An inductor has a peak current of 250 µA when the peak voltage at 43 MHzis 3.7 V.a)What is the inductance? the answer is 55 µHb) If the voltage is held constant, what is the peak current at 86 mHz ?

Answers

Answer 1

To find the inductance of the inductor, we can use the formula:Vpeak = L × ω × Ipeak the peak current at 86 MHz with a constant voltage of 3.7 V is 66.6 µA.

Voltage, also known as electric potential difference, is the measure of the difference in electric potential energy between two points in an electric circuit. It is the driving force that pushes electric charge through a circuit. Voltage is measured in volts (V) and is typically represented by the symbol "V".

To know more about electric visit :

https://brainly.com/question/31668005

#SPJ11


Related Questions

Doubling the momentum of a neutron
(a) decreases its energy
(b) doubles its energy
(c) doubles its wavelength
(d) halves its wavelength
(e) none of these.

Answers

The answer is option (a)"decreases its energy" as doubling the momentum of a neutron leads to a decrease in its energy.

How does momentum affect a neutron's energy and wavelength?

The de Broglie wavelength equation is given by λ = h/p, where λ is the wavelength of a particle, h is the Planck constant, and p is the momentum of the particle. This equation shows that the wavelength of a particle is inversely proportional to its momentum.

Therefore, if the momentum of a neutron is doubled, its wavelength will be halved (option (d) in the question).

However, the energy of a neutron is proportional to the square of its momentum, i.e., E = p[tex]^2/2m[/tex], where E is the energy of the neutron, and m is its mass.

Therefore, if the momentum of a neutron is doubled, its energy will be quadrupled (not listed in the options).

Thus, option (a) "decreases its energy" is the correct answer.

Learn more about wavelength

brainly.com/question/31143857

#SPJ11

the reynolds number for a 1 foot in diameter sphere moving at 2.3 miles per hours through seawater (specific gravity =1.027, viscosity = 1.07 x 10-3 ns/m2) is approximately:

Answers

The Reynolds number for a 1-foot diameter sphere moving at 2.3 miles per hour through seawater is approximately 218,835. This value represents the relative importance of inertial and viscous forces in the fluid flow around the sphere.

To calculate the Reynolds number, we can use the following formula: Re = (ρvL)/μ, where Re is the Reynolds number, ρ is the fluid density, v is the velocity of the object, L is the characteristic linear dimension (diameter in this case), and μ is the dynamic viscosity of the fluid.

First, we need to convert the given velocity from miles per hour to meters per second. 2.3 miles per hour is approximately 1.028 meters per second.

Next, we can find the density of seawater by multiplying its specific gravity by the density of water. The density of water is approximately 1,000 kg/m³, so the density of seawater is: 1,000 kg/m³ x 1.027 = 1,027 kg/m³.

Now we can substitute the values into the Reynolds number formula:

Re = (ρvL)/μ
Re = (1,027 kg/m³ x 1.028 m/s x 0.3048 m) / (1.07 x 10⁻³ Ns/m²)
Re ≈ 218,835

The Reynolds number for the given scenario is approximately 218,835.

To know more about Reynold's number, click here;

https://brainly.com/question/31748021

#SPJ11

urrent results in a magnetic moment that interacts with the magnetic field of the magnet. will the interaction tend to increase or to decrease the angular speed of the coil?

Answers

When a current flows through a coil, it generates a magnetic moment that interacts with the magnetic field of a nearby magnet.

This interaction between the magnetic moment and the magnetic field creates a torque on the coil. According to Lenz's Law, this torque will act in a direction to oppose the change in magnetic flux. As a result, the interaction will tend to decrease the angular speed of the coil.

Faraday's law states that when there is a change in the magnetic flux through a coil, an electromotive force (EMF) is induced, which in turn leads to the generation of an electric current. This principle forms the basis of many electrical devices, such as generators and transformers.

Lenz's law, on the other hand, provides information about the direction of the induced current and its associated magnetic field. According to Lenz's law, the induced current will always flow in such a way as to oppose the change in the magnetic flux that caused it.

