Answer: Mass of hydrogen produced is 0.0376 g.
Explanation:
The reaction equation will be as follows.
[tex]NaH(aq) + H_{2}O(l) \rightarrow H_{2}(g) + NaOH(aq)[/tex]
Now, formula for total pressure will be as follows.
[tex]P_{total} = P_{H_{2}} + P_{H_{2}O}[/tex]
Hence, [tex]P_{H_{2}} = P_{total} - P_{H_{2}O}[/tex]
= 755 mm Hg - 42.23 mm Hg
= 712.77 mm Hg
[tex]P_{H_{2}} = \frac{712.77 \times 1 atm}{760 mm Hg}[/tex]
= 0.937 atm
Now, we will calculate the moles of [tex]H_{2}[/tex] as follows.
[tex]P_{H_{2}}V = nRT[/tex]
[tex]0.937 atm \times 0.505 L = n \times 0.0821 \times 308.15 K[/tex]
n = [tex]\frac{0.473}{25.29}[/tex] mol
= 0.0187 mol
Therefore, mass of [tex]H_{2}[/tex] will be calculated as follows.
[tex]m_{H_{2}} = \frac{0.0187 mol \times 2.0158 g}{1 mol}[/tex]
= 0.0376 g
Thus, we can conclude that mass of hydrogen produced is 0.0376 g.
Classify the substances as atomic elements, molecular elements, molecular compounds, or ionic compounds. a. Agb. Cdc. MgCl2d. F2f. HIg. NO2h. NaCli. Cl2
Answer:
Explanation:
Hello,
We'll be doing some classification of some chemical substances based on molecules, elemental state or ionic or electrovalent properties.
A) Ag = atomic element : silver (Ag) in its elemental state is an atomic element.
B) Cd = atomic element : Cadmium (Cd) is an element of the periodic table and belongs to transition metal.
C) MgCl = ionic compounds: this is a compound formed between magnesium (Mg) and chlorine (Cl) to give MgCl. This compound has ionic or electrovalent properties since electron transfer occurred between the cation (Mg) and anion (Cl).
D) F₂ = moleculer element : Fluorine F₂ is moleculer element since two elements of fluorine combine together to form a molecule.
E) HI = molecular compound : this is a compound formed from the reaction between hydrogen and iodine. It's a molecular compound because they are two different elements combining together to form a compound.
F) NO₂ = molecular compound
G) NaCl = ionic compound
H) Cl₂ = molecular element
A certain reaction with an activation energy of 155 kJ/mol was run at 495 K and again at 515 K . What is the ratio of f at the higher temperature to f at the lower temperature
Answer:
4.32 is the ratio of f at the higher temperature to f at the lower temperature
Explanation:
Using the sum of Arrhenius equation you can obtain:
ln (f₂/f₁) = Eₐ / R ₓ (1/T₁ - 1/T₂)
Where f represents the rate constant of the reaction at T₁ and T₂ temperatures. Eₐ is the energy activation (155kJ / mol = 155000J/mol) and R is gas constant (8.314J/molK)
Replacing:
ln (f₂/f₁) = 155000J/mol / 8.314J/molK ₓ (1/495K - 1/515)
Where 2 represents the state with the higher temperature and 1 the lower temperature.
ln (f₂/f₁) = 155000J/mol / 8.314J/molK ₓ (1/495K - 1/515)
ln (f₂/f₁) = 1.4626
f₂/f₁ = 4.32
4.32 is the ratio of f at the higher temperature to f at the lower temperature
Rank the following transitions in a hydrogen atom in order of increasing wavelength of electromagnetic radiation that could produce them. Answer this question without doing any calculations. Explain the order.
n=2 to n=4
n=6 to n=8
n=10 to n=12
n=14 to n=16
Answer:
n=2 to n=4 < n=6 to n=8 < n=10 to n=12 < n=14 to n=16
Explanation:
According to Neils Bohr, electrons in an atom are found in specified energy levels. Transitions are possible from one energy level to another when the electron receives sufficient energy usually in the form of a photon of electromagnetic radiation of appropriate frequency and wavelength. The energy of this photon corresponds to the energy difference between the two energy levels. Thus the higher the energy difference between energy levels, the greater the energy of the photon required to cause the transition and the shorter the wavelength of the photon.
