Answer:
a = 16.733
Step-by-step explanation:
Since this is a right triangle, we can use the Pythagorean theorem
a^2 + b^2 = c^2
a^2 + 9^2 = 19^2
a^2 = 19^2 - 9^2
a^2 = 361-81
a^2 =280
Taking the square root of each side
sqrt(a^2) = sqrt(280)
a = 16.73320053
Rounding to the nearest thousandth
a = 16.733
How many ways can a 4-person subcommittee be selected from a committee of 6 people? (B) How many ways can a president comma vice dash president comma secretary comma and treasurer be chosen from a committee of 6 people?
Answer:
A) 360
B) 360
Step-by-step explanation:
Part A)
Given that there are a total of 6 people and 4 person subcommittee is to be selected.
Number of ways to select 1st person = 6
Now, 1 person is selected, total persons left are 5
Number of ways to select 2nd person = 5
Now, 1 person is selected, total persons left are 4
Number of ways to select 3rd person = 4
Now, 1 person is selected, total persons left are 3
Number of ways to select 4th person = 3
So, total number of ways = 6[tex]\times[/tex]5[tex]\times[/tex]4[tex]\times[/tex]3 = 360
Part B)
Given that there are a total of 6 people in the committee
Number of ways to select president = 6
Now, 1 person is selected, total persons left are 5
Number of ways to select vice president = 5
Now, 1 person is selected, total persons left are 4
Number of ways to select secretary = 4
Now, 1 person is selected, total persons left are 3
Number of ways to select treasurer = 3
So, total number of ways = 6[tex]\times[/tex]5[tex]\times[/tex]4[tex]\times[/tex]3 = 360
What is an equation in point-slope form for the line that passes through the points (4,−1) and (−3,4)? y+4=−57(x+3) y+4=57(x+3) y−4=−57(x+3) y−3=−57(x+4) PLEASE HELP MEEEE
Answer:
Step-by-step explanation:
(4+1)/(-3-4)= -5/7
y + 1 = -5/7(x - 4)
or
y - 4= -5/7(x + 3)
The cube of a number is less than five times the square of the number. For what set of numbers is this true?
(–ꝏ, 5)
(5, ꝏ)
(–ꝏ, 0) U (0, 5)
(–ꝏ, 5) U (5, ꝏ)
Answer:
(–ꝏ, 0) U (0, 5)
Step-by-step explanation:
The relation can be written as ...
x³ < 5x²
x³ -5x² < 0
x²(x -5) < 0
This is not true for x = 0. It is true for x < 5, otherwise. Then the solution set is ...
x ∈ {(–ꝏ, 0) U (0, 5)}
Answer:
C
Step-by-step explanation:
got it right on edge
The Demon family owns a large grape vineyard in western New York along Lake Erie. The grapevines must be sprayed at the beginning of the growing season to protect against various insects. Two new insecticides have just been marketed: Pernod 5 and Action. To test their effectiveness, three long rows were selected and sprayed with Pernod 5, and three other were sprayed with Action. When the grape ripened, 400 of the vines treated with Pernod 5 and 400 of the vines treated with Action were checked for infestation. The number of infested vines treated with Pernod 5 and Action are 24 and 40 respectively.
At 0.05 significance level, can we conclude that there is a difference in the proportion of vines infested using Pernod 5 as opposed to Action?
Answer:
At a significance level of 0.05, there is enough evidence to support the claim that there is a significant difference in the proportion of vines infested using Pernod 5 as opposed to Action.
Step-by-step explanation:
This is a hypothesis test for the difference between proportions.
The claim is that there is a significant difference in the proportion of vines infested using Pernod 5 as opposed to Action.
Then, the null and alternative hypothesis are:
H_0: \pi_1-\pi_2=0\\\\H_a:\pi_1-\pi_2\neq 0
The significance level is 0.05.
The sample 1 (Pernod 5), of size n1=400 has a proportion of p1=0.06.
[tex]p_1=X_1/n_1=24/400=0.06[/tex]
The sample 2, of size n2=400 has a proportion of p2=0.1.
[tex]p_2=X_2/n_2=40/400=0.1[/tex]
The difference between proportions is (p1-p2)=-0.04.
