Find the current drawn by a 20 hp, 440 V three-phase motor operating at full load with 90% efficiency and 0.9 lagging power factor.
Calculate the values of P and Q consumed by the motor. (1 hp = 746 W)

Answers

Answer 1

A three-phase AC induction motor draws a current of 28.96 A at full load. The power consumed by the motor is 14.9 kW.

Given that the motor has 90% efficiency and a power factor of 0.9, the apparent power consumed by the motor is 16.56 kVA.

The formula to calculate power factor is

cosine(phi) = P/S = 746*20/(3*440*I*cosine(phi))

Therefore, the power factor = 0.9 or cos(phi) = 0.9

The real power P consumed by the motor is P = S * cosine(phi) or P = 16.56 kVA * 0.9 = 14.9 kW

The reactive power Q consumed by the motor is Q = S * sine(phi) or Q = 16.56 kVA * 0.4359 = 7.2 kVAR, where sine(phi) = sqrt(1 - cosine(phi)^2).

Thus, the current drawn by the motor is 28.96 A, and the power consumed by the motor is 14.9 kW. The values of P and Q consumed by the motor are 14.9 kW and 7.2 kVAR respectively.

To know more about power factor visit:

https://brainly.com/question/11957513

#SPJ11


Related Questions

What is the type number of the following system: G(s) = (s +2) /s^2(s +8) (A) 0 (B) 1 (C) 2 (D) 3

Answers

To determine the type number of a system, we need to count the number of integrators in the open-loop transfer function. The system has a total of 2 integrators.

Given the transfer function G(s) = (s + 2) / (s^2 * (s + 8)), we can see that there are two integrators in the denominator (s^2 and s). The numerator (s + 2) does not contribute to the type number.

Therefore, the system has a total of 2 integrators.

The type number of a system is defined as the number of integrators in the open-loop transfer function plus one. In this case, the type number is 2 + 1 = 3.

The correct answer is (D) 3.

Learn more about integrators here

https://brainly.com/question/28992365

#SPJ11

During the production of parts in a factory, it was noticed that the part had a 0.03 probability of failure. Determine the probability of only 2 failure parts being found in a sample of 100 parts. (Use Poissons).

Answers

The Poisson distribution is used to model the probability of a specific number of events occurring in a fixed time or space, given the average rate of occurrence per unit of time or space.

For instance, during the production of parts in a factory, it was noticed that the part had a 0.03 probability of failure.

The probability of only 2 failure parts being found in a sample of 100 parts can be calculated using Poisson's distribution as follows:

[tex]Mean (λ) = np = 100 × 0.03 = 3[/tex]

We know that [tex]P(x = 2) = [(λ^x) * e^-λ] / x![/tex]

Therefore, [tex]P(x = 2) = [(3^2) * e^-3] / 2! = 0.224[/tex]

To know more about Poisson distribution visit:

https://brainly.com/question/30388228

#SPJ11

An ASCII message is stored in memory, starting at address 1000h. In case this message is "BLG"
Write the H register state in the form FFh, otherwise a subroutine.

Answers

An ASCII message is stored in memory, starting at address 1000h. In case this message is "BLG" then the H register state in the form FFh is 0C4h.

The ASCII code for B is 42h, L is 4Ch, and G is 47h. The three-character string BLG will be stored in memory locations 1000h, 1001h, and 1002h, respectively. The H register contains the high byte of the memory address of the last byte accessed in an operation.

In this scenario, when the computer accesses memory location 1002h, the H register will contain the high byte of 1002h, which is 10h. Thus, the H register state is 10h in this case.To convert the H register state to the form FFh, we'll add FFh to the number. In this example, FFh + 10h = 0C4h, which is the H register state in the form FFh. Therefore, the H register state in the form FFh for this scenario is 0C4h.

To know more about memory visit:

https://brainly.com/question/14829385

#SPJ11

Associate and
summarize the ethical values related to engineering practices in
the PK-661 crash.

Answers

The ethical values related to engineering practices in the PK-661 crash can be summarized as follows: prioritizing safety, professionalism, integrity, accountability, and adherence to regulatory standards.

The PK-661 crash refers to the tragic incident that occurred on December 7, 2016, involving Pakistan International Airlines flight PK-661. The crash resulted in the loss of all passengers and crew members on board. In analyzing the ethical values related to engineering practices in this context, several key principles emerge.

Safety: Engineering professionals have a paramount ethical responsibility to prioritize safety in their designs and decision-making processes. This includes conducting thorough risk assessments, ensuring proper maintenance protocols, and implementing adequate safety measures to protect passengers and crew members.

Professionalism: Engineers are expected to adhere to the highest standards of professionalism, demonstrating competence, expertise, and a commitment to ethical conduct. This entails continuously updating knowledge and skills, engaging in ongoing professional development, and maintaining accountability for their actions.

Integrity: Upholding integrity is crucial for engineers, as it involves being honest, transparent, and ethical in all aspects of their work. This includes accurately representing information, avoiding conflicts of interest, and taking responsibility for the impact of their decisions on public safety and well-being.

Accountability: Engineers should be accountable for their actions and decisions. This includes acknowledging and learning from mistakes, participating in thorough investigations to determine the causes of accidents, and implementing corrective measures to prevent similar incidents in the future.

Adherence to Regulatory Standards: Engineers must comply with applicable regulations, codes, and standards set by regulatory bodies. This ensures that engineering practices align with established guidelines and requirements, promoting safety and minimizing risks.

These ethical values provide a framework for responsible engineering practices and serve as guiding principles to prevent accidents, ensure public safety, and promote professionalism within the engineering community. In the context of the PK-661 crash, examining these values can help identify potential shortcomings and areas for improvement in engineering practices to prevent such tragedies from occurring in the future.

To learn more about ethical values

brainly.com/question/31925224

#SPJ11

If a line-to-line fault occurs across "b" and "c" and Ea = 230 V/0°, Z₁ = 0.05 +j 0.292, Zn = 0 and Zf = 0.04 + j0.3 02, find: a) the sequence currents la1 and laz fault current If b) c) the sequence voltages Vǝ1 and Va2 d) sketch the sequence network for the line-to-line fault.

Answers

Line-to-line fault across "b" and "c". Ea = 230 V/0°.Z₁ = 0.05 +j 0.292,Zn = 0.f = 0.04 + j0.302.

(a) The sequence currents: Sequence currents la1 and laz fault current are calculated by using the following formulae:

la1 = (-2/3)[(0.05 + j0.292) / (0.05 + j0.292 + 0.04 + j0.302)] * (230 / √3)la1 = (-2/3)[0.05 + j0.292 / 0.0896 + j0.594] * 230la1

= -28.7 + j51.5A

Let us use the below formula to calculate the fault current: if = 3 * la1if

= 3 * (-28.7 + j51.5)if = -86.1 + j154.5

A(b) The sequence voltages :Sequence voltages Vǝ1 and Va2 are calculated using the following formulae: For voltage

Vǝ1:(Vǝ1 / √3) = Ea / √3Vǝ1 = Ea = 230V/0

°For voltage Va2:Va2 = 0

(As the fault is a line-to-line fault, the phase voltages are equal in magnitude but opposite in direction, and they are canceled out due to phase shifting in a balanced system.

