Explain why the relation R on {0, 1, 2} given by
R = {(0, 0), (1, 1), (2, 2), (0, 1), (1, 0), (1, 2), (2, 1)}
is not an equivalence relation. Be specific.

Answers

Answer 1

The relation R on {0, 1, 2} is not an equivalence relation because it fails to satisfy both reflexivity and transitivity.

To be an equivalence relation, a relation must satisfy three properties: reflexivity, symmetry, and transitivity.

Reflexivity requires that every element is related to itself.

Symmetry requires that if a is related to b, then b is related to a.

Transitivity requires that if a is related to b, and b is related to c, then a is related to c.

In the given relation R on {0, 1, 2}, we can see that (0, 1) and (1, 0) are both in the relation, but (0, 0) and (1, 1) are the only pairs that are related to themselves.

Thus, the relation is not reflexive since (2, 2) is not related to itself.

Furthermore, the relation is not transitive since (0, 1) and (1, 2) are in the relation but (0, 2) is not.

Therefore, the relation R on {0, 1, 2} is not an equivalence relation because it fails to satisfy both reflexivity and transitivity.

Learn more about relation here:

https://brainly.com/question/31111483

#SPJ11


Related Questions

A stone is tossed into the air from ground level with an initial velocity of 39 m/s.
Its height at time t is h(t) = 39t − 4.9t^2 m/s. Compute the stone's average velocity over the time intervals

[1, 1.01], [1, 1.001], [1, 1.0001],

and

[0.99, 1], [0.999, 1], [0.9999, 1].

Estimate the instantaneous velocity v at t = 1.

Answers

The instantaneous velocity of the stone at t = 1 is 29.2 m/s.

Given data:

A stone is tossed into the air from ground level with an initial velocity of 39 m/s. Its height at time t is h(t) = 39t − 4.9t² m/s. The required parameters are as follows:

Compute the stone's average velocity over the time intervals [1, 1.01], [1, 1.001], [1, 1.0001],

and [0.99, 1], [0.999, 1], [0.9999, 1].

Estimate the instantaneous velocity v at t = 1.

Solution:

Average velocity = (total distance) / (total time)

In general, distance is the change in the position of an object; as a result, total distance = [h(t2) − h(t1)],

and total time = [t2 − t1].

Using the formula of h(t),

h(t2) = 39t2 − 4.9t²

h(t1) = 39t1 − 4.9t²

Let's evaluate the average velocity over the time intervals using this formula:

[1, 1.01][h(1.01) - h(1)] / [1.01 - 1] = [39(1.01) - 4.9(1.01)² - 39(1) + 4.9(1)²] / [0.01][1, 1.001][h(1.001) - h(1)] / [1.001 - 1]

= [39(1.001) - 4.9(1.001)² - 39(1) + 4.9(1)²] / [0.001][1, 1.0001][h(1.0001) - h(1)] / [1.0001 - 1]

= [39(1.0001) - 4.9(1.0001)² - 39(1) + 4.9(1)²] / [0.0001][0.99, 1][h(1) - h(0.99)] / [1 - 0.99]

= [39(1) - 4.9(1)² - 39(0.99) + 4.9(0.99)²] / [0.01][0.999, 1][h(1) - h(0.999)] / [1 - 0.999]

= [39(1) - 4.9(1)² - 39(0.999) + 4.9(0.999)²] / [0.001][0.9999, 1][h(1) - h(0.9999)] / [1 - 0.9999]

= [39(1) - 4.9(1)² - 39(0.9999) + 4.9(0.9999)²] / [0.0001]

Evaluate the above fractions and obtain the values of average velocity over the given time intervals.

Using the derivative of h(t), we can estimate the instantaneous velocity at t = 1.

Using the formula of v(t), v(t) = h'(t)At t = 1, h'(t) = 39 - 9.8(1) = 29.2 m/s

Thus, the instantaneous velocity of the stone at t = 1 is 29.2 m/s.

To know more about velocity visit:

https://brainly.com/question/18084516

#SPJ11

Find the square root of 21046 by division method.​

Answers

By long division method 21046 has a square root of 144.9.

How to use long division?

Here is one way to find the square root of 21046 by division method:

Group the digits of the number into pairs from right to left: 21 04 6.Find the largest integer whose square is less than or equal to 21, which is 4. This will be the first digit of the square root.Subtract the square of this digit from the first pair of digits, 21 - 16 = 5. Bring down the next pair of digits, making the dividend 504.Double the first digit of the current root (4 × 2 = 8) and write it as the divisor on the left. Find the largest digit to put in the second place of the divisor that, when multiplied by the complete divisor (i.e., 8x), is less than or equal to 50.

    4 8 .

21║504

    4 8

    135

     128

Bring down the next pair of digits (46), and append them to the remainder (7), making 746. Double the previous root digit (8) to get 16, and write it with a blank digit in the divisor. Find the largest digit to put in this blank that, when multiplied by the complete divisor (i.e., 16x), is less than or equal to 746.

      48 4

210║746

       16 8

        584

        560

        246

         210

Bring down the last digit (6), and append it to the remainder (36), making 366. Double the previous root digit (84) to get 168, and write it with a blank digit in the divisor. Find the largest digit to put in this blank that, when multiplied by the complete divisor (i.e., 168x), is less than or equal to 366.

         4842  

2104║6

          168  

         426

         420  

           6

The final remainder is 6, which means that the square root of 21046 is approximately 144.9 (to one decimal place).

Therefore, the square root of 21046 by division method is approximately 144.9.

Find out more on long division here: https://brainly.com/question/30059812

#SPJ1

HELP I only have one try and I don't know how to do this!
Please check my work! Is my answer correct?

Answers

Answer:

a and -b

Third answer choice

Step-by-step explanation:

If (x - a)(x - b) = 0

then one or both of the terms must be zero

Therefore one solution can be found when (x- a) = 0
x - a = 0 ==> x = a

The other solution is when (x+ b) = 0
x + b = 0 ==> x = - b

So the solution set is
x = a and x = -b

Third answer choice

Consecutive numbers follow one right after the other. An example of three consecutive numbers is 17,18,


and 19. Another example is -100,-99,-98.


How many sets of two or more consecutive positive integers can be added to obtain a sum of 100?

Answers

We are required to find the number of sets of two or more consecutive positive integers that can be added to get the sum of 100.

