discuss cellular processes whereby genetic information encoded in dna is expressed as proteins

Answers

Answer 1

Genetic information that is encoded in DNA is expressed as proteins through cellular processes.

These cellular processes involve transcription and translation. DNA is first transcribed to mRNA which is then translated into protein. The main answer on how this occurs is as follows:

Transcription: This process involves the synthesis of mRNA from DNA. It occurs in the nucleus and involves the following steps:

Initiation: RNA polymerase binds to the promoter region of the DNA molecule. This then begins to unwind and separate the strands of the double helix chain.

Elongation: RNA polymerase continues to move down the DNA molecule, unwinding the DNA and adding new nucleotides to the mRNA molecule.

Termination: This marks the end of the transcription process, and RNA polymerase will dissociate from the DNA molecule and the newly synthesized mRNA molecule will be released.

Translation: This process involves the conversion of mRNA to protein. It occurs in the cytoplasm and involves the following steps:Initiation: The small subunit of the ribosome attaches to the mRNA molecule at the start codon. The initiator tRNA molecule then binds to the start codon.Elongation: The ribosome continues to move along the mRNA molecule, adding new amino acids to the growing protein chain. The tRNA molecules bring in the amino acids that correspond to the codons on the mRNA molecule.

Termination: This marks the end of the translation process, and the ribosome will dissociate from the mRNA molecule and the newly synthesized protein will be released.

Overall, cellular processes that allow for the expression of genetic information involve transcription and translation. Transcription involves the synthesis of mRNA from DNA, while translation involves the conversion of mRNA to protein. This process allows for genetic information encoded in DNA to be expressed as proteins.

The genetic information encoded in DNA is expressed as proteins through cellular processes that involve transcription and translation. Transcription is the process by which DNA is transcribed to mRNA. It occurs in the nucleus and involves three steps: initiation, elongation, and termination. During initiation, RNA polymerase binds to the promoter region of the DNA molecule, and then begins to unwind and separate the strands of the double helix chain. In the next stage of elongation, RNA polymerase continues to move down the DNA molecule, unwinding the DNA, and adding new nucleotides to the mRNA molecule. Termination marks the end of the transcription process, and RNA polymerase will dissociate from the DNA molecule and the newly synthesized mRNA molecule will be released.Translation is the process by which mRNA is translated to protein. It occurs in the cytoplasm and involves three steps: initiation, elongation, and termination. During initiation, the small subunit of the ribosome attaches to the mRNA molecule at the start codon. The initiator tRNA molecule then binds to the start codon. In the next stage of elongation, the ribosome continues to move along the mRNA molecule, adding new amino acids to the growing protein chain. The tRNA molecules bring in the amino acids that correspond to the codons on the mRNA molecule. Finally, termination marks the end of the translation process, and the ribosome dissociates from the mRNA molecule, and the newly synthesized protein is released. In conclusion, the cellular processes of transcription and translation are essential for genetic information to be expressed as proteins.

To know more about cellular processes visit:

brainly.com/question/29975414

#SPJ11


Related Questions

Bradford Hill viewpoints or "criteria" for a causal relationship for this specific exposure and disease combination. (2 points each) Click Save and Submit to save and submit. Click Save All Answers to save all answers.

Answers

The Bradford Hill viewpoints or "criteria" for a causal relationship are as follows:Strength of associationConsistencySpecificityTemporalityBiological gradientPlausibilityCoherenceExperimental evidenceAnalogy1.

Strength of association - the more likely it is that there is a causal relationship between the exposure and the disease.2. Consistency - The explanation for this criterion is that the association has been observed consistently across multiple studies.3.

Specificity - This criterion is met when a specific exposure is associated with a specific disease.4. Temporality - The main answer is that the exposure must occur before the disease.5. Biological gradient - This criterion is met when there is a dose-response relationship between the exposure and the disease.6. Plausibility - The explanation for this criterion is that there must be a plausible biological mechanism to explain the relationship between the exposure and the disease.7. Coherence - The main answer is that the relationship should be coherent with what is already known about the disease.8. Experimental evidence - This criterion is met if experimental studies support the relationship between the exposure and the disease.9. Analogy - This criterion is met if the relationship between the exposure and the disease is similar to that of other established relationships.

TO know more about that viewpoints visit:

https://brainly.com/question/1043206

SPJ11

Question 12: In this study, researchers
measured photosynthetic rates with a device that determined the
amount of CO2 absorbed by leaves within a certain amount
of time. In addition to CO2 absorption

Answers

The answer to the given question is, "In this study, researchers measured photosynthetic rates with a device that determined the amount of CO2 absorbed by leaves within a certain amount of time. In addition to CO2 absorption, they also measured the amount of water that was lost from the leaves through transpiration".

Photosynthesis is the process in which plants use sunlight to convert carbon dioxide and water into glucose and oxygen. Photosynthesis is necessary for the survival of plants because it provides them with energy that they need to grow and carry out other essential functions.

Photosynthetic rates can be measured by determining the amount of CO2 that is absorbed by leaves within a certain amount of time. This can be done using a device called a CO2 gas analyzer, which measures the concentration of CO2 in the air surrounding the leaves.

Researchers can also measure the amount of water that is lost from leaves through a process called transpiration. Transpiration is the process by which water is absorbed by the roots of the plant and then transported to the leaves where it is released into the atmosphere. By measuring the rate of transpiration, researchers can gain a better understanding of how plants use water and how this affects photosynthetic rates.

To know more about transpiration visit:

https://brainly.com/question/30720332

#SPJ11

Question 54 In what part of the kidney can additional water removed from the filtrate? The descending loop of Henle The proximal tubule The ascending loop of Henle The collecting duct

Answers

Additional water can be removed from the filtrate in the collecting duct of the kidney.

The collecting duct plays a crucial role in the final adjustment of urine concentration. It is responsible for reabsorbing water from the filtrate back into the bloodstream, thereby concentrating the urine. The permeability of the collecting duct to water is regulated by the hormone antidiuretic hormone (ADH), which determines the amount of water reabsorbed. When the body needs to conserve water, ADH is released, making the collecting duct more permeable to water and allowing for its reabsorption. Thus, the collecting duct is the site where the final adjustments to urine concentration occur by removing additional water from the filtrate.

learn more about:- collecting duct  here

https://brainly.com/question/25747764

#SPJ11

1- Prior to its charging with an amino acid, how is the 3' end of a transfer RNA modified from its original structure as an RNA Pol III transcript? 2.Why is this modification so important in the function of the tRNA?
3. When it is not bound by the ribosome, a mature tRNA is usually bound in the cytoplasm by one of two proteins. What are these proteins and what is different about the tRNAs bound by each?

Answers

1. The 3' end of a tRNA is modified by adding a CCA sequence.

2. This modification allows tRNA to bind specific amino acids, enabling proper function in protein synthesis.  3. AARS and EF-Tu are the proteins that bind mature tRNA in the cytoplasm, facilitating amino acid attachment and ribosome interaction, respectively.

1. The 3' end of a transfer RNA (tRNA) is modified by the addition of a CCA sequence, which is not encoded in the original RNA Pol III transcript.