Hence, the zero sequence voltage is zero.) (c) The sequence diagram can be shown as follows:  Sequence Network The sequence network for the line-to-line fault is shown below: Sequence Network for the line-to-line fault.

To know more about Line-to-line fault visit :-

https://brainly.com/question/30357815

#SPJ11

A creamery plant must cool 11.06238 m^3 of milk from 30°C to 3°C. What must be the change of total internal energy of this milk in GJ if the specific heat of milk as 3.92 kJ/kg-K and its specific gravity is 1.026?
a. 1.178
b. 1.2013
c. 1.32723
d. 1.2355

Answers

The change in total internal energy of the milk is approximately 1.178 GJ.

What is the change in total internal energy of the milk in GJ?

To determine the change in total internal energy of the milk, we need to calculate the amount of heat transferred. The formula to calculate the heat transfer is given by:

Q = m * c * ΔT

Where:

Q is the heat transfer (in joules)

m is the mass of the milk (in kilograms)

c is the specific heat of milk (in joules per kilogram per degree Kelvin)

ΔT is the change in temperature (in degrees Kelvin)

First, we need to calculate the mass of the milk. Since the specific gravity is given, we can use the formula:

m = V * ρ

Where:

m is the mass of the milk (in kilograms)

V is the volume of the milk (in cubic meters)

ρ is the specific gravity of milk (unitless)

Using the given values, we have:

V = 11.06238 m^3

ρ = 1.026

Calculating the mass:

m = 11.06238 m^3 * 1.026 kg/m^3

m = 11.35573 kg

Next, we calculate the change in temperature:

ΔT = final temperature - initial temperature

ΔT = 3°C - 30°C

ΔT = -27°C

Converting ΔT to Kelvin:

ΔT = -27 + 273.15

ΔT = 246.15 K

Now we can calculate the heat transfer:

Q = 11.35573 kg * 3.92 kJ/kg-K * 246.15 K

Q ≈ 1.178 GJ

Therefore, the change in total internal energy of the milk is approximately 1.178 GJ.

The correct answer is:

a. 1.178

Learn more about internal energy

brainly.com/question/11742607

#SPJ11

Consider the following plane stress state: Ox=12 kpsi, Oy = 6 kpsi, Txy = 4 kpsi cw Calculate the following: 1. The coordinates of the center of the Mohr's circle C The location of the center of the Mohr's circle Cis ( 2. Principal normal stresses (01, 02) The principal normal stresses are 0₁ = 3. Maximum shear stress (T) The maximum shear stress is 4. The angle from the x axis to 01 (pl The angle from the x axis to 01 (p) is 5. The angle from the x axis to T (Ps) The angle from the x axis to 7 (s) is 6. The radius of the Mohr's circle The radius of the Mohr's circle is kpsi.

Answers

The radius of the Mohr's circle (R) is 5 kpsi

To calculate the coordinates of the center of the Mohr's circle (C), we can use the following formulas:

Center of Mohr's circle (C) = ((σx + σy) / 2, 0)

Given the stress state: σx = 12 kpsi, σy = 6 kpsi, and τxy = 4 kpsi (cw),

Substituting the values into the formula, we get:

Center of Mohr's circle (C) = ((12 + 6) / 2, 0) = (9 kpsi, 0)

Therefore, the coordinates of the center of the Mohr's circle (C) are (9 kpsi, 0).

To calculate the principal normal stresses (σ1, σ2), we can use the following formulas:

σ1 = ((σx + σy) / 2) + √(((σx - σy) / 2)^2 + τxy^2)

σ2 = ((σx + σy) / 2) - √(((σx - σy) / 2)^2 + τxy^2)

Substituting the values, we get:

σ1 = ((12 + 6) / 2) + √(((12 - 6) / 2)^2 + (4)^2) = 15 kpsi

σ2 = ((12 + 6) / 2) - √(((12 - 6) / 2)^2 + (4)^2) = 3 kpsi

Therefore, the principal normal stresses are σ1 = 15 kpsi and σ2 = 3 kpsi.

To calculate the maximum shear stress (τmax), we can use the following formula:

τmax = (σ1 - σ2) / 2

Substituting the values, we get:

τmax = (15 - 3) / 2 = 6 kpsi

Therefore, the maximum shear stress is 6 kpsi.

To calculate the angle from the x-axis to σ1 (ϕ), we can use the following formula:

ϕ = (1/2) * arctan((2 * τxy) / (σx - σy))

Substituting the values, we get:

ϕ = (1/2) * arctan((2 * 4) / (12 - 6)) = arctan(4/3)

Therefore, the angle from the x-axis to σ1 (ϕ) is arctan(4/3).

To calculate the angle from the x-axis to τmax (ψ), we can use the following formula:

ψ = (1/2) * arctan((-2 * τxy) / (σx - σy))

Substituting the values, we get:

ψ = (1/2) * arctan((-2 * 4) / (12 - 6)) = arctan(-4/3)

Therefore, the angle from the x-axis to τmax (ψ) is arctan(-4/3).

Finally, to calculate the radius of the Mohr's circle (R), we can use the following formula:

R = √(((σx - σ1)^2) + (τxy^2))

Substituting the values, we get:

R = √(((12 - 15)^2) + (4)^2) = √(9 + 16) = √25 = 5 kpsi

know mre about Mohr's circle here:

https://brainly.com/question/31322592

#SPJ11

.

A gear motor can develop 6.4 kW when it turns at 900 rev/min. If the shaft has a diameter of 100 mm, determine .the frequency of rotation of the shaft .the torque generated by the shaft .the maximum shear stress developed in the shaft

Answers

A gear motor that can produce 6.4 kW when it rotates at 900 rev/min, has a shaft with a diameter of 100mm. The objective of this question is to determine the following.

Frequency of rotation of the shaft Torque generated by the shaft Maximum shear stress developed in the shaft Frequency of rotation of the shaft We can use the formula given below to calculate the frequency of rotation of the shaft.

Where ω = angular velocity in rad/sn = frequency of rotation in rev/s or rev/minThus,ω = [tex]\frac {2\pi \times 900}{60}[/tex]ω = 94.25 rad/s Torque generated by the shaft We can use the formula given below to calculate the torque generated by the shaft:T = [tex]\frac {P}{\omega}[/tex].

To know more about motor visit:

https://brainly.com/question/31214955

#SPJ11

Describe the difference between the saturation and vapor pressures A container with a volume of 50 L at a temperature of 518 K contains a mixture of saturated water and saturated steam. The mass of the liquid is 10 kg. Find the following : (a) The pressure (b) The mass, (c) The specific volume (d) The specific internal energy

Answers

Difference between saturation and vapor pressures Saturation pressure is the pressure of the vapor when it is in equilibrium with its liquid at a certain temperature.

On the other hand, vapor pressure is the pressure of the vapor phase of a substance that exists in equilibrium with the liquid phase of the same substance when both are in a closed system. For a given temperature, saturation pressure is unique, whereas vapor pressure is dependent on the volume of the space available for the vapor to expand into.

