find the common ratio of the geometric sequence: 16/3,4,3,…

Answers

Answer 1

Answer:

3/4

Step-by-step explanation:

r= a3/a2=3/4

or

r= a2/a1= 4÷16/3= 4×3/16= 3/4


Related Questions

-12
Natural
Whole
Integers
Rationals
Irrationals
Real

Answers

Answer:

the answer is integers if helpful please give 5 star

What does 0 = 0 indicate about the solutions of the system?

Answers

Answer:

it indicates that it is infinitely many solutions

The time X(mins) for Ayesha to prepare breakfast for her family is believed to have a uniform
distribution with A=25 and B=35.
a) Determine the pdf of X and draw its density curve.
b) What is the probability that time taken by Ayesha to prepare breakfast exceeds 33 mins?
c) What is the probability that cooking or preparation time is within 2 mins of the mean time?
(Hint: Identify mean from the graph of f(x))

Answers

Answer:

(c) [tex]f_{X}(x)=\left \{ {{\frac{1}{35-25}=\frac{1}{10};\ 25<X<35} \atop {0;\ Otherwise}} \right.[/tex]

(b) The probability that time taken by Ayesha to prepare breakfast exceeds 33 minutes is 0.20.

(c) The probability that cooking or preparation time is within 2 mins of the mean time is 0.40.

Step-by-step explanation:

The random variable X follows a Uniform (25, 35).

(a)

The probability density function of an Uniform distribution is:

[tex]f_{X}(x)=\left \{ {{\frac{1}{B-A};\ A<X<B} \atop {0;\ Otherwise}} \right.[/tex]

Then the probability density function of the random variable X is:

[tex]f_{X}(x)=\left \{ {{\frac{1}{35-25}=\frac{1}{10};\ 25<X<35} \atop {0;\ Otherwise}} \right.[/tex]

(b)

Compute the value of P (X > 33) as follows:

[tex]P(X>33)=\int\limits^{35}_{33} {\frac{1}{10}} \, dx \\\\=\frac{1}{10}\cdot\int\limits^{35}_{33} {1} \, dx \\\\=\frac{1}{10}\times [x]^{35}_{33}\\\\=\frac{35-33}{10}\\\\=\frac{2}{10}\\\\=0.20[/tex]

Thus, the probability that time taken by Ayesha to prepare breakfast exceeds 33 minutes is 0.20.

(c)

Compute the mean of X as follows:

[tex]\mu=\frac{A+B}{2}=\frac{25+35}{2}=30[/tex]

Compute the probability that cooking or preparation time is within 2 mins of the mean time as follows:

[tex]P(30-2<X<30+2)=P(28<X<32)[/tex]

                                      [tex]=\int\limits^{32}_{28} {\frac{1}{10}} \, dx \\\\=\frac{1}{10}\cdot\int\limits^{32}_{28}{1} \, dx \\\\=\frac{1}{10}\times [x]^{32}_{28}\\\\=\frac{32-28}{10}\\\\=\frac{4}{10}\\\\=0.40[/tex]

Thus, the probability that cooking or preparation time is within 2 mins of the mean time is 0.40.

Select the correct answer from each drop-down menu.
The given equation has been solved in the table.

Answers

Answer: a) additive inverse (addition)

              b) multiplicative inverse (division)

Step-by-step explanation:

Step 2: 6 is being added to both sides

Step 4: (3/4) is being divided from both sides

It is difficult to know what options are provided in the drop-down menu without seeing them. If I was to complete a proof and justify each step, then the following justifications would be used:

Step 2: Addition Property of Equality

Step 4: Division Property of Equality

What is the value of the angle marked with xxx?

Answers

Answer:

Here you go!! :)

Step-by-step explanation:

Given that the sides of the quadrilateral are 3.3

The measure of one angle is 116°

We need to determine the value of x.

Value of x:

Since, the given quadrilateral is a rhombus because it has all four sides equal.

We know the property that the opposite sides of the rhombus are equal.

The measure of the opposite angle is 116°

x = measure of opposite angle

x = 116°

Then, the value of x is 116°

Therefore, the value of x is 116°

Answer:

In the diagram, the measurement of x is 87°

Step-by-step explanation:

In this diagram, this shape is a quadrilateral. This quadrilateral in this picture is known as rhombus. In a rhombus, the consecutive angles are supplementary meaning they have a sum of 180°. Consecutive means the angles are beside each other. So, we will subtract 93 from 180 to find the value of x.