2. This modification is important for tRNA function because the CCA sequence serves as a binding site for amino acids during protein synthesis. It allows the tRNA to properly carry and transfer specific amino acids to the ribosome during translation.

3. The two proteins that can bind mature tRNA in the cytoplasm are aminoacyl-tRNA synthetases (AARS) and EF-Tu. AARS binds to tRNA before amino acid attachment and ensures the correct amino acid is attached to the tRNA. EF-Tu binds to aminoacyl-tRNA and delivers it to the ribosome during protein synthesis. The difference between tRNAs bound by each protein lies in their interaction: AARS recognizes the tRNA anticodon and ensures correct amino acid attachment, while EF-Tu recognizes the aminoacyl-tRNA complex and facilitates its proper positioning on the ribosome for protein synthesis.

learn more about tRNA here:

https://brainly.com/question/29544584

#SPJ11

In the integrated farming system, the livestock enterprise has; A. No interrelations with crop enterprises B. Positive interrelations crop enterprises C. None of the above

Answers

In the integrated farming system, the livestock enterprise has positive interrelations with crop enterprises.

The integrated farming system is a sustainable agricultural approach that combines different components, such as crops, livestock, fish, and poultry, in a mutually beneficial manner. This system promotes synergistic relationships between various enterprises to maximize productivity, minimize waste, and enhance overall farm sustainability.

In the context of the livestock enterprise within the integrated farming system, it is characterized by positive interrelations with crop enterprises. This means that there are beneficial interactions and exchanges between the livestock and crop components of the farming system.

Livestock can provide several advantages to crop enterprises in an integrated system. For instance, animal manure can serve as a valuable organic fertilizer for crops, supplying essential nutrients and improving soil fertility.

Livestock waste can be used in the form of compost or biofertilizers, reducing the need for synthetic fertilizers and promoting sustainable soil management practices.

Additionally, crop residues and by-products can be utilized as feed for livestock, reducing the dependence on external feed sources. This promotes resource efficiency and helps close nutrient cycles within the integrated system.

In summary, the livestock enterprise in the integrated farming system has positive interrelations with crop enterprises, creating a mutually beneficial relationship where both components support and enhance each other's productivity and sustainability.

Learn more about biofertilizers here:

https://brainly.com/question/23505587

#SPJ11

Like all other rapidly growing cells, cancer cells must replicate their DNA and divide rapidly. However, also like all other rapidly growing cells, this can cause problems- what are these problems and how do cancer cells mitigate these problems?

Answers

Rapid DNA replication and division in cancer cells can result in a number of issues. The potential for errors during DNA replication, which can lead to genetic mutations, is one of the major obstacles.

These alterations may speed up the development of cancer and increase its heterogeneity.The strategies that cancer cells have developed to address these issues include:1. DNA repair pathways: To correct mistakes and maintain genomic integrity, cancer cells frequently upregulate DNA repair pathways. These repair processes, though, aren't always effective, which causes mutations to build up.2. Telomere upkeep: Telomeres, guardrails at the ends of chromosomes, guard against DNA deterioration and preserve chromosome integrity. To stop telomere shrinking and maintain telomere length, cancer cells activate telomerase or use alternative lengthening of telomeres (ALT) mechanisms.

learn more about replication here :

https://brainly.com/question/31845454

#SPJ11

2. How do diseases affect the China population? Can you think
about any diseases that has affected the human population? (Please
use peer reviewed sources to support your answer).
Minimum 200 words

Answers

As in every nation, diseases can significantly affect the people of China. The prevalence of infectious diseases, the burden of non-communicable diseases, the state of the healthcare system, and public health initiatives are only a few of the variables that affect the effects of diseases.

The COVID-19 pandemic produced by the SARS-CoV-2 virus is one instance of an illness that has afflicted people. The pandemic began in China in late 2019 and swiftly spread throughout the world, causing enormous disruptions to society and businesses all over the world in addition to massive illness and fatalities. With the initial epidemic in Wuhan leading to severe lockdown procedures, overburdened healthcare systems, and a high number of infections and fatalities, COVID-19 has had a significant impact on the Chinese populace. The Chinese government adopted a number of

learn more about healthcare here :

https://brainly.com/question/16846279

#SPJ11

What is the difference berween short hairpin RNAs and microRNAs. How are they synthesized? Mention the chemical modifications of DNA antisense oligonucleotides. Explain how phosphothionate oligonucleotides lead to the degradation mRNAs associated to diseases. How is antisense RNA naturally produced? Explain the action mechanism of the drug Nusinersen. Mention how SMN1 and SMN2 genes regulate Spinal Muscular Atrophy (SMA) and how Nusinersen affects the synthesis of normal SMN protein. Explain the RNA interference (RNAi) pathway. Mention how this pathway can target the degradation of a specific mRNA. Explain the action mechanism of the drug Patisiran on transthyretin TTR)-mediated amyloidosis (hATTR). Provide with an explanation for he reduction in the synthesis of abnormal TTR proteins caused by atisiran.

Answers

Short hairpin RNAs and microRNAs:Short hairpin RNAs and microRNAs are small RNA molecules that function in the RNA interference (RNAi) pathway to regulate gene expression.

Both have similar roles in the pathway, but there are differences in their structure, synthesis, and function. Short hairpin RNAs (shRNAs) are synthesized as long RNA precursors, which are processed by the enzyme Dicer to produce small, double-stranded RNAs that are incorporated into the RNA-induced silencing complex (RISC).MicroRNAs (miRNAs) are transcribed from genes in the genome, which are processed by the enzymes Drosha and Dicer to produce small, single-stranded RNAs that are also incorporated into the RISC. The main difference between shRNAs and miRNAs is that shRNAs are synthesized artificially in the laboratory, while miRNAs are naturally occurring molecules in the cell.Chemical modifications of DNA antisense oligonucleotides:The chemical modifications of DNA antisense oligonucleotides are designed to improve their stability, binding affinity, and delivery to target cells. The most common modifications are phosphorothioate (PS) linkages, which replace one of the non-bridging oxygen atoms in the phosphate backbone with sulfur. This modification increases the stability of the oligonucleotide to nuclease degradation, which is important for their effectiveness in vivo.Phosphothionate oligonucleotides lead to the degradation mRNAs associated with diseases by binding to complementary mRNA sequences and recruiting cellular machinery to degrade the target mRNA. The antisense RNA molecules naturally produced in the cell are synthesized by transcription from genes in the genome. These RNAs can have regulatory roles in gene expression by binding to complementary mRNA sequences and interfering with translation.