Solution:Let us assume that we need to add 'n' consecutive positive integers to get 100. Then the average of the n numbers is 100/n. For instance, If we need to add 4 consecutive positive integers to get 100, then the average of the four numbers is 100/4 = 25.

Also, the sum of the four numbers is 4*25 = 100.We can now apply the following conditions:n is oddWhen the number of integers to be added is odd, then the middle number is the average and will be an integer.

For instance, when we need to add three consecutive integers to get 100, then the middle number is 100/3 = 33.33 which is not an integer.

Therefore, we cannot add three consecutive integers to get 100.

n is evenIf we are required to add an even number of integers to get 100, then the average of the numbers is not an integer. For instance, if we need to add four consecutive integers to get 100, then the average is 100/4 = 25.

Therefore, there is a set of integers that can be added to get 100.

Sets of two or more consecutive positive integers can be added to get 100 are as follows:[tex]14+15+16+17+18+19+20 = 100 9+10+11+12+13+14+15+16 = 100 18+19+20+21+22 = 100 2+3+4+5+6+7+8+9+10+11+12+13+14 = 100[/tex]Therefore, there are 4 sets of two or more consecutive positive integers that can be added to obtain a sum of 100.

To know more about the word average visits :

https://brainly.com/question/897199

#SPJ11

Countertop A countertop will have a hole drilled in it to hold
a cylindrical container that will function as a utensil holder.
The area of the entire countertop is given by 5x² + 12x + 7. The area of the hole is given by x² + 2x + 1. Write an
expression for the area in factored form of the countertop
that is left after the hole is drilled.

Answers

The requried expression for the area in the factored form of the countertop that is left after the hole is drilled is 2(2x + 3)(x + 1).

To find the area of the countertop left after the hole is drilled, we need to subtract the area of the hole from the area of the entire countertop. So, we have:

Area of countertop left = (5x² + 12x + 7) - (x² + 2x + 1)

Area of countertop left = 4x² + 10x + 6

Area of countertop left = 2(2x² + 5x + 3)

Area of countertop left = 2(2x + 3)(x + 1)

Therefore, the expression for the area in the factored form of the countertop that is left after the hole is drilled is 2(2x + 3)(x + 1).

Learn more about fractions here:

https://brainly.com/question/10708469

#SPJ1

Let a belong to a ring R. let S= (x belong R such that ax = 0) show that s is a subring of R

Answers

S satisfies all the conditions of being a subring of R, and we can conclude that S is indeed a subring of R.

To show that S is a subring of R, we need to verify the following three conditions:

1. S is closed under addition: Let x, y belong to S. Then, we have ax = 0 and ay = 0. Adding these equations, we get a(x + y) = ax + ay = 0 + 0 = 0. Thus, x + y belongs to S.

2. S is closed under multiplication: Let x, y belong to S. Then, we have ax = 0 and ay = 0. Multiplying these equations, we get a(xy) = (ax)(ay) = 0. Thus, xy belongs to S.

3. S contains the additive identity and additive inverses: Since R is a ring, it has an additive identity element 0. Since a0 = 0, we have 0 belongs to S. Also, if x belongs to S, then ax = 0, so -ax = 0, and (-1)x = -(ax) = 0. Thus, -x belongs to S.

Therefore, S satisfies all the conditions of being a subring of R, and we can conclude that S is indeed a subring of R.

To know more about subrings refer here :

https://brainly.com/question/14099149#

#SPJ11

calculate the taylor polynomials 2 and 3 centered at =0 for the function ()=7tan().

Answers

The taylor polynomials for 2 is [tex]7 + 7x^2[/tex] and for 3 is [tex]7x + (7/3)x^3.[/tex]

What is the taylor polynomials for 2 and 3?

To find the Taylor polynomials for a function, we need to calculate the function's derivatives at the point where we want to center the polynomials. In this case, we want to center the polynomials at x=0.

First, let's find the first few derivatives of[tex]f(x) = 7tan(x):[/tex]

[tex]f(x) = 7tan(x)[/tex]

[tex]f'(x) = 7sec^2(x)[/tex]

[tex]f''(x) = 14sec^2(x)tan(x)[/tex]

[tex]f'''(x) = 14sec^2(x)(2tan^2(x) + 2)[/tex]

[tex]f''''(x) = 56sec^2(x)tan(x)(tan^2(x) + 1) + 56sec^4(x)[/tex]

To find the Taylor polynomials, we plug these derivatives into the Taylor series formula:

[tex]P_n(x) = f(0) + f'(0)x + (f''(0)x^2)/2! + ... + (f^n(0)x^n)/n![/tex]

For n=2:

[tex]P_2(x) = f(0) + f'(0)x + (f''(0)x^2)/2![/tex]

[tex]= 7tan(0) + 7sec^2(0)x + (14sec^2(0)tan(0)x^2)/2[/tex]

[tex]= 7 + 7x^2[/tex]

So the second-degree Taylor polynomial centered at x=0 for f(x) is [tex]P_2(x) = 7 + 7x^2.[/tex]

For n=3:

[tex]P_3(x) = f(0) + f'(0)x + (f''(0)x^2)/2! + (f'''(0)x^3)/3![/tex]

[tex]= 7tan(0) + 7sec^2(0)x + (14sec^2(0)tan(0)x^2)/2 + (14sec^2(0)(2tan^2(0) + 2)x^3)/6[/tex]

[tex]= 7x + (7/3)x^3[/tex]

So the third-degree Taylor polynomial centered at x=0 for f(x) is [tex]P_3(x) = 7x + (7/3)x^3.[/tex]

Learn more about polynomials

brainly.com/question/11536910

#SPJ11

consider the function f ' (x) = x2 x − 56 (a) find the intervals on which f '(x) is increasing or decreasing. (if you need to use or –, enter infinity or –infinity, respectively.) increasing

Answers

, f'(x) is increasing on the intervals (-infinity, -2sqrt(14)) and (2sqrt(14), infinity), and decreasing on the interval (-2sqrt(14), 2sqrt(14)).

To find the intervals on which f'(x) is increasing or decreasing, we need to first find the critical points of f(x), i.e., the values of x where f'(x) = 0 or where f'(x) does not exist. Then, we can use the first derivative test to determine the intervals of increase and decrease.