A container with a volume of 50 L at a temperature of 518 K contains a mixture of saturated water and saturated steam. The mass of the liquid is 10 kg. We need to find the pressure, mass, specific volume, and specific internal energy.(a) Pressure:The pressure of the vapor at 518 K is the saturation pressure at that temperature. From a steam table, the saturation pressure of steam at 518 K is 1.393 MPa.

To know more about temperaturevisit:

https://brainly.com/question/11464844

#SPJ11

The Coriolis acceleration is encountered in the relative acceleration of two points when the following conditions are present: a) The two-point points are coincident but on the same link. c) The point on one link traces a circular path on the other link. d) The link that contains the path rotates slowly. b) The two-point points are coincident but on different links. e) b), c), and d).

Answers

The Coriolis acceleration is experienced in the relative acceleration of two points when the following conditions are met: the two points are coincident, but they are on different links, and the point on one link traces a circular path on the other link. The link that contains the path rotates slowly.

Coriolis acceleration can be experienced on the earth, where the earth rotates around the sun, and on a rotating carousel, where the centripetal force is the cause of the circular path taken by the rider. Coriolis acceleration is defined as the relative acceleration between two points in motion relative to each other, caused by the rotation of the reference system.Coriolis acceleration is known to cause many phenomena, including the Coriolis effect. The Coriolis effect is the deviation of an object's motion to the right or left due to the Coriolis acceleration's effect.

This effect is present in the atmosphere and oceans, and it is responsible for the rotation of hurricanes and the direction of surface currents in the ocean. The Coriolis effect is also responsible for the curvature of long-range ballistic missile trajectories. In conclusion, Coriolis acceleration is an important concept in physics and meteorology.

To know more about acceleration visit :

https://brainly.com/question/2303856

#SPJ11

(a) A solid conical wooden cone (s=0.92), can just float upright with apex down. Denote the dimensions of the cone as R for its radius and H for its height. Determine the apex angle in degrees so that it can just float upright in water. (b) A solid right circular cylinder (s=0.82) is placed in oil(s=0.90). Can it float upright? Show calculations. The radius is R and the height is H. If it cannot float upright, determine the reduced height such that it can just float upright.

Answers

Given Data:S = 0.82 (Density of Solid)S₀ = 0.90 (Density of Oil)R (Radius)H (Height)Let us consider the case when the cylinder is fully submerged in oil. Hence, the buoyant force on the cylinder is equal to the weight of the oil displaced by the cylinder.The buoyant force is given as:

F_b = ρ₀ V₀ g

(where ρ₀ is the density of the fluid displaced) V₀ = π R²Hρ₀ = S₀ * gV₀ = π R²HS₀ * gg = 9.8 m/s²

Therefore, the buoyant force is F_b = S₀ π R²H * 9.8

The weight of the cylinder isW = S π R²H * 9.8

For the cylinder to float upright,F_b ≥ W.

Therefore, we get,S₀ π R²H * 9.8 ≥ S π R²H * 9.8Hence,S₀ ≥ S

The given values of S and S₀ does not satisfy the above condition. Hence, the cylinder will not float upright.Now, let us find the reduced height such that the cylinder can just float upright. Let the reduced height be h.

We have,S₀ π R²h * 9.8

= S π R²H * 9.8h

= H * S/S₀h

= 1.10 * H

Therefore, the reduced height such that the cylinder can just float upright is 1.10H.

To know more about  buoyant force visit:

brainly.com/question/20165763

#SPJ4

Design a wind turbine system for dc load and grid-connected.
Design should be in schematic diagram. Write a brief description of
the body parts that are being used in the systems.

Answers

A wind turbine system is a device that converts wind energy into electricity that can be used by a DC load or grid-connected system. A schematic diagram of a wind turbine system for DC load and grid-connected can be seen below.

Description of the body parts that are being used in the systems:-

Wind Turbine Blades: Blades are one of the essential components of wind turbines. They capture the kinetic energy of the wind and convert it into rotational energy. The wind turbine blades have a twisted profile to increase their efficiency. Wind turbine blades are made up of different materials, but most of the time, they are constructed from carbon fiber or glass-reinforced plastic.

Tower: A tower is the backbone of a wind turbine system. It supports the nacelle and rotor assembly. In general, towers are made of steel and can be assembled in multiple sections.Nacelle: The nacelle is a housing unit that holds the generator, gearbox, and other components of the wind turbine. It's usually placed at the top of the tower. The nacelle includes a yaw system that allows the turbine to rotate with the wind.

Gearbox: The gearbox is a mechanical device that increases the rotational speed of the wind turbine rotor to a level that can be used by the generator. The gearbox ratio is generally around 1:50-1:70. Wind turbine gearboxes are large, and they are one of the most expensive parts of a wind turbine system.

Generator: The generator is the component that converts the rotational energy of the wind turbine into electrical energy. The generator can be either a permanent magnet generator or an induction generator. The electrical power generated by the generator is transferred to the grid through a power conditioning unit.Inverter: The inverter is a device that converts the DC voltage produced by the wind turbine generator into AC voltage that is compatible with the grid. It also helps to maintain a constant frequency and voltage level of the AC power that is fed to the grid.

Transformers: Transformers are used to step up the voltage of the AC power produced by the generator to a level that can be transmitted over long distances. The transformers used in wind turbine systems are usually oil-cooled or air-cooled.

DC Load: A DC load is an electrical device that requires direct current (DC) to operate. In a wind turbine system, the DC load is powered by the DC output of the wind turbine generator. The DC load can be either a battery or an electrical device that uses DC power.

Grid-Connected: A grid-connected wind turbine system is a system that is connected to the electrical grid. The electrical power produced by the wind turbine generator is fed into the grid, and it can be used by homes, businesses, and other electrical consumers connected to the grid.

To learn more about "Wind Turbine System" visit: https://brainly.com/question/11966219

#SPJ11

1.2 A 12-station transfer line has an ideal cycle time = 0.64 min, which includes the transfer time of 6 sec. Breakdowns occur once every 25 cycles, and the average downtime per breakdown is 7.5 min. The transfer line is scheduled to operate 16 hours per day, 5 days per week. Determine:
1.2.1 the line efficiency.
1.2.2 number of parts the transfer line produces in a week
1.2.3 the number of downtime hours per week.

Answers

In this scenario, we need to determine the transfer line efficiency, weekly production, and downtime hours.

Factors like cycle time, breakdown frequency, downtime duration, and operation schedule play crucial roles in these calculations. The line efficiency considers ideal and actual cycle times, the latter of which includes downtime due to breakdowns. We calculate the weekly production by multiplying the number of working hours, cycles per hour, and operating days. Downtime hours per week come from multiplying the number of breakdowns by average downtime and converting to hours.

Learn more about production efficiency here:

https://brainly.com/question/28415264

#SPJ11

Help to determine the specifications (unstretched length and spring constant k) for the elastic cord to be used at a bungee-jumping facility. Participants are to jump from a platform 45m above the ground. When they rebound, they must avoid an obstacle that extends 5m below the point at which they jump.
Establish reasonable safety limits for the minimum distance by which participants must avoid the ground and obstacle whilst accounting for different weights for each participant
(you may specify the maximum allowable weight for participant).