The action mechanism of the drug Nusinersen: Nusinersen is a drug that targets the SMN2 gene, which produces a splicing variant of the SMN protein that is missing exon 7 and is less stable than the full-length protein. Nusinersen is a splice-modifying oligonucleotide that binds to a specific site on the SMN2 pre-mRNA and promotes the inclusion of exon 7, leading to the synthesis of more full-length SMN protein. This results in an increase in SMN protein levels, which can improve the symptoms of Spinal Muscular Atrophy (SMA).SMN1 and SMN2 genes regulate Spinal Muscular Atrophy (SMA):Spinal Muscular Atrophy (SMA) is caused by a deficiency in the survival motor neuron (SMN) protein, which is encoded by the SMN1 gene. Humans also have a nearly identical SMN2 gene, which produces a splicing variant of the SMN protein that is missing exon 7 and is less stable than the full-length protein. Nusinersen affects the synthesis of normal SMN protein by promoting the inclusion of exon 7 in the SMN2 pre-mRNA, leading to the synthesis of more full-length SMN protein.RNA interference (RNAi) pathway:The RNA interference (RNAi) pathway is a cellular mechanism for regulating gene expression by degrading specific mRNA molecules. This pathway involves small RNA molecules, such as microRNAs (miRNAs) and small interfering RNAs (siRNAs), which are incorporated into the RNA-induced silencing complex (RISC). The RISC complex binds to complementary mRNA sequences and cleaves the mRNA molecule, leading to its degradation.The action mechanism of the drug Patisiran:Patisiran is a drug that targets transthyretin-mediated amyloidosis (hATTR), a disease caused by the accumulation of abnormal transthyretin (TTR) protein in tissues. Patisiran is an RNAi therapeutic that targets the mRNA molecule that encodes TTR protein. The drug is delivered to target cells using lipid nanoparticles, which protect the RNAi molecules from degradation and enhance their delivery to the liver. Once inside the cell, the RNAi molecules bind to complementary sequences in the TTR mRNA molecule and promote its degradation, leading to a reduction in the synthesis of abnormal TTR proteins. This can slow the progression of hATTR and improve patient outcomes.

To know more about RNA visit:

https://brainly.com/question/25979866

#SPJ11

DNA helices inhibitors are well studied as potential drug targets. What would you expect to see if DNA helices activity is inhibited? a. the replisome complex would not assemble on the orC region b. Helices catalyzes ATP hydrolysis and DNA strands separation, so the helix cannot be unwound and strands will not separate c. helices carries the SSB protein to the open region of DNA, so hydrolysis and strand separation will not occur d. The DNA cannot bend, so hydrogen bonds in the 13 mer region of one orC remain intact (WRONG, I selected this) d. Helices prevents reannealing of the separated strands, so strands would quickly reanneal end DNA replication cannot proceed

Answers

If DNA helicases activity is inhibited, one would expect to see that Helices catalyzes ATP hydrolysis and DNA strands separation, so the helix cannot be unwound and strands will not separate.

option b is the correct answer.

In molecular biology, helicases are enzymes that are essential for DNA replication and repair, transcription, translation, and recombination. These enzymes are involved in unwinding and separating double-stranded nucleic acid molecules such as DNA and RNA. Helicases have been shown to be potential drug targets, especially in the treatment of cancer.

There are a variety of ways that helicases inhibitors can be used to treat cancer, ranging from blocking DNA replication and repair to interfering with telomerase activity. Helicases catalyze the ATP hydrolysis and separation of DNA strands. As a result, if DNA helicase activity is inhibited, the helix will not be able to be unwound, and the strands will not separate. This would lead to a failure of DNA replication and repair and result in the death of cancer cells, which rely on rapid cell division for their survival.

To know more about catalyzes visit:

https://brainly.com/question/31661188

#SPJ11

& After diluting your culture 1:2500, you plate and get 154 colonies. what was the initial concentration? olm) olm

Answers

When we dilute a sample, we are reducing the number of organisms present in it. The amount of dilution can be calculated by dividing the original volume of the sample by the volume of the diluent added.

For example, a 1:10 dilution means that one unit of sample was diluted with nine units of diluent (usually water), resulting in a tenfold decrease in the number of organisms present.The initial concentration of the culture can be calculated as follows:The number of colonies that grew on the plate can be used to calculate the number of organisms present in the original culture.

Let's use C = N/V to find the initial concentration, where C is the concentration, N is the number of organisms, and V is the volume of the sample.Culture concentration × Volume of the culture = Number of organismsN1 × V1 = N2 × V2Where N1 is the initial concentration.

To know more about dilute  visit:

https://brainly.com/question/31521767

#SPJ11

Recombination mapping has been fundamental in studying the arrangement of loci along chromosomes. Which of the following statements about recombination mapping is NOT correct?
A. Genome-wide association mapping can be combined with recombination mapping for better understanding of genetic bases of phenotypes
B. It cannot be used for breeding of animals
C. Generation time is an important factor for its feasibility
D. It cannot be used for asexual organisms
E. Measuring phenotypes is an important component

Answers

Recombination mapping has been fundamental in studying the arrangement of loci along chromosomes. The statement about recombination mapping that is not correct is "b)It cannot be used for breeding of animals."Reciprocal recombination between homologous chromosomes leads to the creation of recombinants.

Recombinants carry alleles for which recombination has occurred in the region between the genes. It is crucial to note that genetic recombination plays a vital role in mapping genes, genetic variation, and genetic evolution. Moreover, it allows the production of genetic maps, which can be used to construct physical maps.Generally, the benefits of recombination mapping are as follows:To detect DNA polymorphisms and map traits of interestTo discover genetic variation and the positions of genes that influence traitsTo determine the order and distances between genetic markersTo detect regions of the genome that are under evolutionary pressureTo determine the positions of genes on chromosomesGenome-wide association mapping can be combined with recombination mapping for better understanding of genetic bases of phenotypes. Measuring phenotypes is an important component in determining the genetic basis of phenotypes. Also, generation time is an important factor in determining the feasibility of recombination mapping.However, it cannot be used for asexual organisms as it needs sexual reproduction to bring about the generation of recombinants. Therefore, the statement about recombination mapping that is not correct is "It cannot be used for breeding of animals."

To know more about Recombination mapping visit:

https://brainly.com/question/10298507

#SPJ11

The Vostok ice core data... O All of the answers (A-C) B. Shows a clear NEGATIVE correlation between CO2 concentration and temperature Band C O C. Gives the natural range of variation in CO2 concentrations in the past 650,000 years O A. Tells us the age of Antarctica

Answers

The Vostok ice core data gives the natural range of variation in CO₂ concentrations in the past 650,000 years. The correct option is C.



The Vostok ice core data is used to study the changes in Earth's atmosphere and climate over the past 650,000 years. The ice cores are taken from deep in the ice sheet in Antarctica. The air bubbles trapped in the ice can tell us a lot about the composition of the atmosphere in the past.

Therefore, the main answer is "C. Gives the natural range of variation in CO₂ concentrations in the past 650,000 years."The ice cores from Vostok show us how the CO₂ concentrations have changed over the past 650,000 years. They have varied naturally between around 180 and 300 parts per million (ppm). This variation is largely due to natural factors such as volcanic eruptions and changes in the Earth's orbit and tilt. Therefore, it can be concluded that the Vostok ice core data gives the natural range of variation in CO₂ concentrations in the past 650,000 years.

The Vostok ice core data does not show a clear negative correlation between CO₂ concentration and temperature. It does tell us the age of Antarctica, but this is not one of the options given.

Therefore, the answer is C. Gives the natural range of variation in CO₂ concentrations in the past 650,000 years.