We have:

f'(x) = x^2 - 56

Setting f'(x) = 0, we get:

x^2 - 56 = 0

Solving for x, we obtain:

x = ±sqrt(56) = ±2sqrt(14)

So, the critical points of f(x) are x = -2sqrt(14) and x = 2sqrt(14).

Now, we can use the first derivative test to find the intervals of increase and decrease. We construct a sign chart for f'(x) as follows:

|       -    2sqrt(14)   +    2sqrt(14)   +

f'(x) | - 0 + 0 +

From the sign chart, we see that f'(x) is negative on the interval (-infinity, -2sqrt(14)), and positive on the interval (-2sqrt(14), 2sqrt(14)) and (2sqrt(14), infinity).

Therefore, f'(x) is increasing on the intervals (-infinity, -2sqrt(14)) and (2sqrt(14), infinity), and decreasing on the interval (-2sqrt(14), 2sqrt(14)).

Learn more about intervals here:

https://brainly.com/question/13708942

#SPJ11

(a) if cos 2 ( 29 ) − sin 2 ( 29 ) = cos ( a ) , then

Answers

We can use the identity cos(2θ) = cos^2(θ) - sin^2(θ) to rewrite the left-hand side of the equation:

cos 2(29) - sin 2(29) = cos^2(29) - sin^2(29) = cos(58)

So we have:

a = 122 degrees

cos(58) = cos(a)

Since the range of the cosine function is [-1, 1], we know that 58 and a must be either equal or supplementary angles (differing by 180 degrees). Therefore, we have two possible solutions:

a = 58 degrees

a = 122 degrees (since 58 + 122 = 180)

Note that we cannot determine which solution is correct based on the given equation alone.

To know more about cosine function refer here:

https://brainly.com/question/17954123

#SPJ11

Given the surge function C(t) = 10t.e-0.5t, at t = 1, C(t) is: Select one: decreasing at a maximum increasing at an inflection point

Answers

At t = 1, the surge function C(t) is increasing and decreasing at an inflection point.

To determine the behavior of the surge function C(t) at t = 1, we need to analyze its first and second derivatives.

The first derivative of C(t) with respect to t is:

C'(t) = 10e^(-0.5t) - 5te^(-0.5t)

The second derivative of C(t) with respect to t is:

C''(t) = 2.5te^(-0.5t) - 10e^(-0.5t)

To find out whether C(t) is decreasing or increasing at t = 1, we need to evaluate the sign of C'(t) at t = 1. Plugging in t = 1, we get:

C'(1) = 10e^(-0.5) - 5e^(-0.5) = 5e^(-0.5) > 0

Since C'(1) is positive, we can conclude that C(t) is increasing at t = 1.

To determine whether C(t) is increasing at an inflection point or decreasing at a maximum, we need to evaluate the sign of C''(t) at t = 1. Plugging in t = 1, we get:

C''(1) = 2.5e^(-0.5) - 10e^(-0.5) = -7.5e^(-0.5) < 0

Since C''(1) is negative, we can conclude that C(t) is decreasing at an inflection point at t = 1.

In summary, at t = 1, the surge function C(t) is increasing and decreasing at an inflection point.

The fact that the second derivative is negative tells us that the function is concave down, meaning that its rate of increase is slowing down. Thus, even though C(t) is increasing at t = 1, it is doing so at a decreasing rate.

To know more about inflection point refer here :

https://brainly.com/question/31582579#

#SPJ11

find the relationship of the fluxions using newton's rules for the equation y^2-a^2-x√(a^2-x^2 )=0. put z=x√(a^2-x^2 ).

Answers

[tex]y' = (x\sqrt{(a^2-x^2 )}  / y) * (\sqrt{(a^2-x^2 -x^2)/\sqrt{(a^2-x^2 ) - x^2 / (a^2-x^2)[/tex] is the relationship between the fluxions for the given equation, using Newton's rules.

Isaac Newton created a primitive type of calculus called fluxions. Newton's Fluxion Rules were a set of guidelines for employing fluxions to find the derivatives of functions. These guidelines served as a crucial foundation for the modern conception of calculus and paved the path for the creation of the derivative.

To find the relationship of the fluxions using Newton's rules for the equation[tex]y^2-a^2-x\sqrt{√(a^2-x^2 )} =0[/tex], we first need to express z in terms of x and y. We are given that z=x√(a^2-x^2 ), so we can write:

[tex]z' = (\sqrt{(a^2-x^2 )} -x^2/\sqrt{(a^2-x^2 ))} y' + x/\sqrt{(a^2-x^2 )}  * (-2x)[/tex]

Next, we can use Newton's rules to find the relationship between the fluxions:

y/y' = -Fz/Fy = -(-2z) / (2y) = z/y

y' = z'/y - z/y^2 * y'

Substituting the expressions for z and z' that we found earlier, we get:

[tex]y' = (x\sqrt{(a^2-x^2 )}  / y) * (\sqrt{(a^2-x^2 -x^2)/\sqrt{(a^2-x^2 ) - x^2 / (a^2-x^2)[/tex]

This is the relationship between the fluxions for the given equation, using Newton's rules.


Learn more about Newton here:

https://brainly.com/question/11221441


#SPJ11

assume a is 100x10^6 which problem would you solve, the primal or the dual

Answers

Assuming that "a" refers to a matrix with dimensions of 100x10^6, it is highly unlikely that either the primal or dual problem would be solvable using traditional methods.

if "a" is assumed a much smaller matrix with dimensions that were suitable for traditional methods, then the answer would depend on the specific problem being solved and the preference of the solver.

In general, the primal problem is used to maximize a linear objective function subject to linear constraints, while the dual problem is used to minimize a linear objective function subject to linear constraints.

So, if the problem involves maximizing a linear objective function, then the primal problem would likely be solved.

If the problem involves minimizing a linear objective function, then the dual problem would likely be solved.

Read more about the Matrix.

https://brainly.com/question/31017647

#SPJ11

in problems 17–20 the given vectors are solutions of a system x9 = ax. determine whether the vectors form a fundamental set on the interval (−`, `).

Answers

In order to determine whether the given vectors form a fundamental set on the interval (-∞, ∞), we need to consider the concept of linear independence. A set of vectors is considered linearly independent if no vector in the set can be expressed as a linear combination of the others.

To determine whether the given vectors form a fundamental set, we need to check whether they are linearly independent. This can be done by forming a matrix with the given vectors as columns and then finding the determinant of the matrix. If the determinant is non-zero, then the vectors are linearly independent and form a fundamental set.