180 - 93 = 87

The measurement of x is 87°

Suppose heights of seasonal pine saplings are normally distributed and have a known population standard deviation of 17 millimeters and an unknown population mean. A random sample of 15 saplings is taken and gives a sample mean of 308 millimeters. Find the confidence interval for the population mean with a 99%z0.10 z0.05 z0.025 z0.01 z0.0051.282 1.645 1.960 2.326 2.576

Answers

Answer:

[tex]296.693\leq x\leq 319.307[/tex]

Step-by-step explanation:

The confidence interval for the population mean x can be calculated as:

[tex]x'-z_{\alpha /2}\frac{s}{\sqrt{n} } \leq x\leq x'+z_{\alpha /2}\frac{s}{\sqrt{n} }[/tex]

Where x' is the sample mean, s is the population standard deviation, n is the sample size and [tex]z_{\alpha /2}[/tex] is the z-score that let a proportion of [tex]\alpha /2[/tex] on the right tail.

[tex]\alpha[/tex] is calculated as: 100%-99%=1%

So, [tex]z_{\alpha/2}=z_{0.005}=2.576[/tex]

Finally, replacing the values of x' by 308, s by 17, n by 15 and [tex]z_{\alpha /2}[/tex] by 2.576, we get that the confidence interval is:

[tex]308-2.576\frac{17}{\sqrt{15} } \leq x\leq 308+2.576\frac{17}{\sqrt{15} }\\308-11.307 \leq x\leq 308+11.307\\296.693\leq x\leq 319.307[/tex]

Please answer this correctly

Answers

Assuming the coin is not weighted and is a fair and standard coin - the chance of flipping head is 1/2. You can either flip head or tails, there are no other possible outcomes.

Solve: -1/2+ c =31/4 c=8 c=7 c=33/4 c=29/4

Answers

Answer:

c = 29/4

Step-by-step explanation:

[tex] - \frac{1}{2} + c = \frac{31 }{4} \\ \\ c = \frac{31}{4} + \frac{1}{2} = \frac{31 - 2}{4} \\ \\ c = \frac{29}{4} [/tex]

Hope this helps you

Gwen has $20, $10, and $5 bills in her purse worth a total of $220. She has 15 bills in all. There are 3 more $20 bills than there are $10 bills. How many of each does she have?

Answers

Answer:

x  =  8   ( 20$ bills)

y  = 5    ( 10 $ bills)

z = 2     ( 5  $  bills)

Step-by-step explanation:

Let call x, y, and z the number of bill of 20, 10, and 5 $ respectively

then according to problem statement, we can write

20*x + 10*y + 5*z = 220         (1)

We also know the total number of bills (15), then

x + y + z = 15     (2)

And that quantity of 20 $ bill is equal to

x = 3 + y     (3)

Now we got a three equation system we have to solve for x, y, and z for which we can use any valid procedure.

As    x = 3 + y    by substitution in equation (2)   and (1)

( 3 + y ) + y + z  = 15       ⇒   3 + 2*y + z = 15  ⇒  2*y + z = 12

20* ( 3 + y ) + 10*y + 5*z  = 220  ⇒ 60 + 20*y + 10*y + 5*z = 220

30*y + 5*z  = 160      (a)

Now we have only 2 equations

2*y + z = 12   ⇒    z = 12 - 2*y

30*y + 5*z  = 160     30*y  + 5* ( 12 - 2*y) = 160

30*y  + 60 - 10*y = 160

20*y = 100

y = 100/20       y = 5      Then by substitution in (a)

30*y + 5*z = 160

30*5  + 5*z = 160

150 + 5*z  = 160    ⇒     5*z = 10     z = 10/5      z = 2

And x

x + y + z = 15

x + 5 + 2 = 15

x = 8

Answer:

x=8 y=5 x=2

Step-by-step explanation:

In 1998, the average price for bananas was 51 cents per pound. In 2003, the following 7 sample prices (in cents) were obtained from local markets:

50, 53, 55, 43, 50, 47, 58.

Is there significant evidence to suggest that the average retail price of bananas is different than 51 cents per pound? Test at the 5% significance level.