Answers

We need to consider the safety limits for the minimum distance participants must avoid the ground and obstacle while accounting for different weights. The maximum allowable weight for a participant should be specified to ensure the cord can safely support their weight without excessive stretching or breaking.

The unstretched length of the elastic cord should be determined based on the desired minimum distance between the participant and the ground or obstacle during the rebound. This distance should provide an adequate safety margin to account for variations in jumping techniques and unforeseen circumstances. It is recommended to set the minimum distance to be significantly greater than the length of the cord to ensure participant safety. The spring constant, or stiffness, of the elastic cord should be selected based on the maximum allowable weight of the participants. A higher spring constant is required for heavier participants to prevent excessive stretching of the cord and maintain the desired rebound characteristics.

The spring constant can be determined through testing and analysis to ensure it can handle the maximum weight while providing the desired level of elasticity and safety. Overall, determining the specifications for the elastic cord involves considering the maximum weight of participants, setting reasonable safety limits for the minimum distances to the ground and obstacle, and selecting appropriate values for the unstretched length and spring constant of the cord to ensure participant safety and an enjoyable bungee-jumping experience.

Learn more about elastic cord here:

https://brainly.com/question/8983527

#SPJ11

12. 2 points Capacitive susceptance decreases as frequency increases O a. True O b. False 13. 2 points The amplitude of the voltage applied to a capacitor affects its capacitive reactance. O a. True O b. False 14. 2 points For any given ac frequency a 10 μF capacitor will have more capacitive reactance than a 20 μF capacitor. O a. True
O b. False 15. 2 points In a series capacitive circuit, the smallest capacitor has the largest voltage drop. O a. True O b. False 16. 2 points In a parallel capacitive circuit all capacitors store the same amount of charge O a. True O b. False

Answers

12. False 13. False 14. FALSE 15. true 16. true are the answers

12. False

Capacitive susceptance is the reciprocal of the capacitive reactance, and it varies with frequency. The higher the frequency of the AC, the lower the capacitive reactance.

13. False

Capacitive reactance is determined by the capacitance and frequency of the applied voltage, and it is not influenced by the voltage level.

14. False

Capacitive reactance varies with the capacitance and frequency of the applied voltage. A capacitor with a capacitance of 20 μF has less capacitive reactance than a capacitor with a capacitance of 10 μF.

15. True

The capacitive reactance is inversely proportional to the capacitance of the capacitor in a series capacitive circuit, so the capacitor with the lowest capacitance will have the largest voltage drop across it.

16. True

In a parallel capacitive circuit, all capacitors receive the same voltage because they are linked across the same voltage source, and they all store the same amount of charge.

Q = CV is the equation used to calculate the amount of charge stored in a capacitor,

where Q is the charge stored in coulombs, C is the capacitance in farads, and V is the voltage across the capacitor in volts.

Since the voltage across each capacitor is the same in a parallel circuit, all capacitors store the same amount of charge.

to know more about capacitors visit:

https://brainly.com/question/31627158

#SPJ11

A contractor manufacturing company purchased a production equipment for $450,000 to meet the specific needs of a customer that had awarded a 4-year contract with the possibility of extending the contract for another 4 years. The company plans to use the MACRS depreciation method for this equipment as a 7-year property for tax purposes. The combined income tax rate for the company is 24%, and it expects to have an after-tax rate of return of 8% for all its investments. The equipment generated a yearly revenue of $90,000 for the first 4 years. The customer decided not to renew the contract after 4 years. Consequently, the company decided to sell the equipment for $220,000 at the end of 4 years. Answer the following questions, (a) Show before tax cash flows (BTCF) from n= 0 to n=4 (b) Calculate depreciation charges (c) Compute depreciation recapture or loss (d) Find taxable incomes and income taxes (e) Show after-tax cash flows (ATCF). (f) Determine either after tax NPW or after-tax rate of return for this investment and indicate if the company obtained the expected after-tax rate of retum

Answers

a) Before-tax cash flows (BTCF) from n= 0 to n=4Year

RevenueDepreciationBTCF0-$450,000-$450,0001$90,000$57,144$32,8562$90,000$82,372$7,6283$90,000$59,013$30,9874$90,000$28,041$61,959

b) Depreciation charges

Using the MACRS depreciation method, the annual depreciation expenses are as follows:Year

Depreciation rate Depreciation charge1 14.29% $64,215.002 24.49% $110,208.753 17.49% $78,705.754 12.49% $56,216.28Therefore, the total depreciation charge over 4 years is $309,345.75.

c) Depreciation recapture or loss

After 4 years, the equipment was sold for $220,000. The adjusted basis of the equipment is the initial cost minus the accumulated depreciation, which is:$450,000 - $309,345.75 = $140,654.25Therefore, the depreciation recapture or loss is:$220,000 - $140,654.25 = $79,345.75The depreciation recapture is positive and hence, the company must report this as ordinary income in the current tax year.

d) Taxable incomes and income taxesYearRevenueDepreciationBTCFTaxable IncomeTax1$90,000$64,215.00$25,785.00$6,187.60(24% x $25,785.00)2$90,000$110,208.75-$20,208.75-$4,850.10(24% x -$20,208.75)3$90,000$78,705.75$11,294.25$2,710.22(24% x $11,294.25)4$90,000$56,216.28$33,783.72$8,107.69(24% x $33,783.72)

The total income taxes paid over 4 years is $21,855.61.e) After-tax cash flows (ATCF)YearBTCFTaxIncome TaxATCF0-$450,000-$450,0001$32,856$6,188$26,6692$7,628$4,850$2,7793$30,987$2,710$28,2774$61,959$8,108$53,851The total ATCF over 4 years is $110,576.f)

After-tax NPW or After-tax rate of return (ARR) for this investmentAfter-tax NPW = -$450,000 + $110,576(P/A,8%,4 years)= -$450,000 + $110,576(3.3121)= -$28,128.04Since the NPW is negative, the company did not obtain the expected after-tax rate of return.

Learn more about Before-tax cash flows (BTCF) here:

brainly.com/question/16005797

#SPJ11

Compute the stress in the wall of a sphere having an inside diameter of 300 mm and a wall thickness of 1.50 mm when carrying nitrogen gas at 3500kPa internal pressure. First, determine if it is thin-walled. Stress in the wall = ___ MPa. a 177 b 179 c 181 d 175

Answers

The given values are:Diameter of the sphere, d = 300 mm wall thickness, t = 1.50 mm Internal pressure, P = 3500 kPa

The formula to calculate the hoop stress in a thin-walled sphere is given by the following equation:σ = PD/4tThe given sphere is thin-walled if the wall thickness is less than 1/20th of the diameter. To check whether the given sphere is thin-walled or not, we can calculate the ratio of the wall thickness to the diameter.t/d = 1.50/300 = 0.005If the ratio is less than 0.05, then the sphere is thin-walled. As the ratio in this case is 0.005 which is less than 0.05, the sphere is thin-walled.

Substituting the given values in the formula, we have:σ = 3500 × 300 / 4 × 1.5 = 525000 / 6 = 87500 kPa

To convert kPa into MPa, we divide by 1000.