High energy photons have a very short wavelength. It should be noted that as n increases, the energy of successive energy levels decreases and transitions between them now occurs at longer wavelengths. Hence, the highest energy and shortest wavelength of photons are required for transition involving lower values of n because such electrons are closer to the nucleus and are more tightly bound to it than electrons found at a greater distance from the nucleus.
Hence transition involving electrons at higher energy levels occur at a longer wavelength compared to transition involving electrons closer to the nucleus. This is the basis for the arrangement of wavelengths required to effect the various electronic transitions shown in the answer.
25.00 mL of a H2SO4 solution with an unknown concentration was titrated to a phenolphthalein endpoint with 28.11 mL of a 0.1311 M NaOH solution. What is the concentration of the H2SO4 solution
Answer:
Concentration of the H₂SO₄ solution is 0.0737 M
Explanation:
Equation of the neutralization reaction between the acid, H₂SO₄, and the base, NaOH, is given below:
H₂SO₄ + 2NaOH -----> Na₂SO₄ + 2H₂O
From the above equation, one mole of acid requires 2 moles of base for complete neutralization which occurs at phenolphthalein endpoint.
mole ratio of acid to base, nA/nB = 1:2
Concentration of the base, Cb = 0.1311 M
Volume of base, Vb, = 28.11 mL
Concentration of acid, Ca = ?
Volume of acid, Va + 25.0 mL
Using the formula, CaVa/CbVb = nA/nB
making Ca subject of the formula, Ca = Cb*Vb*nA/Va*nB
substituting the values into the equation
Ca = (0.1311 * 28.11 * 1) / 25.0 * 2 = 0.0737 M
Therefore, concentration of the H₂SO₄ solution is 0.0737 M
Electrophilic substitution on 3-phenylpropenenitrile occurs at the meta position. Draw resonance structures to show how the ring is electron-poor at the ortho and para positions.
Answer:
See figure 1
Explanation:
In this question, we have to remember that a poor electron carbon is a carbon in which we have a positive charge, a carbocation. Therefore we have to start with the production of the carbocation. First, a double bond from the benzene is moved to the carbon in the top to produce a new double bond generating a positive charge in a carbon with ortho position (electron-poor). Then we can move another double bond inside the ring to produce a positive charge in the para carbon. Finally, we can move the last double bond to produce again another positive charge in the second ortho carbon.
See figure 1.
I hope it helps!
PdPd has an anomalous electron configuration. Write the observed electron configuration of PdPd. Express your answer in complete form in order of orbital filling. For example, 1s22s21s22s2 should be entered as 1s^22s^2. View Available Hint(s)
Answer:
1s²,2s²,2p⁶,3s²,3p⁶,4s²,3d¹⁰,4p⁶,5s⁰,4d¹⁰.
Explanation:
Palladium is a chemical element with the symbol Pd and atomic number 46.
The electronic configuration is;
[Kr] 4d¹⁰
The full electronic configuration observed for palladium is given as;
1s²,2s²,2p⁶,3s²,3p⁶,4s²,3d¹⁰,4p⁶,5s⁰,4d¹⁰.
The reason for for the anomlaous electron configuration is beacuse;
1. Full d orbitals are more stable than partially filled ones.
2. At higher energy levels, the levels are said to be degenerated which means that they have very close energies and then electrons can jump from one orbital to another easily.
The volume of a sample of water is 2.5 mL the volume of the sample in liters is
Answer:
0.0025Litters
Explanation:
2.5ml= 2.5x10^-3l
2.5ml= 0.0025l
Answer:
AAAAAAAA
Explanation:
The simplest carboxylic acid is called *
O Formaldehye
O formic acid
acetic acid
O
acetone
under the same conditions carbon (iv) oxide,propane and nitrogen (i) oxide diffuse at the same rate.Explain
Answer:
Rate of diffusion is same .
Explanation:
As we know that Rate of the diffusion is directly proportional to the [tex]\frac{1}{\sqrt{M} }[/tex] .They have same mass if there is same rate and similar condition therefore the mass of carbon (iv) oxide,propane and nitrogen (i) oxide will be similar.
The mass is directly proportional to the Rate of the diffusion.Therefore the rate of diffusion is similar in all carbon (iv) oxide,propane and nitrogen (i) oxide .An experiment calls for 10.0 mL of bromine (d = 3.12 g/mL). Since an accurate balance is available, it is decided to measure the bromine by mass. How many grams should be measured out? Multiple Choice 3.21 32.1 3.12 31.2 0.312
Answer:
31.2g
Explanation:
The following data were obtained from the question:
Volume of bromine = 10mL
Density of bromine = 3.12 g/mL
Mass of bromine =...?