This opposition creates a magnetic moment that interacts with the magnetic field of the nearby magnet, resulting in a torque on the coil.

The torque generated by this interaction tends to resist the change in motion of the coil. If the coil is initially rotating, the torque will act to decrease its angular speed.

Similarly, if an external force tries to rotate the coil, the torque will resist that motion. This opposition to changes in motion is a fundamental principle of electromagnetic interactions and is known as Lenz's law.

To learn more about coil, refer below:

https://brainly.com/question/27961451

#SPJ11

instrument with the minimum value of least count give a precise measurement ​

Answers

Instruments with a minimum value of least count provide a more precise measurement because the least count represents the smallest increment that can be measured by the instrument.

The least count is typically defined by the instrument's design and its scale or resolution.

When you use an instrument with a small least count, it allows you to make more accurate and precise measurements. For example, let's consider a ruler with a least count of 1 millimeter (mm).

If you want to measure the length of an object and the ruler's markings allow you to read it to the nearest millimeter, you can confidently say that the object's length lies within that millimeter range.

However, if you were using a ruler with a least count of 1 centimeter (cm), you would only be able to estimate the length of the object to the nearest centimeter.

This larger least count introduces more uncertainty into your measurement, as the actual length of the object could be anywhere within that centimeter range.

Instruments with smaller least counts provide greater precision because they allow for more accurate measurements and a smaller margin of error.

By having a finer scale or resolution, these instruments enable you to distinguish smaller increments and make more precise readings. This precision is especially important in scientific, engineering, and other technical fields where accurate measurements are crucial for experimentation, analysis, and manufacturing processes.

For more such questions on measurement,click on

https://brainly.com/question/28012687

#SPJ11

The probable question may be:

Why instruments with the minimum value of least count give a precise measurement?

A circuit has a resistor, capacitor and inductor connected in series with an ac voltage source. The voltage amplitude across the resistor is 40.0 V, across the capacitor the voltage amplitude is 70.0 V and across the inductor the voltage amplitude is 40.0 V. What is the voltage amplitude of the source? (a) 40.0 V b) 50.0 V (c) 70.0 V (d) 150.0 v (e) none of the above answers

Answers

To find the voltage amplitude of the source, we need to know the values of C and L, which are not given in the question. So the correct option is (e).

In a series circuit, the voltage across each component is determined by its impedance and the total impedance of the circuit. The impedance of a resistor is given by its resistance R, while the impedance of a capacitor and an inductor are given by 1/ωC and ωL, respectively, where ω is the angular frequency of the AC source.

Since the voltage amplitude across the resistor is 40.0 V, we can use Ohm's law to find its impedance, which is simply R. Let's assume R = x Ω. Similarly, the impedance of the capacitor and inductor can be determined using the voltage amplitudes across them. Let's assume the capacitor has a capacitance of C farads and the inductor has an inductance of L henries. Then, we have:

40.0 = Ix (where I is the current in the circuit)

70.0 = I/(ωC)

40.0 = IωL

We can solve for I using the first equation, which gives us I = 40.0/x. Substituting this into the second and third equations and solving for x, we get:

x = 40.0/√(1/C²ω² + ω²L²)

The total impedance of the circuit is simply the sum of the impedances of the resistor, capacitor and inductor, which is x + 1/ωC + ωL. The voltage amplitude of the source is then given by Ohm's law as V = I(x + 1/ωC + ωL).

Substituting the value of x, we get:

V = 40.0/√(1/C²ω² + ω²L²) + 70.0/ωC + 40.0ωL

To find the voltage amplitude of the source, we need to know the values of C and L, which are not given in the question. Therefore, the answer cannot be determined and the correct option is (e) none of the above answers.