Answers

Answer:

[tex]t=\frac{50.857-51}{\frac{5.014}{\sqrt{7}}}=-0.075[/tex]    

The degrees of freedom are given by:

[tex]df=n-1=7-1=6[/tex]  

The p value for this case would be given:

[tex]p_v = 2*P(t_6 <-0.075)=0.943[/tex]

The p value for this case is lower than the significance level so then we have enough evidence to FAIL to reject the null hypothesis and we can conclude that the true mean is not significantly different from 51

Step-by-step explanation:

Info given

50, 53, 55, 43, 50, 47, 58.

We can calculate the sample mean and deviation with this formula:

[tex]\bar X=\frac{\sum_{i=1}^n X_i}{n}[/tex]

[tex]s=\sqrt{\frac{\sum_{i=1}^n (X_i -\bar X)^2)}{n-1}}[/tex]

represent the mean height for the sample  

[tex]s=5.014[/tex] represent the sample standard deviation for the sample  

[tex]n=7[/tex] sample size  

represent the value that we want to test

[tex]\alpha=0.05[/tex] represent the significance level for the hypothesis test.  

t would represent the statistic (variable of interest)  

[tex]p_v[/tex] represent the p value

Hypothesis to test

We want to test if the true mean is equal to 51, the system of hypothesis would be:  

Null hypothesis:[tex]\mu = 51[/tex]  

Alternative hypothesis:[tex]\mu \neq 51[/tex]  

The statistic is given by:

[tex]t=\frac{\bar X-\mu_o}{\frac{s}{\sqrt{n}}}[/tex]  (1)  

Replacing we got:

[tex]t=\frac{50.857-51}{\frac{5.014}{\sqrt{7}}}=-0.075[/tex]    

The degrees of freedom are given by:

[tex]df=n-1=7-1=6[/tex]  

The p value for this case would be given:

[tex]p_v = 2*P(t_6 <-0.075)=0.943[/tex]

The p value for this case is lower than the significance level so then we have enough evidence to FAIL to reject the null hypothesis and we can conclude that the true mean is not significantly different from 51

the depth D, in inches, od wsnow in my yard t hours after it started snowing this morning is given by D=1.5t + 4. if the depth of the snow is 7 inches now, what will be the depth one hour from now?

Answers

Answer:

8.5 inches

Step-by-step explanation:

First let's find the time t when the depth of the snow is 7 inches.

To do this, we just need to use the value of D = 7 then find the value of t:

[tex]7 = 1.5t + 4[/tex]

[tex]1.5t = 3[/tex]

[tex]t = 2\ hours[/tex]

We want to find the depth of snow one hour from now, so we just need to use the value of t = 3 to calculate D:

[tex]D = 1.5*3 + 4[/tex]

[tex]D = 4.5 + 4 = 8.5\ inches[/tex]

The depth of snow one hour from now will be 8.5 inches.

The depth of the snow one hour from now is 8.5 inches.

Let D represent the depth of snow in inches at time t. It is given by the relationship:

D=1.5t + 4

Since  the depth of the snow is 7 inches now, hence, the time now is:

7 = 1.5t + 4

1.5t = 3

t = 2 hours

One hour from now, the time would be t = 2 + 1 = 3 hours. Hence the depth at this time is:

D = 1.5(3) + 4 = 8.5 inches

Therefore the depth of the snow one hour from now is 8.5 inches.

Find out more at: https://brainly.com/question/13911928

If ∠1 and ∠2 are complementary and m∠1 = 17º, what is m∠2

Answers

Answer:

m<2 = 73

Step-by-step explanation:

Since <1 and <2 are complementary (which means that they equal 90), all you have to do is subtract 17 from 90 to find your answer:

90 - 17 = 73

thus, m<2 = 73

Answer:

73

Step-by-step explanation:

can I get some help please?​

Answers

━━━━━━━☆☆━━━━━━━

▹ Answer

2,013 cartons

▹ Step-by-Step Explanation

72,468 ÷ 36 = 2,013 cartons

Hope this helps!

CloutAnswers ❁

Brainliest is greatly appreciated!