σ = 87500 / 1000 = 87.5 MPa

Therefore, the stress in the wall of the sphere is 87.5 MPa.

The given problem requires us to calculate the stress in the wall of a sphere which is carrying nitrogen gas at an internal pressure of 3500 kPa. We are given the inside diameter of the sphere which is 300 mm and the wall thickness of the sphere which is 1.5 mm.

To calculate the stress in the wall, we can use the formula for hoop stress in a thin-walled sphere which is given by the following equation:σ = PD/4t

where σ is the hoop stress in the wall, P is the internal pressure, D is the diameter of the sphere, and t is the wall thickness of the sphere.

Firstly, we need to determine if the given sphere is thin-walled. A sphere is thin-walled if the wall thickness is less than 1/20th of the diameter. Therefore, we can calculate the ratio of the wall thickness to the diameter which is given by:

t/d = 1.5/300 = 0.005If the ratio is less than 0.05, then the sphere is thin-walled. In this case, the ratio is 0.005 which is less than 0.05. Hence, the given sphere is thin-walled.

Substituting the given values in the formula for hoop stress, we have:σ = 3500 × 300 / 4 × 1.5 = 525000 / 6 = 87500 kPa

To convert kPa into MPa, we divide by 1000.σ = 87500 / 1000 = 87.5 MPa

Therefore, the stress in the wall of the sphere is 87.5 MPa.

The stress in the wall of the sphere carrying nitrogen gas at an internal pressure of 3500 kPa is 87.5 MPa. The given sphere is thin-walled as the ratio of the wall thickness to the diameter is less than 0.05.

Learn more about hoop stress here:

brainly.com/question/14330093

#SPJ11

An electric resistance heater works with a 245 V power-supply and consumes approximately 1.4 kW. Estimate the electric current drawn by this heater. Provide your answer in amperes rounded to three significant digits.

Answers

The electric current drawn by this heater is 5.71 Amperes.

The formula for electric power is given by:

P = VI

where P is electric power,

V is voltage, and

I is the current

An electric resistance heater works with a 245 V power-supply and consumes approximately 1.4 kW.

We have to estimate the electric current drawn by this heater.We know that:

Power (P) = 1.4 kW

= 1400 W

Voltage (V) = 245 V

Substituting these values in the formula of electric power:

P = VI1400

= 245*I

= 1400/245I

= 5.71 Amperes

Therefore, the electric current drawn by this heater is 5.71 Amperes.

To know more about heater visit;

brainly.com/question/11863285

#SPJ11

Initial condition: P = 4 MPa mass = 2 kg saturated Process: Isometric Final condition: Final internal energy, U2 = 2550 = Kj/kg Required: Non-flow work

Answers

Given data Initial condition: P = 4 M Pa Mass, m = 2 kg Process: I some tric Final condition: Final internal energy, U2 = 2550 kJ/kg Required: Non-flow work Isometric process Isometric processes, also known as isovolumetric or isometric processes, occur when the volume of the system stays constant.

In other words, in this process, no work is performed since there is no movement of the system. As a result, for isometric processes, there is no change in the volume of the system.Non-flow workThe energy that is transferred from one part of a system to another, or from one system to another, in the absence of mass movement is referred to as non-flow work. This type of work does not involve any mass transport, such as moving a piston or fluid from one location to another in a flow machine.

Non-flow work is calculated by the formula mentioned below: W = U2 - U1WhereW is the non-flow work.U2 is the final internal energyU1 is the initial internal energy Calculation: Given,

[tex]P = 4 M Pam = 2 kgU2 = 2550 kJ/kg.[/tex]

The specific volume at an initial condition is calculated using the formula, V1 = m * Vf (saturated)Here, since it is a saturated liquid,

[tex]Vf (saturated) = 0.001043 m³/kgV1 = 2*0.001043 = 0.002086 m³/kg.[/tex]

The work done during an isometric process is given by the formula, W = 0 (since it is an isometric process)U1 = m * uf (saturated)

[tex]U1 = 2 * 417.4 kJ/kg = 834.8 kJ/kg[/tex]

Now, using the formula of non-flow work,

[tex]W = U2 - U1W = 2550 - 834.8W = 1715.2 kJ[/tex]

Answer: Therefore, non-flow work is 1715.2 kJ.

To know more about process visit:

https://brainly.com/question/14832369

#SPJ11

A domestic refrigerator rejects 534 W of thermal energy to the air in the room at 16°C. Inside the fridge, its cooled compartment is kept at 1.4 °C. What would be the power draw required to run this fridge if it operated on an ideal refrigeration cycle? Give your answer in watts to one decimal place.

Answers

The amount of thermal energy rejected to the room and the temperature difference between the cooled compartment and the room need to be considered.

The power draw required to run the fridge can be calculated using the formula:

Power draw = Thermal energy rejected / Coefficient of Performance (COP)

The coefficient of performance is the ratio of the desired cooling effect (change in thermal energy inside the fridge) to the work input.

To calculate the change in thermal energy inside the fridge, we subtract the temperature of the cooled compartment from the room temperature:

ΔT = T_room - T_cooled_compartment

The coefficient of performance for an ideal refrigeration cycle is given by:

COP = T_cooled_compartment / ΔT

Substituting the given values, including the thermal energy rejected (534 W), and calculating ΔT, we can determine the power draw required to run the fridge.

Learn more about thermal energy here:

https://brainly.com/question/31631845

#SPJ11

During winter time, the central heating system in my flat isn't really enough to keep me warm so luse two extra oil heaters. My landlord is hasn't got around to installing carbon monoxide alarms in my flat yet and the oil heaters start to produce 1g/hr CO each. My flat floor area is 40 m' with a ceiling height 3m. a. If I leave all my windows shut how long will it take to reach an unsafe concentration?
b. The concentration gets to around 20,000 micrograms/m3 and I start to feel a little dizzy so I decide to turn on my ventilation (which provides 0.5 air changes per hour). What steady state concentration will it eventually get to in my flat? c. I'm still not feeling very good, so I switch off the heaters and leave the ventilation running... how long before safe concentration levels are reached? d. In up to 10 sentences, describe the assumptions and limitations of your modelling in this question and 7/how it could be improved

Answers

During winter time, the central heating system in my flat isn't enough to keep me warm, so I use two additional oil heaters. My landlord hasn't installed carbon monoxide alarms in my flat yet, and the oil heaters begin to produce 1g/hr CO each.

My flat floor area is 40 m' with a ceiling height of 3m.(a) How long will it take to reach an unsafe concentration if I leave all my windows shut?

Carbon monoxide has a molecular weight of 28 g/mol, which implies that one mole of CO weighs 28 grams. One mole of CO has a volume of 24.45 L at normal room temperature and pressure (NTP), which implies that 1 gram of CO occupies 0.87 L at NTP. Using the ideal gas law, PV=nRT, we can calculate the volume of the gas produced by 1 g of CO at a given temperature and pressure. We'll make a few assumptions to make things simple. The total volume of the flat is 40*3=120m³.