To know more about Vostok ice core, visit:

https://brainly.com/question/31850504

#SPJ11

You notice that in regions of your system that lack microorganisms, there is a high concentration of ferrous iron (Fe2+), but where you observe your organisms, the concentration is much lower, so you conclude that the ferrous iron is most likely being used by the microorganisms. Given this information and what you know about the research site, the organisms are most likely using this compound as ________. (Hint – think about all the uses for iron and whether this is an oxidized/reduced form).
A) An electron acceptor for anaerobic respiration.
B) An electron donor during chemolithotrophy.
C) An electron acceptor during assimilatory iron reduction
D) An electron donor during chemoorganotrophy.
E) An electron acceptor during dissimilatory iron reduction

Answers

Based on the information provided, the organisms are most likely using ferrous iron (Fe2+) as an electron acceptor during dissimilatory iron reduction. Option E is correct.

In dissimilatory iron reduction, microorganisms use Fe2+ as an electron acceptor in their metabolism. This process typically occurs in anaerobic environments where other electron acceptors, such as oxygen, are limited or absent. By utilizing ferrous iron, microorganisms can gain energy by transferring electrons from organic compounds to Fe2+, converting it to ferric iron (Fe3+). This electron transfer helps drive their metabolic processes.

Option E) An electron acceptor during dissimilatory iron reduction best fits the described scenario, where the high concentration of ferrous iron in regions lacking microorganisms suggests its utilization by the organisms as an electron acceptor in their metabolic processes.

Learn more about microorganisms

https://brainly.com/question/9004624

#SPJ11

Designing vaccines to elicit drugs?
Could we somehow create a vaccine to have the immune system target and attack cocaine molecules once they are present in us?
Designing vaccines to melanoma cancer?
Could we somehow create a vaccine to have the immune system target and attack molecules only found on cancer cells like melanoma?
What challenges might you face with attempting to elicit an effective immune response to the melanoma cancer?
What other signals are missing to ACTIVATE this T helper cell? Why or why not?
What benefits do you see in this system of shutting off cells that are stick to things that are NOT associated with PAMP detection?
B cells:
What is the function of a B cell once active?
What is required for B cell activation?
Explain the process based on your understanding?
What is the difference between a B cell’s antigen receptor and its antibodies?
B cells require T helper cell help (binding) for full activation. But which helper cell?
How does your immune system use antibodies?
In other words, what are the functions of antibodies?
What is the difference between passive and active immunity?

Answers

Vaccines for cocaine or melanoma are tough to develop. Vaccines that stimulate an immune response to specific chemicals are theoretically possible, but several hurdles exist.

Specificity: A cocaine or melanoma vaccination must identify certain indications or antigens. Target-specific antigens are hard to find.Vaccines target T and B cells. Cancer cells hide or suppress the immune system, making cancer vaccines hard to activate.Tumour Heterogeneity: Melanoma is heterogeneous. This heterogeneity makes melanoma vaccines difficult to design.

Immunological tolerance preserves healthy cells and tissues. Overcoming immunological resistance and ensuring the vaccine-induced immune response targets only the desired molecules or cells without injuring normal tissues is tough.

T helpers activate B cells. B cell antigens trigger CD4+ T helper cells to generate antibodies.

B-cells produce antibodies. BCRs detect antigens. Antigen binding to the BCR activates B cells to divide and develop into plasma cells. Plasma cells produce many antigen-specific antibodies.

BCR antigen recognition and other cues activate B cells. Helper T cells deliver signals via BCR-bound antigen-T cell receptor interactions and co-stimulatory molecules.

Antibodies—immunoglobulins—perform immune system functions. Pathogen binding prevents cell infection. Antibodies mark pathogens for macrophages and natural killer cells. Antibodies activate the complement system, which fights pathogens.

Passive and active immunity acquire immune responses differently. Active immunity is a person's immune response to an antigen from sickness or vaccination. Immune response memory cells protect against infections.

Exogenous antibodies or immune cells provide passive immunity. Placental or breast milk antibodies can cause this. Immune globulins and monoclonal antibodies can artificially acquire it. Transferred antibodies or cells give immediate but short-term passive immunity.

Learn more about immunity, here:

https://brainly.com/question/32453970

#SPJ4

The newborn had redness, swelling of the oral mucosa and small erosions with mucopurulent discharge. Microscopic examination of smears from secretions revealed a large number of leukocytes with Gram-negative diplococci inside, as well as the same microorganisms outside the leukocytes. Which of the following diagnoses is most likely?
A. Gonococcal stomatitis
D. Congenital syphilis
B. Blenorrhea
E. Toxoplasmosis
C. Staphylococcal stomatitis

Answers

The most likely diagnosis for the newborn with redness, swelling of the oral mucosa, small erosions with mucopurulent discharge, and the presence of Gram-negative diplococci is Gonococcal stomatitis, also known as gonorrheal stomatitis or gonococcal infection.

Gonococcal stomatitis is caused by Neisseria gonorrhoeae, a Gram-negative diplococcus bacterium that is sexually transmitted. In newborns, it is typically acquired during delivery when the mother has a gonococcal infection. The characteristic symptoms include redness, swelling, and erosions in the oral mucosa, along with a mucopurulent discharge. Microscopic examination of smears from the secretions reveals a large number of leukocytes with Gram-negative diplococci inside them, as well as outside the leukocytes.

Gonococcal stomatitis is a serious condition that requires immediate medical attention. Without proper treatment, it can lead to systemic dissemination of the infection and potentially life-threatening complications. Prompt diagnosis and appropriate antibiotic therapy are essential to prevent further complications and to ensure the well-being of the newborn.

Learn more about Gram-negative bacterium here:

https://brainly.com/question/30392775

#SPJ11

Which of the following has a bactericidal (kills bacteria) effect and prevents invasion or colonization of the skin?
Select one:
a.
Langerhan's cells
b.
sebum
c.
melanin
d.
merocrine secretions
e.
karatin

Answers

Merocrine secretions are a category of exocrine gland secretions that have a bactericidal effect and prevent the invasion or colonization of the skin. This is due to the fact that these secretions contain natural antibiotics that help to protect the skin from harmful bacteria.

Some of these natural antibiotics include lysozymes, which break down bacterial cell walls, and dermcidin, which is a peptide that has been shown to be effective against a wide range of bacteria. Additionally, these secretions also help to regulate the skin's pH levels, which further inhibits bacterial growth.Sebum is another substance that is produced by the skin that has some antimicrobial properties.

Langerhan's cells are specialized immune cells that are found in the skin and play a role in protecting the skin from pathogens and foreign substances, but they do not have a direct bactericidal effect.Melanin is a pigment that gives skin its color and helps to protect against UV radiation from the sun, but it does not have any bactericidal properties.Keratin is a fibrous protein that makes up the outer layer of skin and provides a barrier against environmental factors, but it also does not have any bactericidal properties.In conclusion, merocrine secretions are the correct answer to the question because they have a bactericidal effect and prevent invasion or colonization of the skin.