━━━━━━━☆☆━━━━━━━

Answer:

72,468 eggs divided by 36 eggs per carton=2,013 cartons

Step-by-step explanation:

Which of the following statements are true? I. The sampling distribution of ¯ x x¯ has standard deviation σ √ n σn even if the population is not normally distributed. II. The sampling distribution of ¯ x x¯ is normal if the population has a normal distribution. III. When n n is large, the sampling distribution of ¯ x x¯ is approximately normal even if the the population is not normally distributed. I and II I and III II and III I, II, and III None of the above gives the complete set of true responses.

Answers

Complete Question

Which of the following statements are true?

I. The sampling distribution of [tex]\= x[/tex] has standard deviation [tex]\frac{\sigma}{\sqrt{n} }[/tex] even if the population is not normally distributed.

II. The sampling distribution of [tex]\= x[/tex]   is normal if the population has a normal distribution.

III. When  n is large, the sampling distribution of [tex]\= x[/tex]  is approximately normal even if the the population is not normally distributed.

A  I and II

B  I and III

C II and III

D I, II, and III

None of the above gives the complete set of true responses.

Answer:

The correct option is  D

Step-by-step explanation:

Generally the mathematically equation for evaluating the standard deviation of the mean([tex]\= x[/tex]) of samples is  [tex]\frac{\sigma}{\sqrt{n} }[/tex]  hence the the first statement is correct

   Generally the second statement is true, that is the sampling distribution of the mean ([tex]\= x[/tex]) is  normal given that the population distribution is  normal

 Now  according to central limiting theorem given that the sample size is  large the distribution of the mean ([tex]\= x[/tex]) is approximately  normal notwithstanding the distribution of the population

vertex form of x^2+6x+3

Answers

Answer:

y = (x + 3)^2 - 6.

Step-by-step explanation:

The vertex formula is Y = a(x - h)^2 + k.

To find the vertex formula, we need to find h and k, by finding the vertex of x^2 + 6x + 3.

h = -b/2a

a = 1, b = 6.

h = -6 / 2 * 1 = -6 / 2 = -3

k = (-3)^2 + 6(-3) + 3 = 9 - 18 + 3 = -9 + 3 = -6

So far, we have Y = a(x - (-3))^2 + -6, so y = a(x + 3)^2 - 6.

In this case, the coefficient of x^2 of the given formula is 1, which means that a will be 1.

The vertex form of x^2 + 6x + 3 is y = (x + 3)^2 - 6.

To check our work...

y = (x + 3)^2 - 6

= x^2 + 3x + 3x + 9 - 6

= x^2 + 6x + 3

Hope this helps!

Several terms of a sequence StartSet a Subscript n EndSet Subscript n equals 1 Superscript infinity are given below. ​{1​, negative 5​, 25​, negative 125​, 625​, ​...} a. Find the next two terms of the sequence. b. Find a recurrence relation that generates the sequence​ (supply the initial value of the index and the first term of the​ sequence). c. Find an explicit formula for the general nth term of the sequence.

Answers

Answer:

(a) -3125, 15625

(b)

[tex]a_n=-5a_{n-1}, \\n\geq 2 \\a_1=1[/tex]

(c)[tex]a_n=(-5)^{n-1}[/tex]

Step-by-step explanation:

The sequence [tex]a_n$ _{n=1}^\infty[/tex] is given as:

[tex]\{1,-5,25,-125,625,\cdots\}[/tex]

(a)The next two terms of the sequence are:

625 X -5 = - 3125

-3125 X -5 =15625

(b)Recurrence Relation

The recurrence relation that generates the sequence is:

[tex]a_n=-5a_{n-1}, \\n\geq 2 \\a_1=1[/tex]

(c)Explicit Formula

The sequence is an alternating geometric sequence where:

Common Ratio, r=-5First Term, a=1

Therefore, an explicit formula for the sequence is:

[tex]a_n=1\times (-5)^{n-1}\\a_n=(-5)^{n-1}[/tex]

Making handcrafted pottery generally takes two major steps: wheel throwing and firing. The time of wheel throwing and the time of firing are normally distributed random variables with means of 40 minutes and 60 minutes and standard deviations of 2 minutes and 3 minutes, respectively. Assume the time of wheel throwing and time of firing are independent random variables. (d) What is the probability that a piece of pottery will be finished within 95 minutes

Answers

Answer:

The probability that a piece of pottery will be finished within 95 minutes is 0.0823.

Step-by-step explanation:

We are given that the time of wheel throwing and the time of firing are normally distributed variables with means of 40 minutes and 60 minutes and standard deviations of 2 minutes and 3 minutes, respectively.