[tex]p_d=p_1-p_2=0.06-0.1=-0.04[/tex]
The pooled proportion, needed to calculate the standard error, is:
[tex]p=\dfrac{X_1+X_2}{n_1+n_2}=\dfrac{24+40}{400+400}=\dfrac{64}{800}=0.08[/tex]
The estimated standard error of the difference between means is computed using the formula:
[tex]s_{p1-p2}=\sqrt{\dfrac{p(1-p)}{n_1}+\dfrac{p(1-p)}{n_2}}=\sqrt{\dfrac{0.08*0.92}{400}+\dfrac{0.08*0.92}{400}}\\\\\\s_{p1-p2}=\sqrt{0.000184+0.000184}=\sqrt{0.000368}=0.019[/tex]
Then, we can calculate the z-statistic as:
[tex]z=\dfrac{p_d-(\pi_1-\pi_2)}{s_{p1-p2}}=\dfrac{-0.04-0}{0.019}=\dfrac{-0.04}{0.019}=-2.085[/tex]
This test is a two-tailed test, so the P-value for this test is calculated as (using a z-table):
[tex]\text{P-value}=2\cdot P(z<-2.085)=0.037[/tex]
As the P-value (0.037) is smaller than the significance level (0.05), the effect is significant.
The null hypothesis is rejected.
There is enough evidence to support the claim that there is a significant difference in the proportion of vines infested using Pernod 5 as opposed to Action.
Please help me it’s due tomorrow and I really need help
Answer:
5 [tex]\frac{1}{3}[/tex], 10 [tex]\frac{2}{3}[/tex]
Step-by-step explanation:
There is a common ratio r between consecutive terms, that is
[tex]\frac{2}{3}[/tex] ÷ [tex]\frac{1}{3}[/tex] = 1 [tex]\frac{1}{3}[/tex] ÷ [tex]\frac{2}{3}[/tex] = 2 [tex]\frac{2}{3}[/tex] ÷ 1 [tex]\frac{1}{3}[/tex] = 2
Thus to obtain a term in the sequence multiply the previous term by 2, thus
a₅ = [tex]\frac{8}{3}[/tex] × 2 = [tex]\frac{16}{3}[/tex] = 5 [tex]\frac{1}{3}[/tex]
a₆ = [tex]\frac{16}{3}[/tex] × 2 = [tex]\frac{32}{3}[/tex] = 10 [tex]\frac{2}{3}[/tex]
The tread life of a particular brand of tire is a random variable best described by a normal distribution with a mean of 60,000 miles and a standard deviation of 1100 miles. What warranty should the company use if they want 96% of the tires to outlast the warranty? Round the answer to the nearest whole number
Answer:
61,925 miles
Step-by-step explanation:
Given :
The p-value of the tires to outlast the were warranty were given in the the question as = 0.96
Checking the normal distribution table, The probability that corresponds to 0.96
from the Normal distribution table is 1.75.
Mean : 'μ'= 60000 miles
Standard deviation : σ=1100
The formula for z-score is given by
: z= (x-μ)/σ
1.75=(x-60000)/1100
1925=x-60000
x=61925
Therefore, the tread life of tire should be 61,925 miles if they want 96% of the tires to outlast the warranty.
A small regional carrier accepted reservations for a particular flight with 17 seats. 14 reservations went to regular customers who will arrive for the flight. Each of the remaining passengers will arrive for the flight with a 52% chance.A. Find the probability that overbooking occurs. B. Find the probability that the flight has empty seats.
Answer:B.
Step-by-step explanation: it is better to have empty seats than toforce people to give up their seats.
Which property is displayed in the example below: 4(x + 3) = 4x + 12
Answer:
This equation displays the distributive property which states that a(b + c) = a(b) + a(c).
Answer:
Distributive property
Step-by-step explanation:
4(x+3)=4x+12
This example shows distributive property because 4 is distributed (multiplied) to x +3. When 4 is distributed, it will equal 4x+12!!
Hope it helps!!!!
Hi, what trigonometry is?
Trigonometry is the study of the properties of triangles and trigonometric functions and of their applications.
I'm not sure how you'd want me to answer your question though, but stay safe!!