The ideal gas law applies to each gas molecule individually, regardless of its interactions with other gas molecules. If the concentration of CO is low (below 50-100 ppm), this is a fair approximation. The production of CO from the oil heaters is constant, and we can disregard the depletion of oxygen due to combustion because the amount of CO produced is minimal compared to the amount of oxygen present.

Using the above assumptions, the number of moles of CO produced per hour is 1000/28 = 35.7 mol/hr.

The number of moles per hour is equal to the concentration times the volume flow rate, as we know from basic chemistry. If we assume a well-insulated room, the air does not exchange with the outside. In this situation, the volume flow rate is equal to the volume of the room divided by the air change rate, which in this case is 0.5/hr.

We get the following concentration in this case: concentration = number of moles per hour / volume flow rate = 35.7 mol/hr / (120 m³/0.5/hr) = 0.3 mol/m³ = 300 mol/km³. The safe limit is 50 ppm, which corresponds to 91.25 mol/km³. The maximum concentration that is not dangerous is 91.25 mol/km³. If the concentration of CO in the flat exceeds this limit, you must leave the flat.

If all windows are closed, the room's air change rate is 0.5/hr, and 1g/hr of CO is generated by the oil heaters, the room's concentration will be 300 mol/km³, which is three times the maximum safe limit. Therefore, the flat should be evacuated as soon as possible.

To know more about combustion  :

brainly.com/question/31123826

#SPJ11

The probability density function for the diameter of a drilled hole in millimeters is 10e^(-10(x-5)) for x > 5 mm. Although the target diameter is 5 millimeters, vibrations, tool wear, and other nuisances produce diameters greater than 5 millimeters. a. Draw the probability distribution curve. b. Determine the probability that the hole diameter is 5 to 5.1mm c. Determine the expected diameter of the drilled hole. d. Determine the variance of the diameter of the holes. Determine the cumulative distribution function. e. Draw the curve of the cumulative distribution function. f. Using the cumulative distribution function, determine the probability that a diameter exceeds 5.1 millimeters.

Answers

a. To draw the probability distribution curve, we can plot the probability density function (PDF) over a range of values.

The probability density function for the diameter of a drilled hole is given by:

f(x) = 10e^(-10(x-5)), for x > 5

To plot the curve, we can choose a range of x-values, calculate the corresponding y-values using the PDF equation, and plot the points.

b. To determine the probability that the hole diameter is between 5 and 5.1 mm, we need to calculate the area under the probability distribution curve within that range. Since the PDF represents the probability density, we can integrate the PDF function over the given range to find the probability.

P(5 ≤ x ≤ 5.1) = ∫[5, 5.1] f(x) dx

c. To determine the expected diameter of the drilled hole, we need to calculate the expected value or the mean of the probability distribution. The expected value is given by:

E(X) = ∫[5, ∞] x * f(x) dx

d. To determine the variance of the diameter of the holes, we need to calculate the variance of the probability distribution. The variance is given by:

Var(X) = ∫[5, ∞] (x - E(X))^2 * f(x) dx

e. The cumulative distribution function (CDF) represents the probability that a random variable is less than or equal to a given value. To draw the curve of the CDF, we need to calculate the cumulative probability for different x-values.

CDF(x) = ∫[5, x] f(t) dt

f. Using the CDF, we can determine the probability that a diameter exceeds 5.1 millimeters by subtracting the CDF value at 5.1 from 1:

P(X > 5.1) = 1 - CDF(5.1)

Know more about probability density  here:

https://brainly.com/question/31039386

#SPJ11

For |x| = { x³, x ≥ 0
{-x³, x < 0 find Wronskian, W (x³, |x³|) on [-1,1]

Answers

The Wronskian, W [tex](x³, |x³|) on [-1,1][/tex]is zero. This means that x³ and |x³| are linearly dependent on [-1,1].Note: This is not true for x > 0 or x < 0, where x³ and -x³ are linearly independent.

To find the Wronskian, W [tex](x³, |x³|) on [-1,1][/tex], we need to compute the determinant of the matrix given by[tex][x³ |x³|; 3x²|x³| + δ(0)x³ |3x²|x³| + δ(0)|x³|][/tex] .Where δ(0) denotes the Dirac delta function at zero, which is zero at every point except 0, where it is infinite, and we take its value to be zero for simplicity.

In this case, we only need to compute the Wronskian at x = 0, since it is a piecewise-defined function, and the two parts are linearly independent everywhere else.To evaluate the Wronskian at x = 0, we plug in x = 0 and get the following matrix:[0 0; 0 0]The determinant of this matrix is zero.

To know more about matrix visit:

https://brainly.com/question/28180105

#SPJ11

If the pneumatic pressure is set to 10 KPascal, the force that can be obtained using a 10 cm diameter cylinder will be ................ KN.

Answers

To calculate the force that can be obtained using a pneumatic cylinder with a given pressure and diameter, we can use the formula:

Force = Pressure × Area

The area of a cylinder can be calculated using the formula:

Area = π × (Radius)^2

Given that the diameter of the cylinder is 10 cm, we can calculate the radius as half of the diameter, which is 5 cm or 0.05 meters.

Plugging the values into the formulas, we can calculate the force:

Area = π × (0.05)^2

Force = 10 kPa × π × (0.05)^2

By performing the calculation, we can determine the force in kilonewtons (kN) that can be obtained using the 10 cm diameter cylinder at a pneumatic pressure of 10 kPa.

Learn more about pneumatic systems here:

https://brainly.com/question/28269243

#SPJ11

state the assumption made for deriving the efficiency
of gas turbine?

Answers

A gas turbine is a type of internal combustion engine that converts the energy of pressurized gas or fluid into mechanical energy, which can then be used to generate power. The following are the assumptions made for deriving the efficiency of a gas turbine:

Assumptions made for deriving the efficiency of gas turbine- A gas turbine cycle is made up of the following: intake, compression, combustion, and exhaust.

To calculate the efficiency of a gas turbine, the following assumptions are made: It's a steady-flow process. Gas turbine cycle air has an ideal gas behaviour. Each of the four processes is reversible and adiabatic; the combustion process is isobaric, while the other three are isentropic. Processes that occur within the combustion chamber are ideal. Inlet and exit kinetic energies of gases are negligible.

There is no pressure drop across any device. A gas turbine has no external heat transfer, and no heat is lost to the surroundings. The efficiencies of all the devices are known. The gas turbine cycle has no friction losses.

To know more about Gas Turbine visit:

https://brainly.com/question/13390811

#SPJ11

Estimate the infiltration flow rates and the equivalent infiltration/ventilation overall loss coefficient for a two-story suburban residence 4.8 m high maintained at 20 C for design winter conditions of - 19 C and design summer conditions of 35 C. The wind speed is 6.7 m/s in winter and 5 m/s in summer. The effective leakage area determined from a pressurization test is 0.05 m2 (77 in²) and the house volume is 343 m³. Show all work.

Answers

Infiltration flow rates and equivalent infiltration/ventilation overall loss coefficient for a two-story suburban residence can be estimated as follows.

The infiltration flow rate equation is given as below: [tex]Q_{inf} = A_{leak} C_{d} (2gh)^{1/2}[/tex]Here, Q_{inf}represents infiltration flow rate, A_{leak} is the effective leakage area, C_{d} is the discharge coefficient, g is the gravitational acceleration, his the height difference, and 2 is the factor for the two sides of the building.