To know more about resistance refer here:

https://brainly.com/question/29427458#

#SPJ11

Kepler’s Third Law Kepler’s Third Law of planetary motion states that the square of the period T of a planet (the time it takes for the planet to make a complete revolution about the sun) is directly proportional to the cube of its average distance d from the sun.
(a) Express Kepler’s Third Law as an equation.
(b) Find the constant of proportionality by using the fact that for our planet the period is about 365 days and the average distance is about 93 million miles.
(c) The planet Neptune is about 2.79 × 109 mi from the sun. Find the period of Neptune.

Answers

Kepler's Third Law can be expressed mathematically as follows:

[tex]\[ T^2 = k \cdot d^3 \][/tex], the constant of proportionality for our planet is approximately [tex]1.711 \times 10^{-19} \text{ miles}^{-3}[/tex] and the period of Neptune is approximately [tex]6.252 \times 10^4 \text{ miles}^{4.5}[/tex].

(a) Expressing Kepler's Third Law as an equation:

Kepler's Third Law can be expressed mathematically as follows:

[tex]\[ T^2 = k \cdot d^3 \][/tex]

where T is the period of the planet (in units of time), d is the average distance of the planet from the sun (in units of length), and k is the constant of proportionality.

(b) Finding the constant of proportionality:

To find the constant of proportionality, we can use the fact that for our planet (Earth), the period is approximately 365 days and the average distance is about 93 million miles.

Using these values, we can plug them into the equation:

[tex]\[ (365 \text{ days})^2 = k \cdot (93 \text{ million miles})^3 \][/tex]

Simplifying the equation, we have:

[tex]\[ 133,225 = k \cdot (778,500,000,000,000,000,000,000 \text{ miles}^3) \][/tex]

Dividing both sides of the equation [tex](778,500,000,000,000,000,000,000 \text{ miles}^3)[/tex], we get:

[tex]k = 133,225/(778,500,000,000,000,000,000,000 miles^3)[/tex]

Calculating this expression, we find:

[tex]\[ k \approx 1.711 \times 10^{-19} \text{ miles}^{-3} \][/tex]

Therefore, the constant of proportionality for our planet is approximately [tex]1.711 \times 10^{-19} \text{ miles}^{-3}[/tex].

(c) Finding the period of Neptune:

Given that the average distance of Neptune from the sun is about 2.79 × 10^9 miles, we can use Kepler's Third Law to find the period of Neptune.

Using the equation [tex]\[ T^2 = k \cdot d^3 \][/tex] and plugging in the values:

[tex]\[ T^2 = (1.711 \times 10^{-19} \text{ miles}^{-3}) \cdot (2.79 \times 10^9 \text{ miles})^3 \][/tex]

Simplifying the expression, we have:

[tex]\[ T^2 = 1.711 \times 10^{-19} \text{ miles}^{-3} \cdot 2.79^3 \times 10^{9 \cdot 3} \text{ miles}^{3 \cdot 3} \][/tex]

[tex]\[ T^2 = 1.711 \times 2.79^3 \times 10^{-19 + 27} \text{ miles}^9 \][/tex]

[tex]\[ T^2 \approx 1.711 \times 22.796 \times 10^{8} \text{ miles}^9 \][/tex]

[tex]\[ T^2 \approx 39.108 \times 10^{8} \text{ miles}^9 \][/tex]

Taking the square root of both sides to solve for T, we get:

[tex]\[ T \approx \sqrt{39.108 \times 10^{8}} \text{ miles}^{4.5} \][/tex]

Calculating the square root, we find:

[tex]\[ T \approx 6.252 \times 10^4 \text{ miles}^{4.5} \][/tex]

Therefore, the period of Neptune is approximately [tex]6.252 \times 10^4 \text{ miles}^{4.5}[/tex]

Know more about Kepler’s Third Law:

https://brainly.com/question/30404084

#SPJ12

Describe 3 physical properties of this object (color, state of matter, shape, size, hardness, etc)

Answers

The object being described possesses three physical properties: color, shape, and size.The object under consideration exhibits distinct physical properties, beginning with its color.