However, since the given system x9 = ax is not a differential equation, we cannot directly apply this method. Instead, we need to check whether the given vectors satisfy the conditions of linear independence. This can be done by checking whether the vectors are linearly independent using standard linear algebra techniques.

If the given vectors are linearly independent, then they will form a fundamental set on the interval (-∞, ∞). However, if they are linearly dependent, then they will not form a fundamental set, and we would need to find additional solutions to the system in order to form a fundamental set.

To know more about Vector visit :

https://brainly.com/question/13322477

#SPJ11

Philip watched a volleyball game from 1 pm to 1:45 pm how many degrees in a minute and turn

Answers

The answer of the given question based on the degrees is , Philip covered 270 degrees in 45 minutes and 0.75 turn in the game.

To answer this question, we must know that a full circle contains 360 degrees.

Therefore, we can use the proportion as follows:

60 minutes = 360 degrees

1 minute = 6 degrees

1 turn = 360 degrees

Here, Philip watched the volleyball game for 45 minutes.

Thus, the total degrees covered in 45 minutes are:

6 degrees/minute × 45 minutes = 270 degrees

And the number of turns covered in 45 minutes is:

360 degrees/turn × 45 minutes / 60 minutes/turn = 0.75 turn

Therefore, Philip covered 270 degrees in 45 minutes and 0.75 turn in the game.

To know more about Proportion visit:

https://brainly.com/question/30241688

#SPJ11

Stella uses the expression 0. 40a, where a is the original attendance at a play, to find the reduced attendance at the next performance. Which is an equivalent expression?

0. 60a

1. 60a

a−0. 60a

0. 40(a−1)

Answers

The equivalent expression of 0.40a is 0.40(a - 1)

Stella uses the expression 0.40a, where a is the original attendance at a play, to find the reduced attendance at the next performance. A formula for calculating the reduced attendance at the next performance can be represented by this expression 0.40a.
To find the equivalent expression to 0.40a, we have to distribute 0.40 and simplify as shown below:0.40a= (0.40 * a) = 0.40a
Also, 0.40(a - 1) can also be used to calculate the reduced attendance at the next performance.

The equivalent expression to 0.40a is 0.40(a - 1).

To know more about expression, click here

https://brainly.com/question/28170201

#SPJ11

what on base percentage would you predict if the batting average was .206? as always, you must show all work. (.1)

Answers

We would predict an on-base percentage of approximately .290 for a player with a batting average of .206, assuming average values for walks, hit by pitch, and sacrifice flies.

To predict the on-base percentage (OBP) from a given batting average, we can use the following formula:

OBP = (Hits + Walks + Hit by Pitch) / (At Bats + Walks + Hit by Pitch + Sacrifice Flies)

Since batting average (BA) is defined as Hits / At Bats, we can rearrange this equation to solve for Hits:

Hits = BA * At Bats

Substituting this expression for Hits in the OBP formula, we get:

OBP = (BA * At Bats + Walks + Hit by Pitch) / (At Bats + Walks + Hit by Pitch + Sacrifice Flies)

Now we can plug in the given batting average of .206 and solve for OBP:

OBP = (.206 * At Bats + Walks + Hit by Pitch) / (At Bats + Walks + Hit by Pitch + Sacrifice Flies)

Without more information about the specific player or team, we cannot determine the values of Walks, Hit by Pitch, or Sacrifice Flies. However, we can make a prediction based solely on the batting average. Assuming average values for the other variables, we can estimate a typical OBP for a player with a .206 batting average.

For example, if we assume a player with 500 at-bats (a common benchmark for full seasons), and average values of 50 walks, 5 hit-by-pitches, and 5 sacrifice flies, we can calculate the predicted OBP as follows:

OBP = (.206 * 500 + 50 + 5) / (500 + 50 + 5 + 5)

= (103 + 50 + 5) / 560

= 0.29

To know more about average refer to-

https://brainly.com/question/24057012

#SPJ11

write out the first five terms of the sequence with, [ln(n)n 1]n=1[infinity], determine whether the sequence converges, and if so find its limit.

Answers

Answer: To find the first five terms of the sequence, we substitute n = 1, 2, 3, 4, and 5 into the expression:

a1 = ln(1)/(1+1) = 0/2 = 0

a2 = ln(2)/(2+1) = 0.231

a3 = ln(3)/(3+1) = 0.109

a4 = ln(4)/(4+1) = 0.079

a5 = ln(5)/(5+1) = 0.064

So the first five terms of the sequence are 0, 0.231, 0.109, 0.079, and 0.064.

To determine whether the sequence converges, we can use the limit comparison test with the harmonic series, which we know diverges:

lim(n->∞) (ln(n)/(n+1)) / (1/(n+1)) = lim(n->∞) ln(n) = ∞

Since the limit of the ratio is infinity, and the harmonic series diverges, the given sequence also diverges.

Therefore, the sequence does not converge, and it does not have a limit.

The limit of the sequence as n approaches infinity is infinity.

To find the first five terms of the sequence, simply plug in the values of n from 1 to 5 into the expression ln(n)n:

1. ln(1) * 1 = 0 (since ln(1) = 0)
2. ln(2) * 2 ≈ 1.386
3. ln(3) * 3 ≈ 3.296
4. ln(4) * 4 ≈ 5.545
5. ln(5) * 5 ≈ 8.047

Now, let's determine if the sequence converges. To do this, we'll look at the limit of the sequence as n approaches infinity:

lim (n → ∞) ln(n) * n

As n grows larger, both ln(n) and n increase without bound. Therefore, their product will also increase without bound:

lim (n → ∞) ln(n) * n = ∞

Since the limit of the sequence as n approaches infinity is infinity, the sequence does not converge.

In conclusion, the first five terms of the sequence are approximately 0, 1.386, 3.296, 5.545, and 8.047.

The sequence does not converge, as its limit as n approaches infinity is infinity.

To know more about sequence refer here:

https://brainly.com/question/21961097?#

#SPJ11

Exercise 10.21. Let Xi,X2,X3,... be i.i.d. Bernoulli trials with success probability p and SkXiXk. Let m< n. Find the conditional probability mass function s , e]k) of Sm, given Sn-k. (a) Identify the distribution by name. Can you give an intuitive explanation for the answer? (b) Use the conditional probability mass function to find E[Sm Sn1

Answers

We are given i.i.d. Bernoulli trials with success probability p, and we need to find the conditional probability mass function of Sm, given Sn-k. The distribution that arises in this problem is the binomial distribution.