Infiltration flow rate for winter conditions can be calculated as:

[tex]Q_{inf, winter} = 0.05 \times 0.65 \times (2 \times 9.81 \times 4.8)^{1/2} \times 6.7 \approx 0.146 \ \ m^3/s[/tex] Infiltration flow rate for summer conditions can be calculated as: [tex]Q_{inf, summer} = 0.05 \times 0.65 \times (2 \times 9.81 \times 4.8)^{1/2} \times 5 \approx 0.108 \ \ m^3/s[/tex] .

To know more about equivalent visit:

https://brainly.com/question/25197597

#SPJ11

A safety valve of 80 mm diameter is to blow off at a pressure of 1.5 N/mm². it is held on is close coiled helical spring. The maximum lift of the valve is 12 mm. Design a suitable congression spring of spring index 6 and provide an initial compression of 35 mm. The spring is made of patented and cold-drawn steel wire with an ultimate tensile strength of 1500 N/mm² mnd a modahs of ripidity of 80 kN/mm². The permissible shear stress for the spring wire should be taken as 30% of the ultimate tensile strength. Calculate:
1). Diameter of the spring wire, 2). Mean coil diameter, 3). The number of active turns, and 4). The total number of turns.

Answers

The required parameters for the design of the compression spring, Diameter of the spring wire (d):

d = (√[(16 * W * S) / (π * d^3 * n)])^(1/4)

Mean coil diameter (D):

D = d + 2 * c

Number of active turns (n):

n = L / (d + c)

Total number of turns (N):

N = n + 2

Given:

Valve diameter(Dv) = 80mm

Blow-off pressure(P) = 1.5N/mm²

Maximum lift(L) = 12mm

Spring index (C) = 6

Initial compression (c) = 35mm

Ultimate tensile strength (S) = 1500N/mm²

Modulus of rigidity (G) = 80kN/mm²

Permissible shear stress (τ) = 0.3*S

Diameter of the spring wire(d):

d=(√[(16*W*S)/(π*d^3 * n)])^(1/4)

d^4 = (16 * W * S) / (π * n)

d = [(16 * W * S) / (π * n)]^(1/4)

Mean coil diameter (D):D = d + 2 * c

Number of active turns(n):n = L / (d + c)

Total number of turns(N):N = n + 2

After calculating the values for d, D, n, and N using the given formulas, the required parameters will be solved.

Learn more about spring design here:

https://brainly.com/question/30427113

#SPJ11

10.3. Let x[n]=(−1) n u[n]+α n u[−n−n 0​ ]. Determine the constraints on the complex number α and the integer n 0 , given that the ROC of X(z) is 1<∣z∣<2

Answers

The constraints on the complex number α and the integer n_0 are as follows:|α|^n < ∞ => |α| ≤ 1, for the ROC to include the unit circle.

From the question above, ROC (region of convergence) of X(z) is 1<|z|<2.(1) The region of convergence includes the unit circle, i.e., z=1 is included in the region of convergence.

Let's substitute z=1 in the equation X(z), for which ROC exists.

X(z) = Σx[n]...|z|=1

Comparing both the equations (i) and (ii)

X(1) = Σx[n]...|z|=1

Simplifying it,X(1) = Σ[(-1)^n*u[n] + α^n*u[-n-n0]]...|z|=1= Σ(-1)^n+ Σα^n*u[-n-n0]...|z|=1=(1+α^n)...|z|=1

Therefore, |1 + α^n| < ∞ |α^n| < ∞=>|α|^n < ∞...(iii) Also, the ROC includes the region outside the circle with radius 2, i.e., z=2 is excluded from the region of convergence.

Let's substitute z=2 in the equation X(z), for which ROC exists.

X(z) = Σx[n]...|z|=2

Comparing both the equations (i) and (iv)

X(2) = Σx[n]...|z|=2

Simplifying it,X(2) = Σ[(-1)^n*u[n] + α^n*u[-n-n0]]...|z|=2= Σ(-1)^n+ Σα^n*u[-n-n0]...|z|=2= (1+α^n) Σ1 u[-n-n0]...|z|=2

As ROC of X(z) is 1<|z|<2. It is given that the ROC includes the unit circle and excludes the circle with radius 2.

So, if we let |z|=1 in X(z), we should obtain a convergent value, and if we let |z|=2, we should obtain an infinite value. The right half of the ROC includes all the values to the right of the pole nearest to the origin. Thus, we have a pole at z=0. Hence the right half of the ROC lies in the region |z|<∞.

Since 2 is excluded from the ROC, α^n cannot be infinite; thus, |α^n|≠∞. Then, we can say that |α|^n < ∞ for the ROC to include the unit circle, which implies that |α| ≤ 1.

Learn more about ROC at

https://brainly.com/question/33216363

#SPJ11

4. Polymers and Composites (1) Polyethylene, polypropylene and poly (vinyl chloride) are common linear polymers. a. Draw the repeat (mer) units for each of these polymers. [3 Marks] b. Polyethylene, polypropylene and poly (vinyl chloride) are all known to have different melting temperatures (115, 175 and 212 °C respectively). Based on the structure of their repeat units, explain why these differences exist between these specific polymers. [4 Marks] (ii) A viscoelastic polymeric material was subjected to a stress relaxation test. An instantaneous strain of 0.6 was applied and the corresponding stress over time was measured. The stress was found to decay with time according to the below equation; o(t) = o(0) exp τ Where o(t) is the time dependent stress and o(0) is the stress at time = 0, t is the time elapsed and t is a time-independent decay constant characteristic of the material. Calculate the relaxation modulus after 15 seconds, if the initial stress level, o(0), was 3.6 MPa, and was found to reduce to 2.1 MPa after a period of 60 seconds. [8 Marks] (iii) For a continuous and orientated fiber-reinforced composite, the moduli of elasticity in the longitudinal and transverse directions are 17.6 and 4.05 GPa respectively. If the volume fraction of the fibers is 0.25, calculate the moduli of elasticity of the fiber (EF) and matrix (Em) phases, where EF > EM- 10

Answers

1. For the linear polymers polyethylene, polypropylene, and poly(vinyl chloride), the repeat (mer) units can be drawn. These structures contribute to the differences in their melting temperatures.

a. The repeat (mer) units for the linear polymers are as follows:

- Polyethylene: (-CH2-CH2-)n

- Polypropylene: (-CH2-CH(CH3)-)n

- Poly(vinyl chloride): (-CH2-CHCl-)n

b. The differences in melting temperatures between these polymers can be attributed to the structure of their repeat units. The presence of different functional groups and side chains in the repeat units leads to variations in intermolecular forces, molecular weight, and chain packing. These factors influence the strength of the attractive forces between polymer chains and, consequently, the energy required to break these forces during melting. ii. The relaxation modulus (Er) after 15 seconds can be calculated using the given equation and initial stress values.