The Density of the substance is related to it's mass and volume by the following equation:
Density = Mass /volume
With the above equation, we can calculate the mass of bromine as follow:
Density = Mass /volume
Volume of bromine = 10mL
Density of bromine = 3.12 g/mL
Mass of bromine =...?
Density = Mass /volume
3.12 = Mass /10
Cross multiply
Mass of bromine = 3.12 x 10
Mass of bromine = 31.2g
Therefore, the mass of bromine is 31.2g
Thermal decomposition of 5.00 metric tons of limestone to lime and carbon dioxide requires 9.00 × 106 kJ of heat. Convert this energy to (a) joules; (b) calories; (c) British thermal units. Give your answers in scientific notation.
Answer:
Take a look at the attachment below
Explanation:
Hope that helps!
Enter your answer in the provided box. Before arc welding was developed, a displacement reaction involving aluminum and iron(III) oxide was commonly used to produce molten iron (the thermite process). This reaction was used, for example, to connect sections of iron railroad track. Calculate the mass of molten iron produced when 2.88 kg of aluminum reacts with 24.4 mol of iron(III) oxide.
Answer:
2.7255 kg Fe
Explanation:
Based on the reaction of the thermite process:
2 Al(s) + Fe₂O₃(s) → Al₂O₃(s) + 2 Fe(l)
2.88kg of Al (Molar mass: 26.98g/mol) are:
2880g ₓ (1mol / 26.98g) = 106.7 moles Al
For a complete reaction of these moles of Al are necessaries:
106.7 moles Al ₓ ( 1 mol Fe₂O₃ / 2 moles Al) = 53.35 moles Fe₂O₃
As you have just 24.4 moles of Fe₂O₃, Fe₂O₃ is limiting reactant.
1 mole of Fe₂O₃ produce 2 moles of Fe.
Thus, moles of Fe produced are 24.4×2 = 48.8 moles of Fe.
As molar mass of Fe is 55.85g/mol, mass of Fe is:
48.8 moles Fe ×(55.85g / mol) = 2725.5g of Fe =
2.7255 kg FeGa3+ and Br1- is what formula?
[tex]\text{GaBr}_3[/tex]
glucose 6‑phosphate+H2O⟶glucose+Pi glucose 6‑phosphate+H2O⟶glucose+Pi K′eq1=270 K′eq1=270 ATP+glucose⟶ADP+glucose 6‑phosphate ATP+glucose⟶ADP+glucose 6‑phosphate K′eq2=890 K′eq2=890 Using this information for equilibrium constants determined at 25∘C,25∘C, calculate the standard free energy of hydrolysis of ATP. standard free energy:
Answer:
-30.7 kj/mol
Explanation:
The standard free energy for the given reaction that is the hydrolysis of ATP is calculated using the formula: ∆Go ’= -RTln K’eq
where,
R = -8.315 J / mo
T = 298 K
For reaction,
1. K′eq1=270,
∆Go ’= -RTln K’eq
= - 8.315 x 298 x ln 270
= - 8.315 x 298 x 5.59
= - 13,851.293 J / mo
= - 13.85 kj/mol
2. K′eq2=890
∆Go ’= -RTln K’eq
= - 8.315 x 298 x ln 890
= - 8.315 x 298 x 6.79
= - 16.82 kj/mol
therefore, total standard free energy
= - 13.85 + (-16.82)
= -30.7 kj/mol
Thus, -30.7 kj/mol is the correct answer.
A piece of wood near a fire is at 23°C. It gains 1,160 joules of heat from the fire and reaches a temperature of 42°C. The specific heat capacity of
wood is 1.716 joules/gram degree Celsius. What is the mass of the piece of wood?
ОА. 16 g
OB. 29 g
ОC. 36 g
OD. 61 g
Answer:
35.578g or 36g if you round
Explanation:
Q=mc ∆∅ where ∅ is temperature difference
1160= m x 1.716 x (42-23)
m = 1160/ 1.716 x19
m=35.578g
m = 36g to nearest whole number
Answer: C. 36 g
Explanation: I got this right on Edmentum.
Write the complete balanced equation for the neutralization reaction that occurs when aqueous hydroiodic acid, HI, and sodium hydrogen carbonate, NaHCO3, are combined. Include physical states.