The binomial distribution is the probability distribution of the number of successes in a sequence of n independent Bernoulli trials, with a constant success probability p. In this problem, we are considering a subsequence of n-k trials, and we need to find the conditional probability mass function of the number of successes in a subsequence of m trials, given the number of successes in the remaining n-k trials. Since the Bernoulli trials are independent and identically distributed, the probability of having k successes in the remaining n-k trials is given by the binomial distribution with parameters n-k and p.

Using the definition of conditional probability, we can write:

P(Sm = s | Sn-k = k) = P(Sm = s and Sn-k = k) / P(Sn-k = k)

=[tex]P(Sm = s)P(Sn-k = k-s) / P(Sn-k = k)[/tex]

=[tex](n-k choose s)(p^s)(1-p)^(m-s) / (n choose k)(p^k)(1-p)^(n-k)[/tex]

where (n choose k) =n! / (k!(n-k)!)  is the binomial coefficient.

We can use this conditional probability mass function to find E[Sm | Sn-k]. By the law of total expectation, we have:

[tex]E[Sm] = E[E[Sm | Sn-k]][/tex]

=c[tex]sum{k=0 to n} E[Sm | Sn-k] P(Sn-k = k)\\= sum{k=0 to n} (m(k/n)) P(Sn-k = k)[/tex]

where we have used the fact that E[Sm | Sn-k] = mp in the binomial distribution.

Thus, the conditional probability mass function of Sm, given Sn-k, leads to an expression for the expected value of Sm in terms of the probabilities of Sn-k.

Learn more about bernoulli here:

https://brainly.com/question/30509621

#SPJ11

A principal is organizing a field trip for more than 400 students. She has already arranged the transportation for 265 students. Each school bus has the capacity to transport 45 students. Which of the following inequalities could be used to solve for x, the number of school buses still needed to transport all of the students?

Answers

The inequalities that could be used to solve for x; the number of school buses still needed to transport all of the students is x > 3

How to determine the  inequalities that could be used to solve for x, the number of school buses still needed to transport all of the students

The number of students still needing transportation is: 400 - 265 = 135

The number of school buses still needed to transport all of the students:

135 ÷ 45 = 3

Therefore, the principal still needs 3 more school buses to transport all of the students.

The inequality that could be used to solve for x: x > 3

This inequality represents the number of buses needed (x) as being greater than 3

Learn more about inequality at https://brainly.com/question/24372553

#SPJ1

If the original quantity is 15 and the new quantity is 24, what is the percent increase?If the original quantity is 15 and the new quantity is 24, what is the percent increase?

Answers

To calculate the percent increase between the original quantity (15) and the new quantity (24), we use the formula: Percent increase = [(new quantity - original quantity) / original quantity] * 100. The result represents the percentage by which the quantity has increased.

To find the percent increase between the original quantity (15) and the new quantity (24), we subtract the original quantity from the new quantity and divide it by the original quantity. The formula is:
Percent increase = [(new quantity - original quantity) / original quantity] * 100
Substituting the given values:
Percent increase = [(24 - 15) / 15] * 100
= (9 / 15) * 100
= 0.6 * 100
= 60%
Therefore, the percent increase between the original quantity of 15 and the new quantity of 24 is 60%. This means that the quantity has increased by 60% from the original value.

Learn more about percent increase here
https://brainly.com/question/11337309



#SPJ11

Let {v_1, v_2} be an orthogonal set of nonzero vectors, and let c_1, c_2 be any nonzero scalars. Show that the set {c_1 v_1, c_2 v_2} is also an orthogonal set. Since orthogonality of a set is defined in terms of pairs of vectors, this shows that if the vectors in an orthogonal set are normalized, the new set will still be orthogonal.

Answers

Based on the proof, the set {c1v1, c2v2} is also an orthogonal set.

How to explain the information

It should be noted that to show that {c1v1, c2v2} is an orthogonal set, we need to show that their dot product is zero, i.e.,

(c1v1)⋅(c2v2) = 0

Expanding the dot product using the distributive property, we get:

(c1v1)⋅(c2v2) = c1c2(v1⋅v2)

Since {v1, v2} is an orthogonal set, their dot product is zero, i.e.,

v1⋅v2 = 0

Substituting this in the above equation, we get:

(c1v1)⋅(c2v2) = c1c2(v1⋅v2) = c1c2(0) = 0

Therefore, the set {c1v1, c2v2} is also an orthogonal set.

Leaen more about orthogonal on

https://brainly.com/question/30772550

#SPJ1

a nonlinear system is given by x′ = y2 −xy. y′ = x3y2 −x. the number of equilibrium points is

Answers

The number of equilibrium points for the given nonlinear system is 3.

To find the equilibrium points, we need to set both equations to zero and solve for x and y:

1. x′ = y² − xy = 0
2. y′ = x³y² − x = 0

First, let's look at equation 2. We can factor x out:

x(y²x² - 1) = 0

There are two possibilities:

a. x = 0: Substitute x = 0 in equation 1:

y² - 0 = y² = 0 => y = 0

So, we have one equilibrium point (0, 0).

b. y²x² - 1 = 0: Replacing this in equation 1:

y² - (y²x² - 1)y = 0

Factor out y:

y(y²(1 - x²) - 1) = 0

There are two more possibilities:

i. y = 0: We already considered this case (0, 0).

ii. y²(1 - x²) - 1 = 0: This equation gives us two equilibrium points: (-1, 1) and (1, 1).

Thus, the system has a total of 3 equilibrium points: (0, 0), (-1, 1), and (1, 1).

To know more about equilibrium points click on below link:

https://brainly.com/question/1527528#

#SPJ11

Let A, B, and Αα denote subsets of a space X. Prove the following: (a) If ACB, then CB. (b) AUB-AU (c) UAa3υλα; give an example where equality fails.

Answers

(a) If [tex]$A$[/tex] is a subset of B and B is a subset of C, then A is a subset of C.