Let X = time of wheel throwing

So, X ~ Normal([tex]\mu_x=40 \text{ min}, \sigma^{2}_x = 2^{2} \text{ min}[/tex])

where, [tex]\mu_x[/tex] = mean time of wheel throwing

            [tex]\sigma_x[/tex] = standard deviation of wheel throwing

Similarly, let Y = time of firing

So, Y ~ Normal([tex]\mu_y=60 \text{ min}, \sigma^{2}_y = 3^{2} \text{ min}[/tex])

where, [tex]\mu_y[/tex] = mean time of firing

            [tex]\sigma_y[/tex] = standard deviation of firing

Now, let P = a random variable that involves both the steps of throwing and firing of wheel

SO, P = X + Y

Mean of P, E(P) = E(X) + E(Y)

                   [tex]\mu_p=\mu_x+\mu_y[/tex]

                        = 40 + 60 = 100 minutes

Variance of P, V(P) = V(X + Y)

                               = V(X) + V(Y) - Cov(X,Y)

                               = [tex]2^{2} +3^{2}-0[/tex]  

{Here Cov(X,Y) = 0 because the time of wheel throwing and time of firing are independent random variables}

SO, V(P) = 4 + 9 = 13

which means Standard deviation(P), [tex]\sigma_p[/tex] = [tex]\sqrt{13}[/tex]

Hence, P ~ Normal([tex]\mu_p=100, \sigma_p^{2} = (\sqrt{13})^{2}[/tex])

The z-score probability distribution of the normal distribution is given by;

                           Z  =  [tex]\frac{P- \mu_p}{\sigma_p}[/tex]  ~ N(0,1)

where, [tex]\mu_p[/tex] = mean time in making pottery = 100 minutes

           [tex]\sigma_p[/tex] = standard deviation = [tex]\sqrt{13}[/tex] minutes

Now, the probability that a piece of pottery will be finished within 95 minutes is given by = P(P [tex]\leq[/tex] 95 min)

     P(P [tex]\leq[/tex] 95 min) = P( [tex]\frac{P- \mu_p}{\sigma_p}[/tex] [tex]\leq[/tex] [tex]\frac{95-100}{\sqrt{13} }[/tex] ) = P(Z [tex]\leq[/tex] -1.39) = 1 - P(Z < 1.39)

                                                            = 1 - 0.9177 = 0.0823

The above probability is calculated by looking at the value of x = 1.39 in the z table which has an area of 0.9177.                                        

Which of the following is the
graph of
(x - 3)2 + (y - 1)2 = 9 ?

Answers

Answer:

Answer is A

Step-by-step explanation:

The equation (x - 3)² + (y - 1)² = 9, is represented by the second graph as its center is at point (3, 1) and its radius is 3 units, both similar to the equation. Thus, option B is the right choice.

What does the equation of a circle represent?

The general equation of a circle is of the form (x - h)² + (y - k)² = r², where (h, k) is the point where the center of the given circle lies, and r is the radius of this given circle.

How to solve the question?

In the question, we are asked to find the graph from the given options which represents the equation (x - 3)² + (y - 1)² = 9.

Comparing the given equation, (x - 3)² + (y - 1)² = 9, to the general equation, (x - h)² + (y - k)² = r², we can say that h = 3, k = 1, and r = 3.

Thus the center of the given circle lies at the point (3, 1) and its radius is 3 units.

Now we check the options to find the matching circle:

Option A: The center is at the point (3, -1), which is different from (3, 1) of the equation (x - 3)² + (y - 1)² = 9. Thus, this is not the right choice.Option B: The center is at the point (3, 1), and the radius is 3 units, which is similar to the equation (x - 3)² + (y - 1)² = 9. Thus, this is the right choice.Option C: The center is at the point (-3, 1), which is different from (3, 1) of the equation (x - 3)² + (y - 1)² = 9. Thus, this is not the right choice.

Therefore, the equation (x - 3)² + (y - 1)² = 9, is represented by the second graph as its center is at point (3, 1) and its radius is 3 units, both similar to the equation. Thus, option B is the right choice.

Learn more about circles at

https://brainly.com/question/1559324

#SPJ2

Write an equation that represents the relationship.Please help!