To know more about exocrine visit:

https://brainly.com/question/12993144

#SPJ11

Listen Cancer development occurs due to which of the following? Select all that apply. A) Frameshift mutations, both insertions and deletions B) Mutations in tumor suppressor genes C) Mutations in oncogenes D) Nonstop mutations Question 17 (1 point) Listen Viruses _. Select all that apply. A) can perform metabolism on their own B) target a specific cell type C) must enter a host cell to produce new viral particles D) are noncellular You are told that an organism contains a nucleus, a cell membrane, and multiple cells. Which of the following categories could the organism belong to? Select all that apply. A) Plantae B) Bacteria C) Archaea D) Animalia E) Eukarya

Answers

Cancer development occurs due to the following options: A) Frameshift mutations, both insertions and deletions, B) Mutations in tumor suppressor genes, C) Mutations in oncogenes

The options applicable for viruses: C) Enters a host cell with the aim of producing new viral particles, B) Target a specific cell type, D) Are noncellular

The organism containing a nucleus, a cell membrane, and multiple cells can belong to the following categories:A) Plantae, D) Animalia, E) Eukarya

Learn more about viruses: https://brainly.com/question/25236237

#SPJ11

Your assignment is to find microbes from soil that are
resistant
to the antibiotic kanamycin. Briefly describe a primary screen
strategy for
this purpose. BE SPECIFIC.

Answers

Kanamycin is an antibiotic widely used in biotechnology for the selection of recombinant plasmids carrying a kanamycin resistance gene.

However, overuse and misuse of this antibiotic in human and animal medicine has led to the emergence of kanamycin-resistant bacteria. Therefore, finding soil microbes resistant to kanamycin is essential for developing new antibiotics. A primary screen strategy for finding microbes resistant to kanamycin from soil can be conducted in the following steps:

Step 1: Soil sampling - Collect soil samples from different regions that have different climate and vegetation.

Step 2: Soil pretreatment - Heat-treat the soil samples at 80 °C for 30 minutes to kill any non-spore forming bacteria.

Step 3: Enrichment culture - Incubate the soil samples in an enriched medium containing kanamycin as the sole carbon source for a week. This step is to allow only bacteria that have the kanamycin resistance gene to grow and proliferate.

Step 4: Dilution plating - After a week, dilute the soil samples and plate them on agar media containing kanamycin. This step is to identify the presence of bacteria that can grow on the kanamycin-containing media, indicating that they are kanamycin-resistant.

Step 5: Isolation of the microbes - Pick individual kanamycin-resistant colonies, streak them on fresh kanamycin-containing plates to obtain pure cultures, and identify them by using molecular biology techniques such as PCR or DNA sequencing. The primary screen strategy can be used to identify soil microbes resistant to kanamycin.

Learn more about  molecular biology techniques here:

https://brainly.com/question/31247224

#SPJ11

Question 4 4 pts A 12-year-old girl visits her pediatrician with a 5-day history of fever, sore throat with pus-filled abscesses, and rash. Initial symptoms included sore throat, chills, and a low-grade fever (100.5°F [38.1°C]). The sore throat progressively worsened, with rapid development of a red, sunburn-like rash that felt like sandpaper spreading from the axilla to the torso. Development of this rash coincided with abrupt onset of fever (up to 103.5°F [39.7°C]), headache, and strawberry-like tongue. Bacteria were cultured from a throat swab on blood agar and a gram stain was performed. Beta-hemolysis was present on the blood agar plate and gram staining revealed the presence of gram positive cocci in chains. What disease does this patient have? Name the bacterium (genus and species) that caused her condition. Explain your reasoning. List the toxin associated with the development of the rash. 83% Question 2 True or False: Both Staphylococcus aureus and Streptococcus pyogenes cause impetigo. True False 2 pts

Answers

The disease that the 12-year-old girl who had visited the pediatrician with a 5-day history of fever, sore throat with pus-filled abscesses, and rash is scarlet fever. The bacterium (genus and species) that caused her condition is Streptococcus pyogenes. The reasoning behind this is that streptococcal pharyngitis is usually caused by Streptococcus pyogenes, which is a gram-positive bacteria responsible for the development of strep throat. The toxin associated with the development of the rash is Erythrogenic toxin.

The given statement is false. Both Staphylococcus aureus and Streptococcus pyogenes cause impetigo.What is Scarlet Fever?Scarlet fever is an infectious disease caused by bacteria, particularly Streptococcus pyogenes. Scarlet fever is characterized by the sudden onset of a fever, sore throat, and rash. The rash is the distinguishing feature of scarlet fever, and it is characterized by a red, sandpaper-like appearance. Scarlet fever typically begins in the throat, and it quickly spreads throughout the body. It can be accompanied by a number of other symptoms, including headache, nausea, vomiting, and abdominal pain.Streptococcus PyogenesStreptococcus pyogenes, also known as Group A Streptococcus (GAS), is a bacteria that is responsible for a wide range of infections, including strep throat, skin infections, and toxic shock syndrome.

Streptococcus pyogenes is a gram-positive bacteria that is found on the skin and in the throat. It is spread through contact with infected individuals or contaminated surfaces. The bacteria produce a number of toxins, including erythrogenic toxin, which is responsible for the characteristic rash of scarlet fever.Erythrogenic ToxinErythrogenic toxin is a toxin produced by Streptococcus pyogenes. It is responsible for the characteristic rash of scarlet fever. Erythrogenic toxin is a superantigen that stimulates the immune system to produce an excessive inflammatory response. The resulting inflammation causes the rash that is characteristic of scarlet fever.

To know more about fever visit:-

https://brainly.com/question/13050149

#SPJ11

It is observed that in the cells of a color-blind male child one Barr-body is present. The child has a maternal grandfather who was also color-blind. The boy's mother and father are phenotypically and karyotypically normal. Provide the sex chromosome genotype of the mother, father, and child to support the genetic attributes of the Barr-body positive child and explain specifically how this could occur. Hint: Assume X chromosome inactivation occurs after the development of the retina and therefore is NOT involved the phenotype of color-blindness. Also, remember colorblindness is a recessive trait.

Answers

In this scenario, the child is a male and is color-blind, indicating that he inherited the color-blindness trait from his mother. The presence of one Barr body in the cells of the color-blind male child suggests that he has an extra X chromosome (XXY), a condition known as Klinefelter syndrome.

Based on the information provided, let's determine the sex chromosome genotypes of the mother, father, and child:

Child:

Phenotype: Color-blind male

Genotype: XXY (Klinefelter syndrome)

Mother:

Phenotype: Phenotypically and karyotypically normal

Genotype: Carrier of the color-blindness allele (XcX)

Father:

Phenotype: Phenotypically and karyotypically normal

Genotype: XY

The mother is a carrier of the color-blindness allele (XcX) because her maternal grandfather was color-blind. Since color-blindness is a recessive trait carried on the X chromosome, the mother inherited the X chromosome carrying the color-blindness allele from her father (Xc) and a normal X chromosome from her mother (X).