(b) [tex]A\cup B\setminus A = B\setminus A$.[/tex]

(c) [tex]A\cup\bigcup_{i=1}^n a_i = \bigcup_{i=1}^n a_i$, but equality may fail for $n=\infty$.[/tex]

(a) If [tex]A\subseteq B$, then $C\cap A\subseteq C\cap B$.[/tex]

Therefore, if [tex]A\subseteq B$, then $C\cap B\subseteq C\cap A$[/tex] implies that[tex]$C\cap A=C\cap B$.[/tex]

Hence, if [tex]A\subseteq B$, then $C\cap A\subseteq C\cap B$[/tex] and [tex]C\cap B\subseteq C\cap A$,[/tex] which together imply that[tex]$C\cap A=C\cap B$. So if $A\subseteq B$,[/tex] then[tex]$C\cap A=C\cap B$[/tex]  implies that [tex]C\subseteq B$.[/tex]

(b) We have [tex]A\cup B=A\cup (B\setminus A)$,[/tex] so [tex]$A\cup B\setminus A=(A\cup B)\setminus A=B$[/tex] by the set-theoretic identity [tex]A\cup (B\setminus A)=(A\cup B)\setminus A$.[/tex]

Therefore, [tex]A\cup B\setminus A=B$.[/tex]

(c) Let [tex]X={1,2,3}$, $A={1}$, $a_1={1}$, $a_2={2}$, $a_3={3}$,[/tex] and [tex]a_4={2,3}$.[/tex]

Then[tex]$A\subseteq\bigcup_{i=1}^4 a_i$ and $\bigcup_{i=1}^3 a_i\not\subseteq\bigcup_{i=1}^4 a_i$.[/tex]

Therefore,[tex]$A\cup\bigcup_{i=1}^3 a_i=\bigcup_{i=1}^4 a_i$[/tex] and [tex]A\cup\bigcup_{i=1}^4 a_i\neq\bigcup_{i=1}^4 a_i.[/tex]

For similar question on subset.

https://brainly.com/question/30799313

#SPJ11

(a)If ACB, then CB  is a subset of C.

(b) AUB-AU is not a subset of AUB.

(c) UAa3υλα equality fails in this case.

(a) If ACB, then CB:
Let x be an element of C. If x is in A, then it is also in B (since ACB), and therefore in C (since B is a subset of C). If x is not in A, then it is still in C (since C is a superset of B), and therefore in B (since ACB). In either case, x is in CB, so CB is a subset of C.

(b) AUB-AU:
Let x be an element of AUB. If x is in A, then it is not in AU (since it is already in A), and therefore it is in AUB-AU. If x is not in A, then it must be in B (since it is in AUB), and therefore it is not in AU (since it is not in A), and therefore it is in AUB-AU. Thus, every element of AUB is also in AUB-AU, and therefore AUB-AU is a subset of AUB. On the other hand, if x is in AU but not in AUB, then it must be in U (since it is not in A or B), which contradicts the assumption that A and B are subsets of X. Therefore, AUB-AU is not a subset of AUB.

(c) UAa3υλα; give an example where equality fails:
Let X = {1,2,3}, A = {1}, B = {2}, and Αα = {1,3}. Then UAa3υλα = {1,2,3} = X, but AUB = {1,2} and AU = {1}, so AUB-AU = {2} is not equal to X. Therefore, equality fails in this case.
Visit here to learn more about subset:

brainly.com/question/24138395

#SPJ11

Two coins are flipped. You win $5 if either 2 heads or 2 tails turn up, and you lose $2 if a head and a tail turn up. What is the expected value of the game? The expected value of the game is s (Type an integer or a decimal.)

Answers

The expected value of the game is $1.50.

To calculate the expected value of the game, we need to find the probability of each outcome and multiply it by its respective payout or loss.

There are four possible outcomes when flipping two coins: HH, HT, TH, and TT. Since the coins are fair, each outcome has a probability of 1/4 or 0.25.

If we get HH or TT, we win $5. So the total payout for those two outcomes is $10.

If we get HT or TH, we lose $2. So the total loss for those two outcomes is $4.

To find the expected value of the game, we subtract the total loss from the total payout and multiply by the probability of each outcome:
(10 - 4) * 0.25 = 1.5

So the expected value of the game is $1.50.

Know more about the expected value here:

https://brainly.com/question/24305645

#SPJ11

Before your trip to the mountains, your gas tank was full. when you returned home, the gas gauge registered
of a tank. if your gas tank holds 18 gallons, how many gallons did you use to drive to the mountains and back
home?
please help

Answers

The gas gauge will show a lower reading if the gas tank is less than full when you return home after your trip to the mountains.

The gas gauge will show a lower reading if the gas tank is less than full when you return home after your trip to the mountains. This is due to the increased effort required to drive in mountainous terrain, which necessitates more fuel consumption.The amount of fuel used by the car will be determined by a variety of factors, including the engine, the type of vehicle, and the driving conditions. Since the car was driven in the mountains, it is likely that more fuel was used than usual, causing the gauge to show a lower reading.

Know more about  gas gauge here:

https://brainly.com/question/19298882

#SPJ11

evaluate the line integral, where c is the given curve. c xyz2 ds, c is the line segment from (−3, 6, 0) to (−1, 7, 3)

Answers

The line integral of f(x,y,z) = xyz² over the curve c is approximately equal to 91.058.

How to calculate the value

The line integral of the given function f(x,y,z) = xyz² over the curve c can be expressed as:

∫c f(x,y,z) ds = ∫[a,b] f(r(t)) ||r'(t)|| dt

Now we can calculate r'(t):

r'(t) = (2, 1, 3)

||r'(t)|| = ✓(2² + 1² + 3²) = sqrt(14)

∫c f(x,y,z) ds = ∫[0,1] (x(t) * y(t) * z(t)²) * ✓(14) dt

∫c f(x,y,z) ds = ∫[0,1] (-3 + 2t) * (6 + t) * (3t)² * ✓(14) dt

Simplifying and integrating, we get:

∫c f(x,y,z) ds = 9✓(14) ∫[0,1] (216t × 216t⁴ - 81t⁴ - 12t³) dt

∫c f(x,y,z) ds = 9✓(14) * (43/20) = 91.058

Learn more about integral on

https://brainly.com/question/27419605

#SPJ1

Let Yi and Yz have the joint density function e-(Y1 Y2) f(y1' Yz) = Y1 > 0, Y2 elsewhere_ What is P(Y_ < 3, Y2 6)? (Round your answer to four decimal places:) (b) What is P(Y 1 Y2 7)? (Round your answer to four decimal places:)

Answers

P(Y₁ < 3, Y₂ > 6) is 0.0108 by integrating the given joint density function. P(Y₁ + Y₂ = 7) is 0.4472by integrating the same joint density function over the appropriate region.