Answers

Answer:

n = r - 2.5

Step-by-step explanation:

We have the following data:

7 4.5

8 5.5

10 7.5

12 9.5

Now, what we will do is what happens if we subtract each one:

7 - 4.5 = 2.5

8 - 5.5 = 2.5

10 - 7.5  = 2.5

12 - 9.5 = 2.5

The difference is always kept constant, therefore the equation would be:

n = r - 2.5

Write the recursive sequence for: 64, 16, 4, 1, ...

Answers

Answer:

Use the formula

a

n

=

a

1

r

n

1

to identify the geometric sequence.

Step-by-step explanation:

a

n

=

64

4

n

1 hope this helps you :)

Answer: The answer is in the steps.

Step-by-step explanation:

f(1)= 64  

f(n)=1/4(n-1)      n in this case is the nth term.

Add the two rational expressions: (x/x+1)+(2/x)

Answers

Answer: See below

Explanation:

(x/x+1)+(2/x)
= (x/x + x/x) + (2/x)
= 2x/x + 2/x
= 2x + 2/x
= 2(x+1)/x

The life of light bulbs is distributed normally. The standard deviation of the lifetime is 25 hours and the mean lifetime of a bulb is 510 hours. Find the probability of a bulb lasting for at most 552 hours.

Answers

Answer:

The  probability of a bulb lasting for at most 552 hours.

P(x>552)  = 0.0515

Step-by-step explanation:

Step(i):-

Given mean of the life time of a bulb = 510 hours

Standard deviation of the lifetime of a bulb = 25 hours

Let 'X' be the random variable in normal distribution

Let 'x' = 552

[tex]Z = \frac{x-mean}{S.D} = \frac{552-510}{25} =1.628[/tex]

Step(ii):-

The  probability of a bulb lasting for at most 552 hours.

P(x>552) = P(Z>1.63)

               = 1- P( Z< 1.63)

               =  1 - ( 0.5 + A(1.63)

              =   1- 0.5 - A(1.63)

              =   0.5 -A(1.63)

              =   0.5 -0.4485

             =  0.0515

Conclusion:-

The  probability of a bulb lasting for at most 552 hours.

P(x>552)  = 0.0515

         

Which algebraic expression represents the phrase below? five times the sum of a number and eleven, divided by three times the sum of the number and eight 5(x + 11) + 3(x + 8) 5 x + 11 Over 3 x + 8 Start Fraction 5 (x + 11) Over 3 (x + 8) 5x + 11 + 3x + 8

Answers

Answer:

85

Step-by-step explanation:

im new↑∵∴∵∴∞

Fredrick hit 14, 18, 13, 12, 12, 16, 13, 12, 1, and 15 home runs in 10 seasons of play. Which statements are correct? Check all that apply. Fredrick’s data set contains an outlier. The median value is 12 home runs. The mean value is about 12.6 home runs. The median describes Fredrick’s data more accurately than the mean. The mean value stays the same when the outlier is not included in the data set.

Answers

Answer:

(a) Yes, Fredrick’s data set contains an outlier.

(b) No, the median value is not 12 home runs.

(c) Yes, the mean value is about 12.6 home runs.

(d) Yes, the median describes Fredrick’s data more accurately than the mean.

(e) No, the mean value doesn't stay the same when the outlier is not included in the data set.

Step-by-step explanation:

We are given that Fredrick hit 14, 18, 13, 12, 12, 16, 13, 12, 1, and 15 home runs in 10 seasons of play.

Firstly, arranging our data set in ascending order we get;

1, 12, 12, 12, 13, 13, 14, 15, 16, 18.

(a) The statement that Fredrick’s data set contains an outlier is true because in our data set there is one value that stands out from the rest of the data, which is 1.

Hence, the outlier value in the data set is 1.

(b) For calculating median, we have to first observe that the number of observations (n) in the data set is even or odd, i.e;

If n is odd, then the formula for calculating median is given by;

                    Median  =  [tex](\frac{n+1}{2})^{th} \text{ obs.}[/tex]

If n is odd, then the formula for calculating median is given by;

                    Median  =  [tex]\frac{(\frac{n}{2})^{th} \text{ obs.}+(\frac{n}{2}+1)^{th} \text{ obs.} }{2}[/tex]

Here, the number of observations in Fredrick's data set is even, i.e. n = 10.