During fertilization, the mother can pass on either her X chromosome carrying the color-blindness allele (Xc) or her normal X chromosome (X) to her child. In this case, the mother passed on her X chromosome carrying the color-blindness allele (Xc) to her son. Therefore, the child inherited the color-blindness trait and the extra X chromosome (XXY) responsible for Klinefelter syndrome.

To know more about Klinefelter syndrome

brainly.com/question/32040907

#SPJ11

Are
graded potential local to the dendrites anf soma of a neuron? Yes
or no? No explanation needed

Answers

Yes, graded potentials are local to the dendrites and soma of a neuron.

Graded potentials are changes in the membrane potential of a neuron that occur in response to incoming signals. They can be either depolarizing (making the cell more positive) or hyperpolarizing (making the cell more negative). Graded potentials are called "graded" because their magnitude can vary, depending on the strength of the stimulus.

These potentials are typically generated in the dendrites and soma (cell body) of a neuron, where they serve as local signals. Graded potentials can result from the opening or closing of ion channels in response to neurotransmitters, sensory stimuli, or other electrical signals.

Unlike action potentials, which are all-or-nothing events that propagate along the axon, graded potentials do not propagate as far and decay over short distances. However, if a graded potential is strong enough, it can trigger the initiation of an action potential at the axon hillock, leading to the transmission of the signal down the neuron.

To know more about graded potentials here

https://brainly.com/question/13064307

#SPJ4

Drs. Frank and Stein are working on another monster. Instead of putting in a pancreas, they decided to give the monster an insulin pump that would periodically provide the monster with insulin. However, their assistant Igor filled the pump with growth hormone instead. Using your knowledge of these hormones, describe how the lack of insulin and the excess growth hormone would influence the monster as a child and an adult, assuming it reached adulthood and Igor kept filling the pump with GH.

Answers

The lack of insulin and the excess growth hormone would influence the monster as a child and an adult, assuming it reached adulthood and Igor kept filling the pump with GH, as follows: Childhood: During childhood, insulin plays an essential role in ensuring that growing bodies obtain the energy they need to develop and grow.

Without insulin, sugar builds up in the bloodstream, resulting in hyperglycemia. The child would be at a greater risk of developing type 1 diabetes. As a result, the monster would have a considerably lower than normal weight and an inadequate height because insulin regulates the body's use of sugar to create energy, and insufficient insulin makes it difficult for the body to turn food into energy. Adulthood:In adults, a lack of insulin leads to the development of type 1 diabetes, which can result in long-term complications such as neuropathy, cardiovascular disease, and kidney damage.

High levels of GH result in the body's tissues and organs, including bones, becoming too large. The monster will have acromegaly, which is a condition that results in the abnormal growth of bones in the hands, feet, and face.Growth hormone promotes growth in normal amounts in the body, but excess GH can result in acromegaly. Symptoms of acromegaly include facial bone growth, the growth of the feet and hands, and joint pain. In addition to acromegaly, the excessive GH in the monster would lead to the development of gigantism.

To know more about hormone visit:-

https://brainly.com/question/30367679

#SPJ11

The most common genetic cause of severe human obesity is heterozygous coding mutations in the melanocortin 4 receptor. Based on what you know about this POMC system, which region of the hypothalamus that integrates peripheral signals for homeostatic control could be disrupted by this mutation? a) Arcuate b) Lateral hypothalamus Oc) Ventromedial hypothalamus d) Dorsomedial hypothalamus e) All of the above

Answers

Therefore, the answer to the question is (a) Arcuate.

The POMC system includes a number of endogenous peptides and receptor genes that have a direct role in energy homeostasis. The hypothalamus has different nuclei that play a role in appetite, satiety, and energy homeostasis.

The most common genetic cause of severe human obesity is heterozygous coding mutations in the melanocortin 4 receptor.

In this context, the region of the hypothalamus that integrates peripheral signals for homeostatic control which could be disrupted by this mutation is the Arcuate (ARC).

Explanation:When it comes to energy balance, the hypothalamus plays a vital role. It is a brain area that includes a range of nuclei with various functions. The hypothalamus is known to control eating behavior and energy balance.

It receives signals from the peripheral organs and regulates food intake, body weight, and energy expenditure.

The hypothalamus has several distinct nuclei that play a crucial role in regulating feeding behavior, including the Arcuate (ARC), the lateral hypothalamus (LH), the dorsomedial hypothalamus (DMH), and the ventromedial hypothalamus (VMH).

The most common genetic cause of severe human obesity is heterozygous coding mutations in the melanocortin 4 receptor.

This receptor is found primarily in the hypothalamus and is involved in the control of appetite and energy homeostasis. Melanocortin 4 receptor signaling in the hypothalamus helps to control food intake and energy expenditure.

According to the given information, the POMC system is associated with the ARC nucleus, which is responsible for integrating peripheral signals that regulate food intake and energy expenditure.

Therefore, the answer to the question is (a) Arcuate.

To know more about genetic visit;

brainly.com/question/30459739

#SPJ11

The good and the bad sides of smallpox eradication.
Some directions:
a. Why was the eradication of smallpox so successful?
b. Since smallpox was eradicated by 1980, why would we still
need to worry about the virus?.

Answers

a. The eradication of smallpox was a remarkable achievement due to several key factors. One of the primary reasons for its success was the effectiveness of the smallpox vaccine. b. Although smallpox has been eradicated, there are still reasons to be concerned about the virus.

1. The development and widespread administration of the vaccine played a crucial role in preventing new infections and reducing the transmission of the virus. Additionally, global cooperation and coordinated efforts by international organizations, such as the World Health Organization (WHO), helped to implement targeted vaccination campaigns and surveillance strategies. The commitment and dedication of healthcare workers, scientists, and volunteers worldwide also contributed to the success of the eradication program. Moreover, the stability of the virus itself, which had a low mutation rate and lacked animal reservoirs, made it feasible to interrupt its transmission through vaccination and surveillance efforts.

2. Firstly, stored laboratory samples of the smallpox virus pose a potential risk if they were to accidentally escape or fall into the wrong hands. These samples are mainly kept for research purposes but raise concerns about accidental release or deliberate misuse. Secondly, the potential for bioterrorism exists, as smallpox is a highly contagious and deadly disease. There is a fear that the virus could be weaponized and intentionally used as a biological weapon. Therefore, stringent biosafety and biosecurity measures must be maintained to prevent any accidental or intentional release of the virus. Lastly, ongoing research is important to study the long-term immunity against smallpox, potential side effects of the vaccine, and the development of antiviral drugs in case the virus were to re-emerge naturally or deliberately. Vigilance and preparedness are necessary to ensure that smallpox remains eradicated and that any potential threats are effectively managed.

To know more about World Health Organization

brainly.com/question/32548880

#SPJ11

_____________ lacks a defined primary structure and is not considered a polysaccharide. a. Hemicellulose b. Cellulose c. Lignin d. Pectin

Answers

Lignin is a complex polymer found in the cell walls of plants. The correct answer is option c.

It provides structural support to the plant and is responsible for the rigidity of plant tissues. Unlike polysaccharides such as hemicellulose, cellulose, and pectin, lignin does not have a defined primary structure. It is composed of an irregular network of phenolic compounds, making it a unique and complex molecule.

