formed from the digits 0, 1, 2, 3, 4, 5, and 6 if each digit can be used only once? c) How many odd numbers can be formed from the digits 0, 1, 2, 3, 4, 5, and 6 if each digit can be used only once? d) How many three-digit numbers greater than 330 can be formed from the digits 0, 1, 2, 3, 4, 5, and 6? e) How many three-digit numbers greater than 330 can be formed from the digits 0, 1, 2, 3, 4, 5, and 6 if each digit can be used only once?
Answer:
a) 294
b) 180
c) 75
d) 174
e) 105
Step-by-step explanation:
I assume that for each problem, the first digit can't be 0.
a) There are 6 digits that can be first, 7 digits that can be second, and 7 digits that can be third.
6×7×7 = 294
b) This time, no digit can be used twice, so there are 6 digits that can be first, 6 digits that can be second, and 5 digits that can be third.
6×6×5 = 180
c) Again, each digit can only be used once, but this time, the last digit must be odd.
If only the last digit is odd, there are 3×3×3 = 27 possible numbers.
If the first and last digits are odd, there are 3×4×2 = 24 possible numbers.
If the second and last digits are odd, there are 3×3×2 = 18 possible numbers.
If all three digits are odd, there are 3×2×1 = 6 possible numbers.
The total is 27 + 24 + 18 + 6 = 75.
d) If the first digit is 3, and the second digit is 3, there are 1×1×6 = 6 possible numbers.
If the first digit is 3, and the second digit is greater than 3, there are 1×3×7 = 21 possible numbers.
If the first digit is greater than 3, there are 3×7×7 = 147 numbers.
The total is 6 + 21 + 147 = 174.
e) If the first digit is 3, and the second digit is greater than 3, then there are 1×3×5 = 15 possible numbers.
If the second digit is greater than 3, there are 3×6×5 = 90 possible numbers.
The total is 15 + 90 = 105.
use the drop downs to identify the domain and range of the following relation.
{(-4, -7), (0, 6), (5, -3), (5, 2)}
Answer:Domain is x and range is y.For ex:-4 is domain and -7 is range.
Step-by-step explanatioFeel pleasure to help u:
Domain ( -4, 5) Range ( -7, 6)
The Domain includes the numbers between the least and the greatest x-values.
The range includes the numbers between the lowest and the highest y-values.
It is known that 10% of the calculators shipped from a particular factory are defective. What is the probability that exactly three of five chosen calculators are defective
Answer:0.0081 or 0.81%
Step-by-step explanation:
The required probability is P(3,5,0.1)= C5 3 * p^3*q^2, where
C5 3= 5!/3/2=4*5/2=10
p is the probability that one randomly selected calculator is defective= 10%=0.1
q is the probability that one randomly selected calculator is non-defective.
q=1-p=1-0.1=0.9
So P(3,5,0.1)= 10*0.1^3*0.9^2=0.01*0.81=0.0081
simply expression 1+5v+v
Answer:
1 + 6v
Step-by-step explanation:
1+5v+v
Combine like terms
1 + 6v
Answer:
6v + 1
Step-by-step explanation:
1 + 5v + v
Apply rule : a = 1a
1 + 5v + 1v
Combine like terms.
5v + 1v + 1
(5 + 1)v + 1
(6)v + 1
6v + 1
Calculate
(14x5x4) / (28 x 2)
Answer:
5
Step-by-step explanation:
(14 × 5 × 4) ÷ (28 × 2)
Solve brackets.
280 ÷ 56
Divide.
= 5
Copy the diagram and oaloulate the sizes of
a bº and cº. What is the sum of the angles of
the triangle?
Answer:
sum of the angles of the triangle are 180°
Step-by-step explanation:
To find the sum of the interior angles, we use the formula( s-2*180), where s is the number of sides of the shape. If it is a pentagon, 5-2*180= 3*180= 540,
which shows that the sum of the interior angles of a pentagon is 540.
since, it is a triangle in the figure with 3 sides, 3-2*180=1*180=180.
The interior angles are unknown= a, b and c. we know that a+b+c=180 degrees and the exterior angles are mentioned. And we know that, opposite angles are equal. So, a is 40 degrees considering that 40 degrees is the opposite angle of a, b is 95 degrees whereas c is 45 degrees.
now, lets check if the angles indeed have a sum of 180 degrees,
40+95+45= 135+45 which gives 180 degrees.
Answer:
180°
Step-by-step explanation:
→ Angles in a triangles always add up to 180, we can prove this by calculating a, b and c so,
a = 40° (vertical angles are equal)
b = 95° (vertical angles are equal)
c = 45° (vertical angles are equal)
40 + 45 + 95 = 85 + 95 = 180°
Please answer this correctly
Answer:
1/9
Step-by-step explanation:
first, u need 9 ---> 1/3
then u need 8 ---> 1/3 also
Multiply them and get...1/9
Melvin has game and education apps on his tablet. He noticed that he has 3 game apps for every 2 education apps. Which of the following is another way to write this ratio? 1:2 2:1 2:3 3:2
3:3
Answer:
3: 2
Step-by-step explanation:
game Apps: education apps:
3: 2
Julie has three boxes of pens. The diagram shows expressions for the number of pens in each box. Look at these equations.