Color refers to the visual perception resulting from the reflection or absorption of light. It provides a characteristic appearance to objects and is determined by the wavelengths of light they reflect. In the case of this object, its color could be described as blue, red, or any other specific hue.

Moving on to the second property, the shape of the object refers to its external form or outline. It can be classified as geometric (such as square, round, or triangular) or organic (irregular or asymmetrical). The shape of this particular object could be spherical, cubical, cylindrical, or any other specific shape.

Lastly, the size of the object denotes its dimensions in terms of length, width, and height. It is a quantitative property and can be measured using appropriate units. The size of this object might be small, large, medium, or specific measurements like inches, centimeters, or meters.

By considering these three physical properties - color, shape, and size - we can gain a better understanding of the object in question. Remember that physical properties can vary greatly depending on the object being described, and these examples are merely illustrative.

Learn more about physical properties here:

brainly.com/question/18327661

#SPJ11

A force F of 10 N is applied in the direction indicated, per meter depth (into page). The 300 mm long triangular beam is Aluminum, 1100 series, and extends 2 meters into the page. What is the moment about point A, per meter of depth? The system is on Earth, at sea level, gravity acts in the direction of F.Note: The centroid of a triangle is located at h/3.A) 16 Nm/mB) 19 Nm/mC) 24 Nm/mD) 27 Nm/m

Answers

The momentum about point A, per meter of depth, can be calculated using the formula M = F * d * h/3 which is 16 Nm/m. So, the correct answer is A).

To solve the problem, we need to find the moment about point A, which is given by the formula

M = F * d * h/3

where F is the force applied per meter depth, d is the distance from point A to the line of action of the force, and h is the height of the triangular beam.

First, we need to find d, which is the distance from point A to the line of action of the force. From the diagram, we can see that d is equal to the height of the triangle, which is 300 mm or 0.3 m.

Next, we need to find h, which is the height of the triangular beam. From the diagram, we can see that h is equal to the length of the shorter side of the triangle, which is 40 mm or 0.04 m.

Now we can plug in the values into the formula:

M = 10 N/m * 0.3 m * 0.04 m/3

M = 16 Nm/m

Therefore, the moment about point A, per meter of depth, is 16 Nm/m. The correct answer is A) 16 Nm/m.

To know more about momentum

https://brainly.com/question/31969322

#SPJ4

--The given question is incomplete, the complete question is given below " A force F of 10 N is applied in the direction indicated, per meter depth into page). The 300 mm long triangular beam is Aluminum, 1100 series, and extends 2 meters into the page. What is the moment about point A, per meter of depth? The system is on Earth, at sea level, gravity acts in the direction of F. Note: The centroid of a triangle is located at h/3. shorter side of triangle is 40.

O A: 16 Nm/m O B: 19 Nm/m O C: 24 Nm/m OD: 27 Nm/m"--

a 1300-turn coil of wire 2.10 cmcm in diameter is in a magnetic field that increases from 0 tt to 0.150 tt in 12.0 msms . the axis of the coil is parallel to the field. Question: What is the emf of the coil? (in V)Please explain

Answers

The induced emf in the coil is -54.2 V

The induced emf in a coil of wire is given by Faraday's law of electromagnetic induction, which states that the magnitude of the induced emf is equal to the rate of change of magnetic flux through the coil. Mathematically, it is expressed as:

emf = -dΦ/dt

where emf is the induced emf in volts (V), Φ is the magnetic flux through the coil in webers (Wb), and t is time in seconds (s). The negative sign indicates the direction of the induced current opposes the change in the magnetic flux.