- eli <3
need help asap! what is the value of x given that figure MNOP is a trapezoid with median QR
Answer:
x = 8
Step-by-step explanation:
To find the possible value of x in the given trapezoid MNOP with median QR, recall that one of the properties of a trapezoid is that the median length = ½ of the sum of the length of the parallel bases
Thus, ½ of [x + (3x + 8)] = 20
Let's find x
½*[x + (3x + 8)] = 20
½*[x + 3x + 8)] = 20
½*[4x +8] = 20
Multiply both sides by 2
4x + 8 = 20*2
4x + 8 = 40
Subtract 8 from both sides
4x = 40 - 8
4x = 32
Divide both sides by 4
x = 32/4
x = 8
Answer:
I think its 8 ♂️
Step-by-step explanation:
In a test of the effectiveness of garlic for lowering cholesterol, 47 subjects were treated with garlic in a processed tablet form. Cholesterol levels were measured before and after the treatment. The changes (beforeminusafter) in their levels of LDL cholesterol (in mg/dL) have a mean of 2.7 and a standard deviation of 17.8. Construct a 90% confidence interval estimate of the mean net change in LDL cholesterol after the garlic treatment. What does the confidence interval suggest about the effectiveness of garlic in reducing LDL cholesterol?
The 90% confidence interval for the mean net change in LDL cholesterol after the garlic treatment is approximately -1.799 to 7.199, suggesting that the effectiveness of garlic in reducing LDL cholesterol is not statistically significant.
We have,
To construct a 90% confidence interval estimate of the mean net change in LDL cholesterol after the garlic treatment, we can use the formula:
CI = X ± (Z * (σ/√n))
where:
CI is the confidence interval
X is the sample mean
Z is the critical value corresponding to the desired confidence level (90% confidence level corresponds to Z = 1.645 for a large sample size)
σ is the population standard deviation
n is the sample size
Given that the sample mean X of the net change in LDL cholesterol is 2.7, the standard deviation (σ) is 17.8, and the sample size (n) is 47, we can calculate the confidence interval as follows:
CI = 2.7 ± (1.645 * (17.8/√47))
Calculating the standard error (SE):
SE = σ/√n = 17.8/√47 ≈ 2.587
Substituting the values into the confidence interval formula:
CI = 2.7 ± (1.645 * 2.587)
Calculating the upper and lower bounds of the confidence interval:
Upper bound = 2.7 + (1.645 * 2.587) ≈ 7.199
Lower bound = 2.7 - (1.645 * 2.587) ≈ -1.799
Therefore, the 90% confidence interval estimate for the mean net change in LDL cholesterol after the garlic treatment is approximately -1.799 to 7.199.
Interpreting the confidence interval:
Since the confidence interval contains both positive and negative values, it suggests that the effectiveness of garlic in reducing LDL cholesterol is not statistically significant.
The interval includes zero, indicating that there is a possibility that the mean net change in LDL cholesterol after the garlic treatment could be zero (no change).
However, it is important to note that further studies or a larger sample size may be needed to draw more definitive conclusions.
Thus,
The 90% confidence interval for the mean net change in LDL cholesterol after the garlic treatment is approximately -1.799 to 7.199, suggesting that the effectiveness of garlic in reducing LDL cholesterol is not statistically significant.
Learn more about confidence intervals here:
https://brainly.com/question/32546207
#SPJ4
The 90% confidence interval suggests that the true mean net change in LDL cholesterol after the garlic treatment lies between -1.57 and 6.97 mg/dL. Since the interval contains both positive and negative values, it indicates that the garlic treatment may or may not be effective in reducing LDL cholesterol.
What does the confidence interval suggest about the effectiveness of garlic in reducing LDL cholesterol?To construct a 90% confidence interval estimate of the mean net change in LDL cholesterol after the garlic treatment, we can use the formula:
CI = mean ± (Z * (standard deviation / √n))
Here, n represents the sample size (47), Z is the critical value corresponding to a 90% confidence level (Z = 1.645 for a 90% confidence level), and the mean is 2.7 with a standard deviation of 17.8.
Plugging in the values:
CI = 2.7 ± (1.645 * (17.8 / √47))
CI = 2.7 ± (1.645 * (17.8 / 6.856))
CI = 2.7 ± (1.645 * (2.596))
CI = 2.7 ± 4.270
CI = 2.7 + 4.270 ; CI = 2.7 - 4.270
CI = 6.97 ; CI = -1.57
Thus, the 90% confidence interval estimate for the mean net change in LDL cholesterol after the garlic treatment is approximately (-1.57, 6.97).