Equals B +12
B equals C +4
Write an equation to show the relationship between a + c
Answer:
a=c+16here,
a=b+12
b=a-12----> equation (i)
b= c+4
putting the value of b from the equation (I)
a-12=c+4
a=c+4+12
a=c+16
hope this helps...
Good luck on your assignment...
The value of a + c is 16.
What is Algebra?A branch of mathematics known as algebra deals with symbols and the mathematical operations performed on them.
Variables are the name given to these symbols because they lack set values.
In order to determine the values, these symbols are also subjected to various addition, subtraction, multiplication, and division arithmetic operations.
Given:
a=b+12
So, b=a-12 ---- equation (i)
and, b= c+4
Substitute the value of b from the equation (I)
a-12=c+4
a=c+4+12
a=c+16
Hence, the value of a+ c is 16.
Learn more about Algebra here:
https://brainly.com/question/24875240
#SPJ2
I NEED HELP PLEASE, THANKS! :)
Answer:
Option B
Step-by-step explanation:
Again, another great question! Here we are given the following system of equations, bound by quadrant 1 -
[tex]\begin{bmatrix}2x+7y\le \:70\\ 8x+4y\le \:136\end{bmatrix}[/tex]
Convert this to slope - intercept form -
[tex]\begin{bmatrix}y\le \frac{70-2x}{7}\\ y\le \:2\left(-x+17\right)\end{bmatrix}[/tex]
Now the graphed solution of this intersects at a shaded region with which there are 3 important point that lie on the border. They are the following -
( 0, 10 ),
( 15, 9 ),
( 17, 0 )
When these point are plugged into the main function f ( x, y ) = 2x + 6y, the point ( 15, 9 ) results in the greatest solution of 84. Thus, it is our maximum point -
Option B
How many different simple random samples of size 5 cab be obtained from a population whose size is 46
Answer:
1370754
Step-by-step explanation:
From what I can see, you are probably studying combinations and permutations at the moment. Since this is a question about how many groups of five can be produced from a sample size of 46, the groups are random and not in order, which may rule for us to use the combination formula.
Once you compute this, this answer is basically saying that 1370754 groups of 5 can be created from a sample size of 46
In this activity, you will use equations to represent this proportional relationship: Olivia is making bead bracelets for her friends. She can make 3 bracelets in 15 minutes.
Part A
Find the constant of proportionality in terms of minutes per bracelet.
Part B
What does the proportionality constant represent in this situation?
Part C
Write an equation to represent the proportional relationship. Use the constant of proportionality you found in part A. Be sure to assign a variable for each quantity.
Part D
Now find the constant of proportionality in terms of number of bracelets per minute.
Part E
What does the proportionality constant represent in this situation?
Part F
Write an equation to represent the proportional relationship. Use the constant of proportionality you found in part D. Be sure to assign a variable for each quantity.
Part G
How are the constants of proportionality you found in parts A and D related?
Part H
Are the two equations you developed in parts C and F equivalent? Explain.
Answer:
Step-by-step explanation:
A) The constant of proportionality in terms of minutes per bracelet is
15/3 = 5 minutes per bracelet
B) The constant of proportionality represents man hour rate
C) let k = constant of proportionality, t = time in minutes and b = number of bracelets produced. Therefore,
t = kb
D) the constant of proportionality in terms of number of bracelets per minute is
3/15 = 1/5
E) The constant of proportionality represents production rate
F) let k = constant of proportionality, t = time in minutes and b = number of bracelets produced. Therefore,
b = kt
G) The constants of proportionality are reciprocals
H) Two equations are equivalent if they have the same solution. They are not equivalent. By inputting the different values of k, the solutions will always be the same. Therefore, they are equivalent.
Answer:the sample answers, change them up so you dont get in trouble
A To find the constant of proportionality in minutes per bracelet, divide the total time by the number of bracelets:
constant of proportionality=15 MINUTES/3 BRACELETS=5 minutes per bracelet.
B The proportionality constant of 5 minutes per bracelet means it takes Olivia 5 minutes to make 1 bracelet.
C Here’s one way to set up the equation:
time = constant of proportionality × number of bracelets
Let m be time in minutes and let b be the number of bracelets. Substitute the variables (m and b) and the value of the proportionality constant (5 minutes per bracelet) into the equation: m = 5b.
thats all ik srry
Step-by-step explanation:
Which two equations are the equations of vertical asymptotes of the function y = 5∕3 tan(3∕4x)?