SO,  Median  =  [tex]\frac{(\frac{n}{2})^{th} \text{ obs.}+(\frac{n}{2}+1)^{th} \text{ obs.} }{2}[/tex]

                      =  [tex]\frac{(\frac{10}{2})^{th} \text{ obs.}+(\frac{10}{2}+1)^{th} \text{ obs.} }{2}[/tex]

                      =  [tex]\frac{(5)^{th} \text{ obs.}+(6)^{th} \text{ obs.} }{2}[/tex]

                      =  [tex]\frac{13+13 }{2}[/tex]  = 13 home runs

So, the statement that the median value is 12 home runs is not correct.

(c) The mean of the data set is given by;

          Mean =  [tex]\frac{1+ 12+ 12+ 12+ 13+ 13+14+ 15+ 16+ 18}{10}[/tex]

                     =  [tex]\frac{126}{10}[/tex]  = 12.6 home runs

So, the statement that the mean value is about 12.6 home runs is correct.

(d) The statement that the median describes Fredrick’s data more accurately than the mean is correct because even if the outlier is removed from the data set, the median value will remain unchanged but the mean value gets changed.

(e) After removing the outlier, the data set is;

12, 12, 12, 13, 13, 14, 15, 16, 18.

Now, the mean of the data =  [tex]\frac{12+12+ 12+ 13+ 13+ 14+ 15+ 16+ 18}{9}[/tex]

                                             =  [tex]\frac{125}{9}[/tex]  =  13.89

So, the statement that the mean value stays the same when the outlier is not included in the data set is incorrect.

Answer:

Fredrick’s data set contains an outlier.

The mean value is about 12.6 home runs.

The median describes Fredrick’s data more accurately than the mean.

Step-by-step explanation:

One positive number is
6 more than twice another. If their product is
1736, find the numbers.

Answers

Answer:

[tex]\Large \boxed{\sf \ \ 28 \ \text{ and } \ 62 \ \ }[/tex]

Step-by-step explanation:

Hello, let's note a and b the two numbers.

We can write that

a = 6 + 2b

ab = 1736

So

[tex](6+2b)b=1736\\\\ \text{***Subtract 1736*** } <=> 2b^2+6b-1736=0\\\\ \text{***Divide by 2 } <=> b^2+3b-868=0 \\ \\ \text{***factorize*** } <=> b^2 +31b-28b-868=0 \\ \\ <=> b(b+31) -28(b+31)=0 \\ \\ <=> (b+31)(b-28) =0 \\ \\ <=> b = 28 \ \ or \ \ b = -31[/tex]

We are looking for positive numbers so the solution is b = 28

and then a = 6 +2*28 = 62

Hope this helps.

Do not hesitate if you need further explanation.

Thank you

what is 3(C - 5) = 48

Answers

Answer:

c=21

Step-by-step explanation:

[tex]3(c-5)=48\\3c-15=48\\3c=48+15\\3c=63\\c=63/3\\c=21[/tex]

Hope this helps,

plx give brainliest

Answer:

c=21

Step-by-step explanation:

3(c−5)=48

Divide both sides by 3.

c-5=48/3

Divide 48 by 3 to get 16.

c−5=16

Add 5 to both sides.

c=16+5

Add 16 and 5 to get 21.

c=21

Please answer this correctly

Answers

Answer:

1/8

Step-by-step explanation:

Total cards = 8

Card with 4 = 1

P(4) = 1/8

Please answer this correctly

Answers

Answer:

[tex] \frac{1}{6} [/tex]

Step-by-step explanation:

the ways of choosing 2 cards out of 4, is calculator by

[tex] \binom{4}{2} = 6[/tex]

so, 6 ways to select 2 cards.

but in only one way we can have 2 even cards. thus, the answer is

[tex] \frac{1}{6} [/tex]

Given the parametric equations below, eliminate the parameter t to obtain an equation for y as a function of x { x ( t ) = 5 √ t y ( t ) = 7 t + 4

Answers

Answer:

y(x) = (7/25)x^2 + 4

Step-by-step explanation:

Given:

x = 5*sqrt(t) .............(1)

y = 7*t+4 ..................(2)

solution:

square (1) on both sides

x^2 = 25t

solve for t

t = x^2 / 25  .........(3)

substitute (3) in (2)

y = 7*(x^2/25) +4

y= (7/25)x^2 + 4

Given an objective function value of 150 and a shadow price for resource 1 of 5, if 10 more units of resource 1 are added (assuming the allowable increase is greater than 10), what is the impact on the objective function value?