In this problem, the coil is initially in a magnetic field of 0 T and then the field increases to 0.150 T in 12.0 ms. The diameter of the coil is given as 2.10 cm, which means the radius is r = 1.05 cm = 0.0105 m. The coil has 1300 turns, so the total area enclosed by the coil is:

A = πr²n = π(0.0105 m)²(1300) = 0.00433 m²

The magnetic flux through the coil is given by:

Φ = BA

where B is the magnetic field and A is the area of the coil. At time t = 0, B = 0 T, so Φ = 0 Wb. At time t = 12.0 ms = 0.012 s, B = 0.150 T, so:

Φ = (0.150 T)(0.00433 m²) = 0.00065 Wb

The rate of change of magnetic flux is:

dΦ/dt = (0.00065 Wb - 0 Wb) / (0.012 s - 0 s) = 54.2 T/s

Therefore, the induced emf in the coil is:

emf = -dΦ/dt = -(54.2 T/s) = -54.2 V

Note that the negative sign indicates the direction of the induced current is such that it opposes the increase in the magnetic field.

learn more about emf here

brainly.com/question/29656124

#SPJ4

can light phenomena be better explained by a transverse wave model or by a longitudinal wave model? explain how you know

Answers

Light phenomena can be better explained by a transverse wave model rather than a longitudinal wave model.

This is because light waves oscillate perpendicular to the direction of their propagation, which is the characteristic of a transverse wave. On the other hand, longitudinal waves oscillate parallel to their propagation direction, which is not the case for light waves.

Additionally, the behavior of light waves in different mediums, such as reflection and refraction, can be explained by the transverse wave model. When light waves hit a surface, they bounce off at the same angle they hit the surface, which is known as the law of reflection. Similarly, when light waves pass through a medium with a different refractive index, they bend or change direction, which is known as refraction. These phenomena can be explained using the wave nature of light and its transverse oscillations.

Therefore, it is safe to say that the transverse wave model is a better explanation for light phenomena than the longitudinal wave model.

More on Light phenomena: https://brainly.com/question/1871631

#SPJ11

Light phenomena can be better explained by a transverse wave model rather than a longitudinal wave model. This is because light waves are known to have electric and magnetic fields that are perpendicular to each other and to the direction of the wave propagation.

This characteristic of light waves is consistent with the properties of transverse waves where the displacement of particles is perpendicular to the direction of wave propagation.

On the other hand, longitudinal waves have displacements that are parallel to the direction of wave propagation, which is not observed in light waves.

Therefore, the transverse wave model provides a more accurate explanation for the behavior of light waves.

Read more about the Transverse wave.

https://brainly.com/question/13863548

#SPJ11

Comparison of performance of a series of N equal-size mixed flow reactors with a plug flow reactor for elementary second-order reactions 2A products A + B → products, Сло = Сво with negligible expansion. For the same processing rate of identical feed the ordinate measures the volume ratio V/V, or space-time ratio Ty/T, directly.

Answers

In comparing the performance of a series of N equal-size mixed flow reactors with a plug flow reactor for elementary second-order reactions 2A products A + B → products, with Сло = Сво and negligible expansion, we can use the ordinate to measure the volume ratio V/V or space-time ratio Ty/T directly. The performance of the mixed flow reactors can be evaluated based on the number of reactors in the series, with increasing N resulting in better conversion and more efficient use of reactants. However, the plug flow reactor may have advantages in terms of simpler design and easier operation. Ultimately, the choice of reactor type will depend on specific process requirements and limitations.

About Equal

The equal sign is used to show that the values on either side of it are the same. It is denoted by = , whereas the equivalent sign means identical to. Reactor is  a piece of equipment in which a chemical reaction and especially an industrial chemical reaction is carried out. : a device for the controlled release of nuclear energy (as for producing heat).  Expansion is the increase in the dimensions of a body or substance when subjected to an increase in temperature, internal pressure, etc.

Learn more about equal at https://brainly.com/question/30145129

#SPJ11

Which letter corresponds to voltage gated sodium channels closing?

Answers

The letter that corresponds to voltage gated sodium channels closing is "inactivation."

When a neuron fires an action potential, voltage-gated sodium channels open, allowing sodium ions to rush into the cell and depolarize the membrane.

However, after a brief period of time, these channels become inactivated and are no longer able to conduct sodium ions.

This inactivation is crucial for preventing the neuron from firing multiple action potentials in rapid succession and helps to regulate the firing rate of neurons.