Answer:
[tex]HI_(_a_q_)~+~NaHCO_3_(_a_q_)~->~NaI_(_a_q_)~+~H_2O_(_l_)~+~CO_2_(_g_)[/tex]
Explanation:
In this case, we will have a neutralization reaction. We have a base ([tex]HI[/tex]) and a base ([tex]NaHCO_3[/tex]). Additionally, we have a strong acid and a strong base, therefore both will be soluble on water, so we will have an aqueous state for these compounds. If we will have a neutralization reaction, we will have as a salt as a product. With this in mind the reaction would be:
[tex]HI_(_a_q_)~+~NaHCO_3_(_a_q_)~->~NaI_(_a_q_)~+~H_2O_(_l_)~+~CO_2_(_g_)[/tex]
All the sodium salts are soluble in water, therefore we will have an aqueous state. Water is a liquid and carbon dioxide is a gas.
I hope it helps!
Enter an abbreviated electron configuration for magnesium: Express your answer in complete form, in order of increasing energy. For example, [He]2s22p2 would be entered as [He]2s^22p^2.
Answer:
[Ne]3s²
Explanation:
Mg
1s2 2s2 2p6 3s2 or [Ne]3s²
Abbreviated electronic configuration of magnesium is [Ne]3 s² and in complete form it is 1 s² 2 s² 2 p⁶ 3 s².
What is electronic configuration?Electronic configuration is defined as the distribution of electrons which are present in an atom or molecule in atomic or molecular orbitals.It describes how each electron moves independently in an orbital.
Knowledge of electronic configuration is necessary for understanding the structure of periodic table.It helps in understanding the chemical properties of elements.
Elements undergo chemical reactions in order to achieve stability. Main group elements obey the octet rule in their electronic configuration while the transition elements follow the 18 electron rule. Noble elements have valence shell complete in ground state and hence are said to be stable.
Learn more about electronic configuration,here:
https://brainly.com/question/13497372
#SPJ5
chemical equation for potassium sulfate and lead(II) acetate
Answer:
K₂SO₄ + Pb(C₂H₃O₂)₂ →PbSO₄ + 2KC₂H₃O₂
A chemical equation is a symbolic representation of a chemical reaction. The chemical equation for the reaction between potassium sulfate ([tex]K_2SO_4[/tex]) and lead(II) acetate ([tex]Pb(CH_3COO)_2[/tex]) can be written as follows:
[tex]K_2SO_4 + Pb(CH_3COO)_2 = PbSO_4 + 2CH_3COOK[/tex]
A basic chemical equation consists of two main parts: the reactant side (left side) and the product side (right side), separated by an arrow indicating the direction of the reaction. Reactants are substances that undergo a chemical change, while products are substances formed as a result of the reaction.
In this reaction, potassium sulfate reacts with lead(II) acetate to form lead(II) sulfate and potassium acetate. It is important to note that the equation is balanced with stoichiometric coefficients, ensuring that the number of atoms of each element is the same on both sides of the equation.
Therefore, the chemical equation for the reaction between potassium sulfate ([tex]K_2SO_4[/tex]) and lead(II) acetate ([tex]Pb(CH_3COO)_2[/tex]) can be written as follows:
[tex]K_2SO_4 + Pb(CH_3COO)_2 = PbSO_4 + 2CH_3COOK[/tex]
For more details regarding chemical equations, visit:
https://brainly.com/question/28792948
#SPJ6
The value of ΔG°′ΔG°′ for the conversion of glucose-6-phosphate to fructose-6-phosphate (F6P) is +1.67 kJ/mol+1.67 kJ/mol . If the concentration of glucose-6-phosphate at equilibrium is 2.65 mM2.65 mM , what is the concentration of fructose-6-phosphate? Assume a temperature of 25.0°C25.0°C .
Answer:
The concentration of fructose-6-phosphate F6P ≅ 1.35 mM
Explanation:
Given that:
ΔG°′ is the conversion of glucose-6-phosphate to fructose-6-phosphate (F6P) = +1.67 kJ/mol = 1670 J/mol
concentration of glucose-6-phosphate at equilibrium = 2.65 mM
Assuming temperature = 25.0°C
=( 25 + 273)K
= 298 K
We are to find the concentration of fructose-6-phosphate
Using the relation;
ΔG' = -RT In K_c
where;
R = 8.314 J/K/mol
1670 = - (8.314 × 298 ) In K_c
1670 = -2477.572 × In K_c
1670/ 2477.572 = In K_c
0.67 = In K_c
[tex]K_c = e^{-0.67}[/tex]
[tex]K_c =[/tex] 0.511
Now using the equilibrium constant [tex]K_c[/tex]
[tex]K_c = \dfrac{[F6P]}{[G6P]}[/tex]
[tex]0.511 = \dfrac{[F6P]}{[2.65]}[/tex]
F6P = 0.511 × 2.65
F6P = 1.35415
F6P ≅ 1.35 mM
a) What substances are present in an aqueous buffer composed of HC2H3O2 and C2H3O2 - ?b) What happens when LiOH is added to a buffer composed of HC2H3O2 and C2H3O2 - ? Write a chemical equation for that reaction.c) What happens when HBr is added to this buffer? Write a chemical equation for that reaction.