Learn more about linear polymers polyethylene here:

https://brainly.com/question/31251676

#SPJ11

(b) Distinguish between "open loop control" and "closed loop control". (4 marks) (c) Discuss the reasons that "flexibility is necessary for manufacturing process. (4 marks) Hilla hitro (d) Discu

Answers

A safe work environment enhances the company's image and reputation, reduces the likelihood of lawsuits, and improves stakeholder relationships.

(b) Open Loop ControlOpen-loop control is a technique in which the control output is not connected to the input for sensing.

As a result, the input signal cannot be compared to the output signal, and the output is not adjusted in response to changes in the input.Closed Loop Control

In a closed-loop control system, the output signal is compared to the input signal.

The feedback loop provides input data to the controller, allowing it to adjust its output in response to any deviations between the input and output signals.

(c) Reasons for Flexibility in Manufacturing ProcessesThe following are some reasons why flexibility is essential in manufacturing processes:

New technologies and advances in technology occur regularly, and businesses must change how they operate to keep up with these trends.The need to offer new products necessitates a change in production processes.

New items must be launched to replace outdated ones or to capture new markets.

As a result, manufacturing firms must have the flexibility to transition from one product to another quickly.Effective manufacturing firms must be able to respond to alterations in the supply chain, such as an unexpected rise in demand or the unavailability of a necessary raw material, to remain competitive.

A flexible manufacturing system also allows for the adjustment of the production line to match the level of demand and customer preferences, reducing waste and increasing efficiency.(d) Discuss the Importance of Maintaining a Safe Workplace

A secure workplace can result in a variety of benefits, including increased morale and productivity among workers. The following are the reasons why maintaining a safe workplace is important:Employees' lives and well-being are protected, reducing the incidence of injuries and fatalities in the workplace.

The costs associated with occupational injuries and illnesses, such as medical treatment, workers' compensation, lost productivity, and legal costs, are reduced.

A safe work environment fosters teamwork and increases morale, resulting in greater job satisfaction, loyalty, and commitment among workers.

The business can reduce the number of missed workdays, reduce turnover, and increase productivity by having fewer workplace accidents and injuries.

Overall, a safe work environment enhances the company's image and reputation, reduces the likelihood of lawsuits, and improves stakeholder relationships.

To know more about Loop visit;

brainly.com/question/14390367

#SPJ11

Other Questions
NAME OF CHARTDESCRIPTION / PURPOSEFluid balance chartBowel chartBehaviour chartTo assess a patients risk of developing a pressure soreGeneral observation chartNeurological observation chartFood chartPain chart We have looked at the structure of DNA in cells. There are some differences. Based on what we have learned, which of the following is TRUE?a.Telomeres are found on all chromosomes, both prokaryotic and eukaryotic, however only eukaryotic telomers shorten over time.b.All the answers presented are TRUE.c.All the chromosomes found in eukaryotes are linear while prokaryotic chromosomes are circular.d.Bacterial chromosomes have multiple origins of replication, thus allowing for short generation times, whereas eukaryotic chromosomes are replicated from a single origin.e.Prokaryotic chromosomes contain kinetochores whereas eukaryotic chromosomes have centromeres.f.Mitochondrial chromosomal DNA is similar in structure to bacterial chromosomes. Find the dimensions of the rectangle with perimeter 1120 inches with the largest possible area. (For this problem, if necessary, assume that the length is the less than or equal to the width.) length = width = What is the maximum area? area = Choose the correct form of the verbs to complete the sentence.Cuando yo ________ (entrar), Tania ________ ( hablar) con mi hermana. entr, hablaba entr, hablaba entra, habla entr, habl Consider that you are an engineer employed by a wire-drawing manufacturing company. During a room temperature drawing operation of a single phase alloy, you have observed that after several passes, the drawing machine requires higher pulling forces. Further, during the subsequent passes, when the wires become very fine, the operations get disrupted due to the tearing of the wire. As the engineer in charge, can you explain the following, What material phenomena is taking place during the wire-drawing that requires a higher pulling force. Support your answers with illustrations of microstructures and in reference to the stress-strain curve. Describe the function of the following enzymes used in DNAreplication:ligase:helicase:DNA polymerase III: discuss cellular processes whereby genetic information encoded in dna is expressed as proteins A tower 155 m high is situated at the top of a hill at a point 655 m down the hill the angle bet. The surface of the hill and the line of sight to the top of the tower is 12 30'. Find the inclination of the hill to a horizontal plane. please answer asap and correctly! must show detailed steps.Find the Laplace transform of each of the following timefunctions. Your final answers must be in rational form. In plant life cycles, which of the following sequences is correct?A. sporophyte, mitosis, spores, gametophyte B.spores, meiosis, gemetophyte, mitosisC.gametophyte, meiosis, gametes, zygoteD.zygote, sporophyte, meiosis, sporesE.gametes, zygote mitosis, spores Consider the following chemical reaction.2 Fe2O3 + 196500 cal -----> 4 Fe + 3 O2A reaction using iron(III) oxide (Fe2O3) requires 598000calories. How many grams of iron (Fe) were produced? A woman with blood group A and a man with blood group B had three children. One child had blood group O, one had blood group A, and one had blood group B. Explain this pattern of inheritance by means of a genetic diagram. (Click picture icon and upload). E. SEX-LINKED INHERITANCE Question 9: The brother of a woman's father has haemophilia. Her father was unaffected, but she worries that she may have an affected son. Should she worry? Explain thank youDNA Fragment: BamHI Bgl/ Coding region Restriction sites: EcoRI 5... GAATTC.. 3 3... CTTAAG... 5 EcoRI - BamHI Promoter BamHI 5... GGATCC...3 3. CCTAGG. 5 Oa) - Digest the plasmid with Bgl/ briefly describe in an essay how to distinguish between the fourmajor families of the apetalous monocots? A complete business cycle can be measured from peak to peak. a. True b. False Problem 2 Your ANS: Vectors The angles shown measure from the +x-axis to each vector. At what angle does the resultant make with the +x-axis, in degrees measured counterclockwise? 191 26 10 361 375 a. If the function f:RR is continuous, then f(R)=R. b. For any function f:[0,1]R, its image f([0,1]) is an interval. c. For any continuous function f:DR, its image f(D) is an interval. d. For a continuous strictly increasing function f:[0,1]R, its image is the interval [f(0),f(1)]. If someone is consuming 50% of their calorie intake from carbotydrates, how many calories from carbohydrates would giey be eating on a 2000 caloria diet? 1. 2000 calones 2. 4000 calories 3. 250 calories 4. 1000 calories QUESTION 2 If someone is consuming 20% of their calones from fat, how many calories from fat would they be eating if their total calories oejal 2000 ? 55 calories from tot 2000 calories from fat 222 calories from fat 400 calories from fat QUESTION 3 In a diet containing 1800 calories, with 20% coming from fat, how many grams of fat is being consumed? 40 g 18000 209 380a A) Explain why there is a difference between the amount ofoxygen (%) breathed out by a person running and a personsleeping.B) Explain why there is no difference between the amount ofnitrogen (%) b2. The table below shows the composition of air breathed out after different activities. Gas Unbreathed Air Air breathed out from a person sleeping Nitrogen 78% 78% Oxygen 21% 17% Carbon dioxide 0.03% briefly explain Black water from sewages and it uses