Lignin is not considered a polysaccharide because it does not consist of repeating sugar units like other carbohydrates. Instead, it is a heterogeneous polymer that contributes to the strength and durability of plant cell walls.

The correct answer is option c.

To know more about Lignin refer to-

https://brainly.com/question/29177862

#SPJ11

3. How is convergent evolution different from divergent evolution? Provide an example of each in your answer.

Answers

Convergent evolution and divergent evolution are two important concepts in evolutionary biology. Convergent evolution is when unrelated organisms develop similar traits due to similar environmental pressures.

Divergent evolution is when two or more species with a common ancestor develop different traits due to different environmental pressures.Example of Convergent Evolution:One classic example of convergent evolution is the wings of bats and birds. Bats are mammals and birds are birds, yet they both have wings.

They did not inherit wings from a common ancestor, but instead, evolved them separately because of the shared need to fly.Example of Divergent Evolution:The finches of the Galapagos Islands are a classic example of divergent evolution. The different finch species all evolved from a common ancestor, but each species has different traits that help it survive in its particular environment. Some have developed larger beaks for cracking hard seeds while others have smaller beaks for catching insects. The different environments on each island caused different pressures and led to the development of different traits.

To know more about convergent evolution visit:

https://brainly.com/question/30637872

#SPJ11

Question 3 Which of the following statements is true of the male reproductive system? A The interstitial (Leydig) assist in sperm formation B The testes are temperature sensitive for optimal sperm pro

Answers

The testes are temperature sensitive for optimal sperm production.The testes are a pair of male reproductive organs, located within the scrotum. The testes are responsible for producing sperm and testosterone. Sperm production requires the testes to be held at a temperature slightly lower than body temperature, around 2-3°C lower.

This temperature is essential for optimal sperm production and quality. The testes are temperature sensitive organs that are very vulnerable to damage from high temperatures.Leydig cells or interstitial cells of the testes are located in the connective tissue surrounding the seminiferous tubules. These cells are responsible for producing and secreting testosterone. While testosterone is necessary for sperm production, the Leydig cells are not involved in the process of sperm formation. They only assist in the maturation of sperm, which takes place in the epididymis.

To know more about testosterone visit:

https://brainly.com/question/13061408

#SPJ11

Describe the mechanisms responsible for exchange of substances
across the capillary wall. Outline the roles of hydrostatic and
colloid osmotic forces in controlling fluid filtration; indicate
approxim

Answers

The capillaries are the smallest blood vessels in the body, measuring about 100 µm in diameter. They connect the arterial and venous circulations. The walls of the capillaries are composed of only one endothelial cell layer that is thin enough to allow for the exchange of oxygen, nutrients, and metabolic waste products between the blood and tissues.

The mechanisms responsible for exchange of substances across the capillary wall are as follows:

Diffusion: Substances like oxygen, carbon dioxide, and nutrients diffuse down their concentration gradients between the capillary lumen and the interstitial fluid.

Filtration: Fluid is forced through pores in the capillary wall by hydrostatic pressure (the force of fluid against the capillary wall) created by the heart's pumping action.

Reabsorption: Fluid is drawn back into the capillary by osmotic pressure exerted by the higher concentration of plasma proteins (colloid osmotic pressure).

The roles of hydrostatic and colloid osmotic forces in controlling fluid filtration can be outlined as follows:

Hydrostatic pressure: Fluid filtration is driven by hydrostatic pressure, which is the force of fluid against the capillary wall. This pressure is caused by the pumping action of the heart. It forces water and solutes through the capillary pores into the interstitial fluid.

Colloid osmotic pressure: This is the osmotic pressure exerted by the plasma proteins, such as albumin. The concentration of these proteins in the plasma is higher than in the interstitial fluid. This difference in concentration results in a force that draws fluid back into the capillary. Approximately 90% of the fluid that leaves the capillary is reabsorbed.

To know more about capillaries visit:

https://brainly.com/question/30870731

#SPJ11

(a) Outline the principles that determine the assignment of a Biosafety level or number to a GMO product. (4 marks) (b) Give four examples of a real or theoretical GMO for each biosafety level or number from each of the following categories: animals, plants, and microbes. Explain why your example belongs at the biosafety level you have assigned to it. (You can provide two separate examples from any one category).

Answers

(a) Principles that determine the assignment of a Biosafety level to a GMO product are as follows:Level 1: It is safe,Level 2: Microbes that are possibly pathogenic to healthy adults,Level 3: Microbes pose a severe risk of life-threatening disease.

Level 1: It is safe, and the microbes used are not known to cause diseases in healthy adults. There are no specific requirements for laboratory design. Gloves and a lab coat are the only personal protective equipment required.

Level 2: Microbes that are possibly pathogenic to healthy adults but can be treated by available therapies are used. Laboratory design must restrict the entry of unauthorized individuals and require written policies and procedures. Personal protective equipment such as lab coats, gloves, and face shields are required.

Level 3: Microbes that are either indigenous or exotic and pose a risk of life-threatening diseases via inhalation are used. The laboratory must be restricted to authorized persons, must have controlled entry, and must be separated from access points. Negative air pressure in the laboratory, double-entry autoclaves for waste sterilization, and other specific engineering features are required. Respiratory protection is a must.

Level 4: The most dangerous organisms that pose a severe risk of life-threatening disease by inhalation are used. It's almost entirely constructed of stainless steel or other solid surfaces, with zero pores or cracks. A separate building with no outside windows and filtered, double-door entry is required. All employees must don a positive-pressure air-supplied space suit. There should be a separate waste disposal system, and the air in the laboratory should be filtered twice before being released into the environment.

(b) Four examples of a real or theoretical GMO for each biosafety level or number from each of the following categories: Animals, Plants, and Microbes are as follows:

Level 1:Microbes: Bifidobacterium animalis Plant: Nicotiana tabacum Animal: Zebrafish (Danio rerio)

Level 2:Microbes: Lactococcus lactis Plant: Arabidopsis thaliana Animal: Mouse (Mus musculus)

Level 3:Microbes: Mycobacterium tuberculosis Plant: Oryza sativa Animal: Monkey (Macaca mulatta)

Level 4:Microbes: Ebola virus Plant: None Animal: None

The above-listed GMOs belong to specific Biosafety levels because the level is determined by the risk of the organism to the environment or individual. The higher the Biosafety level, the more severe the disease is, which is why Biosafety level 4 requires extremely strict procedures. The assigned Biosafety level is determined by assessing the organism's pathogenicity and virulence, as well as the possibility of infection through ingestion, inhalation, or other methods.

Learn more about Biosafety:

brainly.com/question/30564176

#SPJ11

We have looked at the structure of DNA in cells. There are some differences. Based on what we have learned, which of the following is TRUE?
a.
Telomeres are found on all chromosomes, both prokaryotic and eukaryotic, however only eukaryotic telomers shorten over time.
b.
All the answers presented are TRUE.
c.
All the chromosomes found in eukaryotes are linear while prokaryotic chromosomes are circular.
d.
Bacterial chromosomes have multiple origins of replication, thus allowing for short generation times, whereas eukaryotic chromosomes are replicated from a single origin.
e.
Prokaryotic chromosomes contain kinetochores whereas eukaryotic chromosomes have centromeres.
f.
Mitochondrial chromosomal DNA is similar in structure to bacterial chromosomes.