Answer:
a) HC₂H₃O₂, C₂H₃O₂⁻, H₃O⁺, H₂O, OH⁻
b) HC₂H₃O₂ + LiOH ⇄ H₂O + LiC₂H₃O₂
c) C₂H₃O₂⁻ + HBr ⇄ HC₂H₃O₂ + Br⁻
Explanation:
a) In a HC₂H₃O₂/C₂H₃O₂⁻ buffer system, the following reactions take place:
HC₂H₃O₂ + H₂O ⇄ C₂H₃O₂⁻ + H₃O⁺
C₂H₃O₂⁻ + H₂O ⇄ HC₂H₃O₂ + OH⁻
Thus, the species present are: HC₂H₃O₂, C₂H₃O₂⁻, H₃O⁺, H₂O, OH⁻.
b) When LiOH is added to the buffer system, it is partially neutralized according to the following equation.
HC₂H₃O₂ + LiOH ⇄ H₂O + LiC₂H₃O₂
c) When HBr is added to the buffer system, it is partially neutralized according to the following equation.
C₂H₃O₂⁻ + HBr ⇄ HC₂H₃O₂ + Br⁻
If sodium arsenite is Na3AsO3, the formula for calcium arsenite would be
Answer:
Ca₃(AsO₃)₂
Explanation:
Sodium arsenite, with the chemical formula Na₃AsO₃, is formed by the cation Na⁺ and the anion AsO₃³⁻. For the molecule to be neutral, 3 cations Na⁺ and 1 anion AsO₃³⁻ are required.
Calcium arsenite would be formed by the cation Ca²⁺ and the anion AsO₃³⁻. For the molecule to be neutral, we require 3 cations Ca²⁺ and 2 anions AsO₃³⁻. The resulting chemical formula is Ca₃(AsO₃)₂.
what are the differences between strong and weak acids?
Strong acids are completely ionised and weak acids are partly ionised
Answer:
Como forman los iones en soluciión
Explanation:
Los ácidos fuertes y las bases fuertes se refieren a especies que se disocian completamente para formar los iones en solución. Por el contrario, los ácidos y bases débiles se ionizan solo parcialmente y la reacción de ionización es reversible.
Using appropriate chemical equation distinguish between cation and anion hydrolysis
Answer:
HCO3- (aq) + H2O (I) <--> H2CO3 (aq) + OH- (aq)
Explanation:
The equation to distinguish between cation and anion hydrolysis is given below :
HCO3- (aq) + H2O (I) <--> H2CO3 (aq) + OH- (aq)
The important thing to remember is their origin. The anions can react with water and can produce hydroxide ions while hydroxide ions make a solution basic.
4. Which of the following statements explains the cause of lanthanide contraction?
A. All lanthanides and actinides are radioactive
B. Protons exhibit a stronger pull on outer f orbitals
C. The d orbitals in lanthanides have unpair electrons
D. The d orbitals in actinides have paired electrons
Answer:
B. PROTONS EXHIBIT STRONGER PULL ON OUTER f ORBITALS
Explanation:
Lanthanide contraction is the greater than normal decrease in the ionic radius of the lanthanide series from atomic number 57 to atomic number 71. This decrease is rather not expected of the ionic radii of these elements and they result in the greater decrease in the subsequent series of the lanthanides from the atomic number 72. The cause of which is as a result of the poor shielding effects of the nuclear charge around the electrons of the f orbitals. So therefore, protons are strongly pulled out of the 4f orbital and as a result of the poor shielding effect which causes the electrons of the 6s orbitals to be drawn more closer to the nucleus and hence resulting in a smaller atomic radii. It is worthy to note that the shielding effects of the inner electrons decreasing from s orbital to the f orbital; that is s > p > d > f. So from the decrease in the shielding effects from s to the f orbitals, lanthanide contraction results from the inability of the orbitals far away from s like the 4f orbiatls to shield the outermost shells of the lanthanide elements. So the cause of lanthanide contraction is the action of the protons which strongly pull the electrons of the f orbitals because of the poor shielding effects due to the distance of this orbital from the nucleus.