Answers

Answer:

The impact on the objective function is that it is increased by 50.

Step-by-step explanation:

In this case we have that the value of the objective function is 150, and they tell us that 10 more units of resource one are added, but they tell us that the shadow price ranges from 1 to 5, therefore:

10 * 5 = 50

Which means that the impact on the objective function is that it is increased by 50.

Other Questions
A car is traveling at x feet per second. The driver sees a red light ahead, andafter 1,5 seconds reaction time, the driver applies the brake. After the brake isapplied, the car takes seconds to stop, during which time the average speed24of the car is feet per second. If the car travels 165 feet from the time thedriver saw the red light to the time it comes to a complete stop, which of thefollowing equations can be used to find the value of x?A) x2 + 48x - 3,960 = 0B) x2 + 48x - 7,920 = 0C) x2 + 72x - 3,960 = 0D) x2 + 72x - 7,920 = 0 I need help ASAP! Will mark Brainliest! Which British colonial Region used Slavery the most? Why? When you fill in the details of a memory, it is called:O A. retentionO B. reconstructionC. construction.O D. recall. Pls ppl answer dis question PLS PLS PLS No scaming pls 43 x^2+5x-23 What is Thomas Paine's central claim in this excerpt? A. There will always be a distinction between kings and their subjects. B. The equality that humans enjoyed during creation has been ruined because of war and famine. C. Not all people who belonged to the upper sections of society were cruel. D. The differences between the kings and the subjects were not religious or natural. In the multiple-step income statement, cost of merchandise sold is subtracted from a.selling expenses. b.sales. c.gross profit. d.operating expenses. What is the thesis or main idea of (Candyman) Race and historical memory in candyman 1992, by Elizabeth Erwin ? Find the measure of angle angle AEB in the figure below. Enter only the number. PLEASE HELP ASAP What is the 5th equivalent fraction to 1/11 ? x is partly constant and partly varies with y. When y=3, x = 7 and when y = 6, x = 9. Find x when y = 4 The enthalpy of formation of water is 285.8 kJ/mol. What can be inferred from this statement? The enthalpy of the products is equal to the enthalpy of the reactants. Heat is absorbed during the process. Heat is released during the process. The enthalpy of the products is more than the enthalpy of the reactants. Claremont Company specializes in selling refurbished copiers. During the month, the company sold 180 copiers at an average price of $3,000 each. The budget for the month was to sell 175 copiers at an average price of $3,200. The expected total sales for 180 copiers were. What is the Ka of a 1.9 ~ 10-2 Msolution of carbonic acid (H2CO3)with a pH of 3.88?Ka = [ ? ] 10!?)Helllllp 1. Why has writing got to be taught?2. State two advantages of speech as a way of communication.3. Identify two disadvantages of writing as a medium of communication. I need help urgent plz someone help me solved this problem! Can someone plz help Im giving you 10 points! I need help plz help me! Will mark you as brainiest! Can someone please help me I really need help please help me a bike store marks up the wholesale cost of all bikes by 30%. Calvin wants to buy a bike that has a price tag of $125. What was the wholesale price of this bike Cause: Trade was controlled by Imperial leaders. Effect: The point P(7, 2) lies on the curve y = 2/(6 x). (a) If Q is the point (x, 2/(6 x)), use your calculator to find the slope mPQ of the secant line PQ (correct to six decimal places) for the following values of x.(i) 6.9mPQ = 1(ii) 6.99mPQ = 2(iii) 6.999mPQ = 3(iv) 6.9999mPQ = 4(v) 7.1mPQ = 5(vi) 7.01mPQ = 6(vii) 7.001mPQ = 7(viii) 7.000mPQ = 8(b) Using the results of part (a), guess the value of the slope m of the tangent line to the curve atP(7, 2).m = 9(c) Using the slope from part (b), find an equation of the tangent line to the curve atP(7, 2). a.) The perimeter of a rectangular field is 354 m. If the length of the field is 95m, what is its width? b.) The area of a rectangular painting is 8439 cm^2. If the width of the painting is 87cm, what is its length?