A) x-2pi/3 and x=-2pi/3
B) x=0 and x=2pi/3
C) x=4pi/3 and x =4pi/3
D) x=0 and x=4pi/3
I did not know how to paste the pi symbol so I used the letters (pi)
Answer:
A)x=2pi/3 and x=-2pi/3
Step-by-step explanation:
The function [tex]y=\frac{5}{3}tan(\frac{3}{4}x)[/tex] has vertical asymptotes in the values where the tan(a) has vertical asymptotes.
we know that tan(a) has vertical asymptotes in [tex]a=\frac{\pi }{2}[/tex] and [tex]a=\frac{-\pi }{2}[/tex], if we made [tex]a=\frac{3x}{4}[/tex] and solve for x, we get:
for [tex]a=\frac{\pi }{2}[/tex]
[tex]\frac{\pi }{2} =\frac{3x}{4}\\x = \frac{2\pi }{3}[/tex]
for [tex]a=\frac{-\pi }{2}[/tex]
[tex]\frac{-\pi }{2} =\frac{3x}{4}\\x = \frac{-2\pi }{3}[/tex]
Finally, the function [tex]y=\frac{5}{3}tan(\frac{3}{4}x)[/tex] has vertical asymptotes in the values x=2pi/3 and x=-2pi/3
Answer:
A
Step-by-step explanation:
Please help I don’t understand And I need an explanation
Hey there! :)
Answer:
56 m².
Step-by-step explanation:
To find the area, simply split the figure into a triangle and rectangle. Solve for the areas separately:
Solve for the rectangle: (A = l × w)
A = 8 × 5
A = 40 m²
Solve for the triangle: (A = 1/2 (bh))
A = 1/2(4 · 8)
A = 1/2(32)
A = 16 m².
Add up the two areas:
40 + 16 = 56 m².
Answer:
Area of triangle+ the area of rectangle
Step-by-step explanation:
Since, area of triangle is 1/2×base×height in right angled triangle, 1/2×4×8: 1/2×32= 16m²
Area of rectangle is length × breadth= 5×8: 40 m²
Area of the shape is 40m²+16m²= 56m²
Given the equation A=250(1.1)t, you can determine that the interest is compounded annually and the interest rate is 10%. Suppose the interest rate were to change to being compounded quarterly. Rewrite the equation to find the new interest rate that would keep A and P the same. What is the approximate new interest rate? Convert your answer to a percentage, round it to the nearest tenth, and enter it in the space provided, like this: 42.53%
Answer:
[tex]r \approx 2.41\%[/tex]
Step-by-step explanation:
The computation of the approximate new interest rate is shown below:
As we know that there are four quarters in a year so
The new equation is
[tex]A = 250(1 + r)^{4t}[/tex]
Now to determine the value of interest rate,i.e r, so place this to the first equation.
So,
[tex]250(1.1)^{t} = 250(1 + r)^{4t}[/tex]
[tex]1.1^{t} = (1 + r)^{4t}[/tex]
1.1 = (1 + r)^4
[tex]\sqrt[4]{1.1} = 1 + r[/tex]
[tex]r = -1 + \sqrt[4]{1.1}[/tex]
[tex]r \approx 0.0241[/tex]
[tex]r \approx 2.41\%[/tex]
We simply applied the above formula so that the interest rate could come
what 4.2 times 0.7 /a is 294 /b is 2.94 /c 29.4
Answer:
29.4
Step-by-step explanation:
Answer:
2.94
Step-by-step explanation:
4.2 × 0.7 = 2.94
PLEASE HELP!!! You want to distribute 7 candies to 4 kids. If every kid must receive at least one candy, in how many ways can you do this?
Answer:
1140 ways.
Step-by-step explanation:
The applicable formula is: (n +r - 1)C(r-1), where n is the number of identical items (the candies), and r is the possible number of recipients (the kids).
The 17 identical candies, can be distributed among the 4 children in :
=(17 + 4 - 1)C(4–1) = 20C3 ways.
= 20!/((20–3)!*3!) ways.
= 20*19*18*17!/(17!*(3*2*1)) = 20*19*18/6 ways
= 20*19*3 ways.
=1140 ways.
Quadrilaterals WXYZ and BADC are congruent. In addition, WX ≅ DC and XY ≅ BC.
If AD = 4 cm and AB = 6 cm, what is the perimeter of WXYZ?
18 cm
20 cm
22 cm
24 cm
Answer: 20 cm
If quadrilaterals WXYZ and BADC are congruent, then their corresponding sides are congruent.
Given that
WX≅DC,
XY≅BC,
you can state that
YZ≅AB,
WZ≅AD.
If AD = 4 cm and AB = 6 cm, then WZ = 4 cm and YZ = 6 cm. Opposite rectangle sides are congruent, then XY = 4 cm and WX = 6 cm.
The perimeter of WXYZ is
P = WX + XY + YZ + WZ = 6 + 4 + 6 + 4 = 20 cm.