Answer:
B) Protons exhibit a stronger pull on outer f orbitals than on d orbitals.
Explanation:
A student mixes baking soda and vinegar in a glass. Are there any new substances created from this mixture?
Answer:
Explanation:
1. A student mixes baking soda and vinegar in a glass. The results are shown at left. ... Yes I do belive that new substances are being formed because there is a chemical reaction between the baking soda and vinegar turning it into a bubbly substances instead of a powder and liquid.
Yes, there are new substances created from this mixture.
Consider the heating curve for water. A graph of the heating curve for water has time in minutes on the horizontal axis and Temperature in degrees Celsius on the vertical axis. A line runs through the following points: 0 minutes, negative 20 degrees; 0.5 minutes, 0 degrees; 2 minutes, 0 degrees; 4 minutes, 100 degrees; 8 minutes, 100 degrees; 9.5 minutes, 160 degrees. At what temperature does the solid start melting? –20°C 0°C 20°C 80°C
Answer:
0°C.
Explanation:
Hello,
In this case, given the heating curve of water on the attached document, we can notice that at 0 °C the solid starts melting, which means that the melting point is reached. Melting point is known as a physical change whereby a solid changes to liquid by the addition of heat as it allows the molecules to separate to each other.
Best regards.
Answer:
0 degrees celcius
Explanation:
I took the test
Analyze: The metallic character of an element is determined by how readily it loses electrons. Elements that lose electrons most easily have the greatest metallic character
A. Which group has the greatest metallic character?
B. Which group has the lowest metallic character?
C. What is the relationship between metallic character and ionization energy?
Answer:
Group 1 or akali metals have the greatest metallic property.
Group 17 has the lowest metallic character.
C. As you move from right to lefton the periodic table, metallic character increases which is the ability to lose electrons. Ionization energy decrease as we move from right to left on the periodic table.
Explanation:
Akali metals in group 1 have the greatest metallic property and they are the most reactive metals. Francium metal on the group has the most metallic characteristics. It is rare and very radioactive. Group 17 has the lowest metallic character. This is because while moving across the period, the number of electrons in the outermost shell increases. This make it difficult for atoms to leave see electrons and become electropositive . Group 17 has the highest tendency of accepting electrons.
Ionization energy is the energy use to remove electron from an atom in gaseous stage. Ionization energy decrease as we move from right to left on the periodic table and metallic character increases as we move from right to left on the periodic table.
Consider the three isomeric alkanes n-hexane,2,3-dimethylbutane, and 2-methylpentane. Which of the following correctly lists these compounds in order of increasing boiling point
a. 2,3-dimethylbutane < 2-methylpentane < n-hexane
b. 2-methylpentane
c. 2-methylpentane < 2,3-dimethylbutane
d. n-hexane < 2-methylpentane < 2,3-dimethylbutane
e. n-hexane < 2,3-dimethylbutane < 2-methylpentane
Answer:
a. 2,3-dimethylbutane < 2-methylpentane < n-hexane
Explanation:
The boiling point of alkanes is highly affected by the degree of branching in the molecule. Branched alkanes generally have a lower boiling point than unbranched alkanes.
The reason for the higher boiling point of unbranched alkanes is because they have greater vanderwaals forces acting between their molecules due to their larger surface area. Recall that branched alkanes have a lesser surface area compared to unbranched alkanes.
n-hexane is an unbranched alkane hence it will have the highest boiling point followed by 2-methyl pentane and lastly 2,3-dimethyl butane. The boiling point continues to decrease as the extent of branching increases.
Which of the following would be more reactive than magnesium (Mg)?
A. Calcium (Ca)
B. Potassium (K)
C. Argon (Ar)
D. Beryllium (Be)
Answer:potassium is more reactive than Mg because both lie in the same group and the element potassium has more electropositivity than magnesium
Explanation:
I hope it will help you
Answer: B. Potassium(K)
Explanation:
Of Sr or Ba , the element with the higher first ionization energy is
Answer:
Sr
Explanation:
Sr has an ionization of 550 whereas Ba has an ionization of 503