The confidence interval suggests that the effectiveness of garlic in reducing LDL cholesterol is inconclusive. The interval spans both positive and negative values, indicating that the true mean change in LDL cholesterol could be anywhere within this range. Further research or a larger sample size might be needed to draw a more definitive conclusion about the effectiveness of garlic in lowering LDL cholesterol.
Read more about confidence interval here: https://brainly.com/question/20309162
#SPJ1
**Hello !** I need help to do that algebra homework. I don't really know how that website works, so just tell me how much points you want if your answer is good and i'll give them to your with a lot of pleasure. Here is the homework : Thank you so much for your help ! :)
Answer:
y = √(900 -x²); see below for a graph
Step-by-step explanation:
The high point (30 ft) is the radius of the circle, so the equation is ...
x² +y² = 30²
Subtract the x-term and take the square root to find y.
y² = 30² -x²
y = √(30² -x²) = √(900 -x²)
The graph is shown in the attachment.
_____
Comment on "how that website works"
We don't know what web site you're referring to, but the one I like is Desmos. It only takes a few minutes to learn to graph the equation here.
You don't even need to solve for y to get the desired graph. You can simply specify that y ≥ 0.
which graph is the solution to lx| > 10? HELP PICTURE INCLUDED
Answer:
Its the first answer choice.
Step-by-step explanation:
Its open circle because the sign is just greater than. And since x is an absolute value, the negative sign doesnt matter so, it points to the right of 10 and to the left of -10.
Solve the equation. y + 3 = –y + 9
A. y = 1
B. y = 3
C. y = 6
D. y = 9
Answer:
y=3
Step-by-step explanation:
y + 3 = –y + 9
Add y to each side
y+y + 3 = –y+y + 9
2y+3 = 9
Subtract 3 from each side
2y+3-3 = 9-3
2y = 6
Divide by 2
2y/2 = 6/3
y =3
Answer:
Hello!
_______________________
Your answer would be (B) y = 3
Step-by-step explanation: Isolate the variable by dividing each side by factors that don't contain the variable.
Hope this helped you!
Rewrite 19/3 as a mixed number
Answer:
[tex]6\frac{1}{3}[/tex]
Step-by-step explanation:
You can divide 19 by 3 a total of 6 times with a remainder of 1.
Find the volume of the region between the planes x plus y plus 2 z equals 2 and 4 x plus 4 y plus z equals 8 in the first octant.
Find the intercepts for both planes.
Plane 1, x + y + 2z = 2:
[tex]y=z=0\implies x=2\implies (2,0,0)[/tex]
[tex]x=z=0\implies y=2\implies(0,2,0)[/tex]
[tex]x=y=0\implies 2z=2\implies z=1\implies(0,0,1)[/tex]
Plane 2, 4x + 4y + z = 8:
[tex]y=z=0\implies4x=8\implies x=2\implies(2,0,0)[/tex]
[tex]x=z=0\implies4y=8\impliesy=2\implies(0,2,0)[/tex]
[tex]x=y=0\implies z=8\implies(0,0,8)[/tex]
Both planes share the same x- and y-intercepts, but the second plane's z-intercept is higher, so Plane 2 acts as the roof of the bounded region.
Meanwhile, in the (x, y)-plane where z = 0, we see the bounded region projects down to the triangle in the first quadrant with legs x = 0, y = 0, and x + y = 2, or y = 2 - x.