To find P(Y₁ < 3, Y₂ > 6), we need to integrate the joint density function over the region defined by Y₁ < 3 and Y₂ > 6

P(Y₁ < 3, Y₂ > 6) = ∫∫[tex]e^{-(Y_1 Y_2)}[/tex] dY₁ dY₂, where the limits of integration are Y₁ from 0 to 3 and Y₂ from 6 to infinity.

Using the formula for the integral of exponential functions, we have:

P(Y₁ < 3, Y₂ > 6) =[tex]\int\limits^6_\infty[/tex][tex]\int\limits^0_3[/tex] [tex]e^{-(Y_1 Y_2)}[/tex]  dY₁ dY₂

=[tex]\int\limits^6_\infty[/tex] [-1/Y₂ [tex]e^{-(Y_1 Y_2)}[/tex] ] from 0 to 3 dY₂

=[tex]\int\limits^6_\infty[/tex] [(-1/3Y₂) + (1/Y₂[tex]e^{3Y_2}[/tex])] dY₂

= [(-1/3) ln(Y₂) - (1/9)[tex]e^{3Y_2}[/tex]] from 6 to infinity

= (1/3) ln(6) + (1/9)e¹⁸

≈ 0.0108

Therefore, P(Y₁ < 3, Y₂ > 6) ≈ 0.0108.

To find P(Y₁ + Y₂ = 7), we need to first determine the range of values for Y₂ that satisfy the equation. If we set Y₂ = 7 - Y₁, then Y₁ + Y₂ = 7, so we have:

P(Y₁ + Y₂ = 7) = P(Y₂ = 7 - Y₁)

We can then integrate the joint density function over the region defined by this range of values for Y₁ and Y₂:

P(Y₁ + Y₂ = 7) = ∫∫[tex]e^{-(Y_1 Y_2)}[/tex] dY₁ dY₂, where the limits of integration are Y₁ from 0 to 7 and Y₂ from 7 - Y₁ to infinity.

Using the substitution Y₂ = 7 - Y₁ and the formula for the integral of , we have

P(Y₁ + Y₂ = 7) = [tex]\int\limits^0_7[/tex] [tex]\int\limits^{ \infty} _{7-Y_1[/tex] [tex]e^{-(Y_1(7- Y_1)}[/tex]) dY₂ dY₁

= [tex]\int\limits^0_7[/tex] [tex]e^{7Y_1}[/tex]/49 - 1/7 dY₁

= (7/6)(e⁷/49 - 1)

≈ 0.4472

Therefore, P(Y₁ + Y₂ = 7) ≈ 0.4472.

To know more about integration:

https://brainly.com/question/31954835

#SPJ4

--The given question is incomplete, the complete question is given below " Let Y₁ and Y₂ have the joint density function

f(y₁,y₂) = {e^-(Y₁ Y₂)   Y₁ > 0, Y₂> 0

             {0,  elsewhere_

What is P(Y₁ < 3, Y₂>  6)? (Round your answer to four decimal places:) (b) What is P(Y₁+ Y₂= 7)? (Round your answer to four decimal places:)"--

Team Activity: forecasting weather Fill out and upload this page, along with your work showing the steps to the answers. The weather in Columbus is either good, indifferent, or bad on any given day. If the weather is good today, there is a 70% chance it will be good tomorrow, a 20% chance it will be indifferent, and a 10% chance it will be bad. If the weather is indifferent today, there is a 60% chance it will be good tomorrow, and a 30% chance it will be indifferent. Finally, if the weather is bad today, there is a 40% chance it will be good tomorrow and a 40% chance it will be indifferent. Questions: 1. What is the stochastic matrix M in this situation? M = Answer: 2. Suppose there is a 20% chance of good weather today and a 80% chance of indifferent weather. What are the chances of bad weather tomorrow? 3. Suppose the predicted weather for Monday is 50% indifferent weather and 50% bad weather. What are the chances for good weather on Wednesday? Answer: Answer: 4. In the long run, how likely is it for the weather in Columbus to be bad on a given day? Hint: find the steady-state vector.

Answers

In this team activity, we were given a weather forecasting problem in which we had to determine the stochastic matrix and calculate the probabilities of different weather conditions for a given day.

To solve the problem, we first needed to determine the stochastic matrix M, which is a matrix that represents the probabilities of transitioning from one state to another. In this case, the three possible states are good, indifferent, and bad weather. Using the given probabilities, we constructed the following stochastic matrix:

M = [[0.7, 0.2, 0.1], [0.6, 0.3, 0.1], [0.4, 0.4, 0.2]]

For the second question, we used the stochastic matrix to calculate the probabilities of bad weather tomorrow, given that there is a 20% chance of good weather and an 80% chance of indifferent weather today. We first calculated the probability vector for today as [0.2, 0.8, 0], and then multiplied it by the stochastic matrix to get the probability vector for tomorrow. The resulting probability vector was [0.14, 0.36, 0.5], so the chance of bad weather tomorrow is 50%.

For the third question, we used the stochastic matrix to calculate the probability of good weather on Wednesday, given that the predicted weather for Monday is 50% indifferent and 50% bad. We first calculated the probability vector for Monday as [0, 0.5, 0.5], and then multiplied it by the stochastic matrix twice to get the probability vector for Wednesday. The resulting probability vector was [0.46, 0.31, 0.23], so the chance of good weather on Wednesday is 46%.

For the final question, we needed to find the steady-state vector, which is a vector that represents the long-term probabilities of being in each state. We calculated the steady-state vector by solving the equation Mv = v, where v is the steady-state vector. The resulting steady-state vector was [0.5, 0.3, 0.2], so in the long run, the chance of bad weather on a given day is 20%.

Learn more about stochastic here:

https://brainly.com/question/29737056

#SPJ11

find a function g(x) so that y = g(x) is uniformly distributed on 0 1

Answers

To find a function g(x) that results in a uniformly distributed y = g(x) on the interval [0,1], we can use the inverse transformation method. This involves using the inverse of the cumulative distribution function (CDF) of the uniform distribution.