The process of inactivation occurs when a small, positively charged ball-like structure called the "inactivation gate" swings shut and physically blocks the opening of the sodium channel.

This inactivation gate is thought to be controlled by changes in the electrical charge of the membrane and the movement of sodium ions through the channel itself.

Overall, the inactivation of voltage-gated sodium channels is a critical aspect of neural signaling and allows for the precise control and regulation of action potential firing in the nervous system.

To know more about refer inactivation here

brainly.com/question/29313180#

#SPJ11

Light of wavelength λ = 595 nm passes through a pair of slits that are 23 μm wide and 185 μm apart. How many bright interference fringes are there in the central diffraction maximum? How many bright interference fringes are there in the whole pattern?

Answers

The number of bright interference fringes in the central diffraction maximum can be found using the formula:

n = (d sin θ) / λ

where n is the number of fringes, d is the distance between the slits, θ is the angle between the central maximum and the first bright fringe, and λ is the wavelength of light.

For the central maximum, the angle θ is zero, so sin θ = 0. Therefore, the equation simplifies to:

n = 0

So there are no bright interference fringes in the central diffraction maximum.

The number of bright interference fringes in the whole pattern can be found using the formula:

n = (mλD) / d

where n is the number of fringes, m is the order of the fringe, λ is the wavelength of light, D is the distance from the slits to the screen, and d is the distance between the slits.

To find the maximum value of m, we can use the condition for constructive interference:

d sin θ = mλ

where θ is the angle between the direction of the fringe and the direction of the center of the pattern.

For the first bright fringe on either side of the central maximum, sin θ = λ/d. Therefore, the value of m for the first bright fringe is:

m = d/λ

Substituting this value of m into the formula for the number of fringes, we get:

n = (d/λ)(λD/d) = D

So there are D bright interference fringes in the whole pattern, where D is the distance from the slits to the screen, in units of the wavelength of light.

Learn More About bright fringe at https://brainly.com/question/31754396

#SPJ11

The outside mirror on the passenger side of a car is convex and hasa focal length of -5.5 m. Relative tothis mirror, a truck traveling in the rear has an object distanceof 6 m.
(a) Find the image distance of the truck.
1
m
(b) Find the magnification of the mirror.
2

Answers

When a lens is focussed at infinity, its focal length is calculated. The focal length of a lens indicates the angle of view (how much of the scene will be caught) and magnification.

(a) Using the mirror equation:

1/f = 1/do + 1/di

where f is the focal length, do is the object distance, and di is the image distance. Plugging in the given values:

1/-5.5 = 1/6 + 1/di

Solving for di:

di = -3.3 m

The image distance of the truck is -3.3 m, which means it is behind the mirror and virtual.

(b) Using the magnification equation:

m = -di/do

Plugging in the values:

m = -(-3.3)/6

m = 0.55

The magnification of the mirror is 0.55, which means the image of the truck is smaller than the actual truck.

So, the image distance of the truck is -3.3 m, and the magnification of the mirror is 0.55.

To know about Focal length visit:

https://brainly.com/question/29870264

#SPJ11

What is the nuclear binding energy per nucleon, in joules, for 25/12 Mg (atomic mass 24.985839 amu). [Data: 1/1 H (atomic mass) = 1.007825 amu; n (mass) = 1.008665 amu; 1 kg = 6.022 times 1026 amu; c = 3.00 times 108 m/s]

Answers

The nuclear binding energy per nucleon for 25/12 Mg is 8.6637 x 10^{-12} joules.

To calculate the nuclear binding energy per nucleon for 25/12 Mg, we first need to calculate the total mass of 25/12 Mg in amu. This can be calculated using the atomic mass of 24.985839 amu provided in the question.

Next, we need to calculate the total mass of its constituent particles, which in this case are 12 protons, 13 neutrons, and 12 electrons. Using the provided data, we can calculate the mass of one proton as 1.007825 amu and the mass of one neutron as 1.008665 amu.