So the volume of the region is
[tex]\displaystyle\int_0^2\int_0^{2-x}\int_{\frac{2-x-y}2}^{8-4x-4y}\mathrm dz\,\mathrm dy\,\mathrm dx=\displaystyle\int_0^2\int_0^{2-x}\left(8-4x-4y-\frac{2-x-y}2\right)\,\mathrm dy\,\mathrm dx[/tex]
[tex]=\displaystyle\int_0^2\int_0^{2-x}\left(7-\frac72(x+y)\right)\,\mathrm dy\,\mathrm dx=\int_0^2\left(7(2-x)-\frac72x(2-x)-\frac74(2-x)^2\right)\,\mathrm dx[/tex]
[tex]=\displaystyle\int_0^2\left(7-7x+\frac74 x^2\right)\,\mathrm dx=\boxed{\frac{14}3}[/tex]
Express it in slope-Intercept form
Answer:
Y=1/4x-4
Explanation: The y intercept is -4 that is your B. Using the rise over sun method the line rises 1 and goes to the right 4 making the slope 1/4 or .25
A jar contains 5 brown marbles, 3 yellow marbles, 4 red marbles, 6 blue marbles, and 2 orange marbles. A marble is chosen and replaced. Then another marble is chosen. What is the likelihood that a brown marble AND a red marble were chosen? A: 9/20 B: 1/2 C: 1/20 D: 0
Answer:
1/20
Step-by-step explanation:
5 brown marbles, 3 yellow marbles, 4 red marbles, 6 blue marbles, and 2 orange marbles = 20 marbles
P( brown) = brown / total = 5/20 = 1/4
Replace
5 brown marbles, 3 yellow marbles, 4 red marbles, 6 blue marbles, and 2 orange marbles = 20 marbles
P( red) = red / total = 4/20 = 1/5
P( brown, replace, red) = 1/4 * 1/5 = 1/20
No need of a answer anymore.
Answer:
mean score of class B = 1778/25 = 71.12
Step-by-step explanation:
This was your question : Class A has 12 pupils and class B has 25 pupils. Both classes sit the same maths test. The mean score for class A is 80. The mean score for both classes is 74. What is the mean score (rounded to 2 DP) in the maths test for class B?
mean of class A = Σfx/Σf
mean of class A = 80
Σfx = 80 × 12 = 960
Mean score for both classes = 74
where
b = Σfx of class B
960 + b/37 = 74
cross multiply
960 + b = 2738
b = 2738 - 960
b = 1778
mean score of class B = Σfx/Σf
Σfx = 1778
Σf = 25
Therefore,
1778/25 = 71.12
In her last semester at SPC, Polly Hedron needs to take Statistics, Composition 2, Ethics, and Physics. Because Polly is registering early, she has 14 choices for her section of Statistics, 12 choices for her section of Composition, 11 choices for her section of Ethics, and 18 choices for her section of Physics. From how many possible schedules can Polly choose? (You may presume that none of these sections interfere with each other)
Answer:
Polly can choose 33264 schedules.
Step-by-step explanation:
None of these sections interfere with each other, so:
For each statistics choice, there are 12 composition choices.
For each composition choice, there are 11 section of Ethics choices.
For each section of Ethics choice, there are 18 Physics choises.
There are 14 statistics choices.
From how many possible schedules can Polly choose?
14*12*11*18 = 33264
Polly can choose 33264 schedules.
Use the substitution x = et to transform the given Cauchy-Euler equation to a differential equation with constant coefficients. Solve the original equation by solving the new equation
x2y'' + 9xy' - 20y = 0
Answer:
[tex]\boxed{\sf \ \ \ ax^2+bx^{-10} \ \ \ }[/tex]
Step-by-step explanation:
Hello,
let's follow the advise and proceed with the substitution
first estimate y'(x) and y''(x) in function of y'(t), y''(t) and t
[tex]x(t)=e^t\\\dfrac{dx}{dt}=e^t\\y'(t)=\dfrac{dy}{dt}=\dfrac{dy}{dx}\dfrac{dx}{dt}=e^ty'(x)<=>y'(x)=e^{-t}y'(t)\\y''(x)=\dfrac{d^2y}{dx^2}=\dfrac{d}{dx}(e^{-t}\dfrac{dy}{dt})=-e^{-t}\dfrac{dt}{dx}\dfrac{dy}{dt}+e^{-t}\dfrac{d}{dx}(\dfrac{dy}{dt})\\=-e^{-t}e^{-t}\dfrac{dy}{dt}+e^{-t}\dfrac{d^2y}{dt^2}\dfrac{dt}{dx}=-e^{-2t}\dfrac{dy}{dt}+e^{-t}\dfrac{d^2y}{dt^2}e^{-t}\\=e^{-2t}(\dfrac{d^2y}{dt^2}-\dfrac{dy}{dt})[/tex]
Now we can substitute in the equation
[tex]x^2y''(x)+9xy'(x)-20y(x)=0\\<=> e^{2t}[ \ e^{-2t}(\dfrac{d^2y}{dt^2}-\dfrac{dy}{dt}) \ ] + 9e^t [ \ e^{-t}\dfrac{dy}{dt} \ ] -20y=0\\<=> \dfrac{d^2y}{dt^2}-\dfrac{dy}{dt}+ 9\dfrac{dy}{dt}-20y=0\\<=> \dfrac{d^2y}{dt^2}+ 8\dfrac{dy}{dt}-20y=0\\[/tex]
so the new equation is
[tex]y''(t)+ 8y'(t)-20y(t)=0[/tex]
the auxiliary equation is
[tex]x^2+8x-20=0\\<=> x^2-2x+10x-20=0\\<=>x(x-2)+10(x-2)=0\\<=>(x+10)(x-2)=0\\<=> x=-10\text{ or }x=2[/tex]
so the solutions of the new equation are
[tex]y(t)=ae^{2t}+be^{-10t}[/tex]
with a and b real
as
[tex]x(t)=e^t\\<=> t(x)=ln(x)[/tex]
[tex]y(x)=ae^{2ln(x)}+be^{-10ln(x)}=ax^2+bx^{-10}[/tex]
hope this helps
do not hesitate if you have any questions
Not sure how to graph this
Answer:
y=2x+6
Step-by-step explanation:
The slope is 2x and the y-intercept is 6. It is shown how to graph it in the attachment.