The CDF of the uniform distribution on [0,1] is simply F(y) = y for 0 ≤ y ≤ 1. Therefore, the inverse CDF is F^(-1)(u) = u for 0 ≤ u ≤ 1.

Now, let's define our function g(x) as g(x) = F^(-1)(x) = x. This means that y = g(x) = x, and since x is uniformly distributed on [0,1], then y is also uniformly distributed on [0,1].

In summary, the function g(x) = x results in a uniformly distributed y = g(x) on the interval [0,1].
Hello! I understand that you want a function g(x) that results in a uniformly distributed variable y between 0 and 1. A simple function that satisfies this condition is g(x) = x, where x is a uniformly distributed variable on the interval [0, 1]. When g(x) = x, the variable y also becomes uniformly distributed over the same interval [0, 1].

To clarify, a uniformly distributed variable means that the probability of any value within the specified interval is equal. In this case, for the interval [0, 1], any value of y will have the same likelihood of occurring. By using the function g(x) = x,

To know more about Functions visit :

https://brainly.com/question/12431044

#SPJ11

Saskia constructed a tower made of interlocking brick toys. There are x^2 +5 levels in this model. Each brick is 3x^2 – 2 inches high. Which expression shows the total height of this toy tower?

Answers

The expression that shows the total height of this toy tower is

[tex]3x^4 + 13x^2 - 10.[/tex]

What is the total height of the toy tower?

Saskia constructed a tower made of interlocking brick toys.

There are

[tex]x^2 +5[/tex]

levels in this model.

Each brick is

[tex]3x^2 – 2[/tex]

inches high. To find the total height of the toy tower, we multiply the number of levels by the height of each brick. The height of each brick is given as

[tex]3x^2 – 2 inches.[/tex]

So, total height of the toy tower is

[tex](x² + 5) × (3x² – 2) inches= 3x^4 + 13x^2 - 10[/tex]

Therefore, the expression that shows the total height of this toy tower is

[tex]3x^4 + 13x^2 - 10.[/tex]

To know more about expression, visit:

https://brainly.com/question/28170201

#SPJ11

Other Questions
how many mlliliters ofa 12.0 m aqueous hno3 solution should you use to prepare 850.0 ml of a 0.250 m hno3 solution bHi shock 1 Consider a horizontal supersonic flow at Mach 2.8 (M) with a static pressure and temperature of 10 kPa (P1) and 373 K (T1). This flow passes over a compression corner with a deflection angle (0) of 50. The oblique shock generated at the corner propagates into the flow, and is incident on a horizontal wall, as shown in the above figure. Calculate a) the angle made by the reflected shock wave with respect to the wall b) the Mach number in region 3 c) the pressure in region 3 d) the temperature in region 3 draw the product obtained when trans-3-octene is treated first with br2 in ch2cl2, second with nanh2 in nh3, and then finally with h2/lindlar's catalyst. What actions were taken by the Federal Reserve during the financial crisis of 2007 2009? 4. Three conveyor belts are arranged to transport material and the conveyor belts must be started in reverse sequence (the last one first and the first one last) so that the material does not get piled on to a stopped or slow-moving conveyor. Each belt takes 45 seconds to reach full speed. Design a ladder logic that would control the start and stop of this three-conveyor system simplify to an expression of the form (a sin()). 6 sin 6 6 cos 6 a hydroelectric dam creates a reservoir of 10 km3. the average head of the reservoir is 100 m. compute the pe of the reservoir. The magnitude of the line voltage at the terminals of a balanced Y-connected load is 6600 V. The load impedance is 240-j70 22 per phase. The load is fed from a line that has an impedance of 0.5 + j42 per phase. a) What is the magnitude of the line current? b) What is the magnitude of the line voltage at the source? this assignment is designed to have you use object oriented design to design accounts with transaction processing at a bank. there will be the following 3 account types: Savings Account Checking Account Interest Checking AccountYour program must create classes for all the account types including a base class.All account types and the base class must use .h files for headers and .cpp for class implementations. The names of these files should be the names of the class used in the program. Javier investigated what happens when Earths plates meet. He found that as Earths plates meet at plate boundaries and interact, they move in three different ways. Explain the different kinds of events that can take place when convergent boundaries meet. Name one example of this from somewhere on Earth Evaluate the iterated integral. 6 1 x 0 (5x 2y) dy dx 4. (3 pts.) what is the algorithmic time complexity of binary search on a sorted array? An improvement to the roadway is desired from Philmont Scout Ranch to Springer in northeastern New Mexico. Alternative N (for north) costs $2,400,000 initially and $155,000/year thereafter. Route SA (for south, Alternative A) will cost $4,200,000 initially, and $88,000/year thereafter. Route SB is the same as SA with wider lanes and shoulders. It costs $5,200,000 initially with maintenance at $125,000/year. User costs (regard user cost as benefits) considering time, operations, and safety are $625,000 for N, $410,000 for SA, and $310,000 for SB. The salvage values (regard salvage value as negative term of cost) for N, SA, and SB after 20 years are 20 percent of initial cost, respectively. Using a MARR of 7 percent and a 20-year study period, which should be constructed? By using an incremental B/C analysis, show your suggestion All of the following are signs of adequate breathing and circulation in the newborn except: (A) heart rate greater than 100. (B) cyanosis of only the hands and feet. (C) relaxation of the extremities. (D) vigorous crying. If 6 chickens lay 18 eggs, find the unit rate in eggs per chicken. An inductor has a peak current of 250 A when the peak voltage at 43 MHzis 3.7 V.a)What is the inductance? the answer is 55 Hb) If the voltage is held constant, what is the peak current at 86 mHz ? you should reassess your budget at least once a week. (True or False) Evaluate the following quote: "Although they resented the extent ofregulations, businessmen should have embraced Franklin] D. Rooseveltspolicies because, if nothing else, the New Deal saved capitalism." Was the NewDeal evolutionary or Revolutionary? Complete the function ConvertToPennies() so that the function returns the total number of pennies given a number of dollars and (optionally) a number of pennies.Ex: ConvertToPennies(5 , 6) returns 506 and ConvertToPennies(8) returns 800.complete the code:function totalPennies = ConvertToPennies(numDollars, numPennies)% numDollars: Number of dollars% numPennies: Number of pennies (optional)% Function output: Total number of pennies determine whether the series is convergent or divergent. [infinity] k = 1 ke5k convergent divergent