Answers

The TRUE statement regarding the differences of DNA structure in cells is: All the chromosomes found in eukaryotes are linear while prokaryotic chromosomes are circular (option c).

The DNA structure in prokaryotic and eukaryotic cells are different. The structure of the DNA molecule in prokaryotic cells differs from that of eukaryotic cells in several fundamental ways. One such difference is the shape of the chromosomes. In prokaryotes, chromosomes are circular, while in eukaryotes, they are linear and contained within the nucleus.

Telomeres are found on all chromosomes, both prokaryotic and eukaryotic, but they shorten over time only in eukaryotic chromosomes. Bacterial chromosomes have multiple origins of replication, which allow for shorter generation times, while eukaryotic chromosomes are replicated from a single origin. Prokaryotic chromosomes contain kinetochores, whereas eukaryotic chromosomes have centromeres. Mitochondrial chromosomal DNA is structurally similar to bacterial chromosomes. The correct option is c.

Learn more about DNA here

https://brainly.com/question/30993611?referrer=searchResults

#SPJ11

Other Questions
a. (3pts) Show 34 with the Measurement Model for the Repeated Addition Approach for multiplication b. (3pts) Show 43 with the Set Model for the Repeated Addition Approach for multiplication. c. (2pts) What property of whole number multiplication is illustrated by the problems in part a and b Microbial cells forming a memebrane at the top of the nutrientbroth in a test thbe are called____.A. PellicleB. CapC. FlocculentD. Turbid Cell Formation a tapie any of the above Question 10 (1 point) Which graph corresponds to this table of values? What results would occur in the reciprocal cross? Recall that original cross was str mt x str mt View Available Hint(s) Half of the offspring would be streptomycin resistant. O All the offspring would be streptomycin resistant. O 25% of the offspring would be streptomycin resistant. O None of the offspring would be streptomycin resistan The ___________determines where different plant species live, and the ________ determines where different animal species live.a) type of climate; type of plantsb) type of animals; type of plantsc) type of plants; type of climated) type of climate; type of climate5. The amount of energy that an ecosystem has available for plant growth is called ____.a) gross primary productivity (GPP)b) net primary productivity (NPP)c) ecosystem carrying capacityd) ecosystem trophic level Discuss the inter-relationship of the muscular system to theskeleton. Your response should examine the skeleton andthe muscle independently and then how they worktogether. Your response should in A first-order instrument with a time constant of 0.5 s is to be used to measure a periodic input. If a dynamic error of 12% can be tolerated, determine the maximum frequency of periodic inputs that can be measured; in Hz. Provide your answer using 3 decimal places. Suppose study looked at smoking (yes/no) as an exposure and CHD (yes/no) as outcome, and found a relative risk of 2.15. Which of the following is the correct interpretation of the RR? Smoking increases the risk of CHD by 2.15 The risk of CHD among smokers is 2.15 time the risk of non-smokers_ The risk among smokers is 2.15 higher than non-smokers_ The risk of CHD among non-smokers is half that of smokers need explanation for each of the advatages of jit Pls- JIT contributes in reducing the waste by avoiding overproduction, limiting waiting time, minimizing product defects, and facilitating more efficient processing. - JIT contributes in minimizing exces Murray's law provides a relationship between flow rate and radius that minimizes the overall power for steady flow of a Newtonian fluid [75]. Murray posited that a cost function for the overall power of the circulatory system represented a balance between the power to pump blood and the metabolic consumption rate. The power of pumping blood equals the rate of work done to overcome viscous resistance. This power is equal to the product of the average velocity times the viscous force acting on the vessel wall (r=R). (a) Using this relation, show that for a Newtonian fluid, the pumping power equals pQ=(8LQ )/(R) (b) The metabolic power is assumed to be equal to the product of the metabolic energy per unit volume of blood times the blood volume. Simply treating the blood as a tube of radius R and length L, then the cost function F is F=pQ+ E m RL From the first derivative of F with respect to R, determine the relationship between Q and the vessel radius. Using the second derivative, show that this is a maximum. (c) Relate the shear stress at the vessel wall to the flow rate and show that the result from part (b), Murray's law, requires that the wall shear stress be constant. Which of the following is not a contribution of Jean Piaget?A. Advocating activity-based learning.B. Development of Art-Therapy.C. Propose mixed design research methodology.D. Join-force to a philosophical movement (Structuralism). Water at 20C flows in a 9 cm diameter pipe under fullydeveloped conditions. Since the velocity in the pipe axis is 10m/s,calculate (a) Q, (b)V, (c) wall stress and (d) P for 100m pipelength. The insertion of_______into the membrane of the collecting ducts increases the amount of water that is reabsorbed. a) atrial natriuretic peptide (ANP). b) capillary beds. c) aquaporins. d) angiotensin II. e) angiotensin I. Identify the tissue in the sections below and name TWO (2)identifying/characteristic features that helped you identify thetissue? A silicon solar cell is fabricated by ion implanting arsenic into the surface of a 200 um thick p-type wafer with an acceptor density of 1x10l4 cm. The n-type side is 1 um thick and has an arsenic donor density of 1x10cm? Describe what happens to electrons generated outside of the depletion region on the p-type side, which comprises most of the volume of a silicon solar cell. Do they contribute to photocurrent? Consider how to prepare a buffer solution with pH = 7.24 (using one of the weak acid/conjugate base systems shown here) by combining 1.00 L of a 0.374-M solution of weak acid with 0.269 M potassium hy Q: Meselson & Stahl in 1958 used density gradient centrifugation to demonstrate DNA banding patterns that were consistent with the semi-conservative mode of replication of DNA.Explain the semi-conservative model of DNA replication as well as the advantages of the semi-conservative mode of DNA replication Associated lesions involving type II ASD's include: Septal aneurysm Complete anomalous venous return Cleft MV along with prolapse Narrowing of the right-sided semi-lunar valve An ash disposal system of a steam plant cost $30,000 when new. It is now 4 years old. Theannual maintenance costs for the four years have been $2000, $2250, $2675, $3000.Interest rate = 6%. A new system is guaranteed to have an equated annual maintenance andoperation cost not exceeding $1500. Its cost is $47,000 installed. Life of each system, 7years; salvage value, 5% of the first cost. Present sale value of old system is same as salvagevalue. Would it be profitable to install the new system? 1.The GC content of Micrococcus is 66 - 75% and of Staphylococcus is 30-40 % moles, from this information would you conclude that these organisms are related? Include an explanation of why GC content is a viable method by which to identify the relatedness of organisms. In your explanation of "why", include information of why we are able to use genetic techniques to identify organisms or determine their relatedness, and specifically why GC content can help determine these.2.Explain the basis for identification using DNA fingerprinting. relate this to Microbiology not to human fingerprinting. Why does this technique work? Mention restriction enzymes and their function.