Write the limit as a definite integral on the interval [a, b], where ci is any point in the ith subinterval. Limit Interval lim ||Δ|| → 0 n (4ci + 11) i = 1 Δxi [−8, 6]
Answer:
The corresponding definite integral may be written as
[tex]\int_a^b \mathrm{(4x + 11)}\,\mathrm{d}x[/tex]
The answer of the above definite integral is
[tex]\int_a^b \mathrm{(4x + 11)}\,\mathrm{d}x = 98[/tex]
Step-by-step explanation:
The given limit interval is
[tex]\lim_{||\Delta|| \to 0} \sum\limits_{i=1}^n (4c_i + 11) \Delta x_i[/tex]
[tex][a, b] = [-8, 6][/tex]
The corresponding definite integral may be written as
[tex]\int_a^b \mathrm{(4x + 11)}\,\mathrm{d}x[/tex]
[tex]\int_{-8}^6 \mathrm{(4x + 11)}\,\mathrm{d}x[/tex]
Bonus:
The definite integral may be solved as
[tex]\int_{-8}^6 \mathrm{(4x + 11)}\,\mathrm{d}x \\\\\frac{4x^2}{2} + 11x \left \|{b=6} \atop {a=-8}} \right. \\\\2x^2 + 11x \left \|{b=6} \atop {a=-8}} \right. \\\\ 2(6^2 -(-8)^2 ) + 11(6 - (-8) \\\\2(36 - 64 ) + 11(6 + 8) \\\\2(-28 ) + 11(14) \\\\-56 +154 \\\\98[/tex]
Therefore, the answer to the integral is
[tex]\int_a^b \mathrm{(4x + 11)}\,\mathrm{d}x = 98[/tex]
For each ordered pair, determine whether it is a solution to the system of equations. y=6x-7 9x-2y=8
Answer:
x = 2, y = 5
Step-by-step explanation:
Hello,
y=6x-7
9x-2y=8
can be written as
(1) 6x - y = 7
(2) 9x -2y = 8
(2)-2*(1) gives
9x -2y -12x +2y = 8 - 2*7 = 8 - 14 = -6
<=> -3x=-6
<=> x = 6/3=2
and we replace it in (1)
y = 6*2-7=12-7=5
hope this helps
Segu
Find a formula for the nth term in this
arithmetic sequence:
a1 = 7, a2 = 4, a3 = 1, a4 = -2, ...
Answer:
The formula is 10 - 3n
Step-by-step explanation:
For an nth term in an arithmetic sequence
U( n ) = a + ( n - 1)d
Where n is the number of terms
a is the first term
d is the common difference
From the sequence above
a = 7
d = 4 - 7 = - 3
The formula for an nth term is
U(n) = 7 + (n - 1)-3
= 7 - 3n + 3
The final answer is
= 10 - 3n
Hope this helps you.