Therefore, the total mass of the constituent particles in amu is (12 x 1.007825) + (13 x 1.008665) + (12 x 0.000549) = 25.095554 amu.

We can then calculate the mass defect as the difference between the total mass of the constituent particles and the atomic mass of 25/12 Mg, which is (25.095554 - 24.985839) = 0.109715 amu.

Using Einstein's mass-energy equivalence formula E=mc^{2}, we can calculate the energy released during the formation of 25/12 Mg as (0.109715 x 1.66 x 10^{-27} kg/amu x (3.00 x 10^{8} m/s)^{2}) = 9.7997 x 10^{-11} J.

Finally, we divide the energy released by the total number of nucleons (12 + 13 = 25) to obtain the nuclear binding energy per nucleon, which is (9.7997 x 10^{-11} J)/25 = 3.9199 x 10^{-12} J.

To know more about nuclear binding energy visit:

https://brainly.com/question/31806442

#SPJ11

A spaceship passes you at a speed of 0.900c. You measure its length to be 35.2m . How long would it be when at rest?Express your answer with the appropriate units.

Answers

The spaceship's length would be shorter when at rest. Its length would be 8.16 meters when at rest.

According to Einstein's theory of special relativity, an object in motion appears shorter in the direction of its motion when observed by a stationary observer. This phenomenon is called length contraction. The formula for length contraction is given by:
L = L0 / γ
where L0 is the rest length of the object, L is the observed length, and γ is the Lorentz factor.
In this case, the observed length (L) is given as 35.2m and the velocity (v) as 0.9c. Therefore, the Lorentz factor can be calculated as:
γ = 1 / sqrt(1 - (v^2/c^2)) = 2.29
Substituting the values in the formula for length contraction:
L0 = L * γ = 35.2 * 2.29 = 80.6 meters
Therefore, the spaceship's length would be 80.6 meters when at rest.

To know more about the Einstein's theory visit:

https://brainly.com/question/3489672

#SPJ11

What is the name of the method for determining egg quality by viewing eggs against a light?

Answers

The method for determining egg quality by viewing eggs against a light is called candling.

Candling involves shining a bright light through an egg in a darkened room to examine the interior of the egg. The technique is used to check the quality of the egg and the development of the embryo, and to detect any defects, such as cracks, blood spots, or abnormalities. Candling can also be used to determine the age of an egg by examining the air cell size, which increases as the egg gets older.

Candling is commonly used in the egg industry to sort eggs by quality, size, and weight. It can also be used by hobbyists who keep backyard chickens or other poultry to monitor egg production and ensure the health of their birds.

learn more about Embryo here:

https://brainly.com/question/30670971

#SPJ11

the table shows the speed of light in various media. what would be the index of refraction, n, for the following substances? round your answer to three decimal places.

Answers

The index of refraction for air is 1.0003, for water is 1.333, and for glass is 1.522.


The index of refraction, n, for a substance, is a measure of how much the speed of light is slowed down when passing through that substance compared to its speed in a vacuum. The formula for calculating the index of refraction is n=c/v, where c is the speed of light in a vacuum and v is the speed of light in the given medium.

(a) To find the index of refraction for air, we can use the formula n=c/v and substitute the values of c and v from the table. The speed of light in a vacuum is approximately 299,792,458 m/s, and the speed of light in air is 299,702,547 m/s. Therefore, n = c/v = 299,792,458/299,702,547 = 1.0003 (rounded to three decimal places).

(b) To find the index of refraction for water, we can again use the formula n=c/v and substitute the values of c and v from the table. The speed of light in water is 225,000,000 m/s. Therefore, n = c/v = 299,792,458/225,000,000 = 1.333 (rounded to three decimal places).

(c) To find the index of refraction for glass (light flint), we can use the same formula. The speed of light in glass (light flint) is 197,000,000 m/s. Therefore, n = c/v = 299,792,458/197,000,000 = 1.522 (rounded to three decimal places).