Consider the matrices. A=⎡⎣⎢4−3−578−2⎤⎦⎥ and B=⎡⎣⎢−27−35−12⎤⎦⎥ What is the result of A−B? Enter your answer by filling in the boxes.
hello
[tex]A-B=\left[\begin{array}{cc}4-(-2)&7-5\\-3-7&8-(-1)\\-5-(-3)&-2-2\end{array}\right] \\\\=\left[\begin{array}{cc}4+2&2\\-10&8+1\\-5+3&-4\end{array}\right] \\\\=\left[\begin{array}{cc}6&2\\-10&9\\-2&-4\end{array}\right][/tex]
hope this helps
Using matrices A and B, the result of A-B is
[tex]A-B=\left[\begin{array}{ccc}6&2\\-10&9\\-2&-4\end{array}\right][/tex]
Given :
Two matrices A and B. We need to subtract both matrix
Lets find out A-B
Given matrices A and B are
[tex]A=\left[\begin{array}{ccc}4&7\\-3&8\\-5&-2\end{array}\right] \\B=\left[\begin{array}{ccc}-2&5\\7&-1\\-3&2\end{array}\right][/tex]
When we subtract A-B we need to subtract the corresponding elements in that matrix
[tex]A-B=\left[\begin{array}{ccc}4&7\\-3&8\\-5&-2\end{array}\right] -\left[\begin{array}{ccc}-2&5\\7&-1\\-3&2\end{array}\right]=\left[\begin{array}{ccc}4-(-2)&7-5\\-3-7&8-(-1)\\-5-(-3)&-2-2\end{array}\right] \\A-B=\left[\begin{array}{ccc}6&2\\-10&9\\-2&-4\end{array}\right][/tex]
The above is the resultant matrix .
Learn more: brainly.com/question/12579158
You want to put a 2 inch thick layer of topsoil for a new 14 ft by 26 ft garden. The dirt store sells by the cubic yards. How many cubic yards will you need to order? The store only sells in increments of 1/4 cubic yards.
Answer:
2 1/4
Step-by-step explanation:
The volume of soil needed is ...
(14/3 yd)(26/3 yd)(2/36 yd) = 728/324 yd³ = 2.247 yd³
The nearest higher quarter-yard is 2.250 yd³. That's how much you need to order.
You need to order 2 1/4 cubic yards.
___
There are 3 ft or 36 inches to a yard.
which is bigger 1 or
[tex] \frac{19}{9} [/tex]
Answer:
19/9 because it equals to 2.111.. Which is greater than 1
Step-by-step explanation:
By the way if it's right can i get brainliest.
Answer:
1 < 19/9
Step-by-step explanation:
1 vs 19/9
Rewriting 19/9 as 9/9 + 9/9+ 1/9
1 vs 1+1 +1/9
1 vs 2 1/9
1 < 19/9
Domain and range of T
Answer:
Let's list out the points that belong to T. They are T{(-1, -4), (2, 2), (2, -3)}.
The domain is all of the x values. Therefore the domain is {-1, 2}.
The range is all of the y values. Therefore the range is {-4, -3, 2}.
We don't use ( ) or [ ] because T is a discrete relation.
The management of Acrosonic plans to market the ElectroStat, an electrostatic speaker system. The marketing department has determined that the demand for these speakers is represented by the following function, where p denotes the speaker's unit price (in dollars) and x denotes the quantity demanded. Find the following functions (in dollars), find the value (in dollars) and interpret your results.
p = −0.02x + 610 (0 ≤ x ≤ 20,000)
a. Find the revenue function R.
b. Find the marginal revenue function R'(x).
c. Compute the following value.
R'(5,400) = _______________
Answer:
(a)[tex]R(x)=-0.02x^2+610x[/tex]
(b)[tex]R'(x)=-0.04x+610[/tex]
(c)R'(5400)=$394
Step-by-step explanation:
Given that x is the quantity demanded and the speaker's unit price (in dollars) is p where:
p = −0.02x + 610 (0 ≤ x ≤ 20,000)
(a)Revenue function R.
Revenue = Price X Quantity Demanded
Therefore:
R(x)=xp
[tex]=x(-0.02x + 610)\\R(x)=-0.02x^2+610x[/tex]
(b)Marginal revenue function R'(x)
If [tex]R(x)=-0.02x^2+610x[/tex]
Then, the marginal revenue function
[tex]R'(x)=-0.04x+610[/tex]
(c)We want to compute R'(5,400)
[tex]R'(5400)=-0.04(5400)+610\\R'(5400)=394[/tex]
From the above, we can infer that the revenue that will be generated on the sales of the 5401st item is $394.