For more such questions on the index of refraction:

https://brainly.com/question/23750645

#SPJ11

The probable question may be:

the table shows the speed of light in various media. what would be the index of refraction, n, for the following substances? round your answer to three decimal places.

(a) air

nair =

(b) water

nwater =

(c) glass (light flint)

nglass (light flint) =

The index of refraction for air is 1.0003, for water is 1.333, and for glass is 1.522.

The index of refraction, n, for a substance, is a measure of how much the speed of light is slowed down when passing through that substance compared to its speed in a vacuum. The formula for calculating the index of refraction is n=c/v, where c is the speed of light in a vacuum and v is the speed of light in the given medium.

(a) To find the index of refraction for air, we can use the formula n=c/v and substitute the values of c and v from the table. The speed of light in a vacuum is approximately 299,792,458 m/s, and the speed of light in air is 299,702,547 m/s. Therefore, n = c/v = 299,792,458/299,702,547 = 1.0003 (rounded to three decimal places).

(b) To find the index of refraction for water, we can again use the formula n=c/v and substitute the values of c and v from the table. The speed of light in water is 225,000,000 m/s. Therefore, n = c/v = 299,792,458/225,000,000 = 1.333 (rounded to three decimal places).

(c) To find the index of refraction for glass (light flint), we can use the same formula. The speed of light in glass (light flint) is 197,000,000 m/s. Therefore, n = c/v = 299,792,458/197,000,000 = 1.522 (rounded to three decimal places).

Visit to know more about  index of refraction:

brainly.com/question/23750645

#SPJ11

A thin 100 g disk with a diameter of 8 cm rotates about an axis through its center with 0.15 j of kinetic energy. What is the speed of a point on the rim?

Answers

Speed of a point on the rim is 0.98 m/s.

To find the speed of a point on the rim, we can use the formula for rotational kinetic energy:

Krot = 1/2 I ω^2

where Krot is the rotational kinetic energy, I is the moment of inertia, and ω is the angular velocity.

We can find the moment of inertia of the disk using the formula:

I = 1/2 m r^2

where m is the mass of the disk and r is the radius.

Since the disk has a diameter of 8 cm, its radius is 4 cm or 0.04 m. Therefore, the moment of inertia is:

I = 1/2 (0.1 kg) (0.04 m)^2 = 8.0 x 10^-5 kg m^2

Next, we can rearrange the formula for rotational kinetic energy to solve for ω:

ω = √(2 Krot / I)

Plugging in the given values, we get:

ω = √(2 x 0.15 J / 8.0 x 10^-5 kg m^2) = 24.50 rad/s

Finally, we can use the formula for linear speed at the rim of a rotating object:

v = ω r

where v is the linear speed and r is the radius.

Plugging in the values, we get:

v = (24.50 rad/s) (0.08 m / 2) = 0.98 m/s

Therefore, the speed of a point on the rim of the disk is 0.98 m/s.


to know more about angular velocity

brainly.com/question/31981065
#SPJ11

A simple harmonic one-dimensional oscillator has energy level given by the characteristic (angular) frequency of the oscillator and where the quantum numb possible integral values n = 0,1,2,..., Suppose that such an oscillator is in thermal reservoir at temperature T low enough so that kulhos) << (a) Find the ratio of the probability of being in the first excited state to the probability of its being in the ground state. (b) Assuming that only the ground state and first excited state are appreciably occupied, find the mean energy of the oscillator as a function of the temperature T.

Answers

The  ratio of the probability of being in the first excited state to the probability of its being in the ground state is approximately 1/2.

The energy levels of a one-dimensional harmonic oscillator are given by:

E_n = (n + 1/2) ℏω

where n is an integer (0, 1, 2, ...) and ω is the characteristic frequency of the oscillator.

At thermal equilibrium, the probability of finding the oscillator in a given energy level is proportional to the Boltzmann factor:

P(n) = exp[-E_n/(k_B T)]/Z

where k_B is the Boltzmann constant, T is the temperature of the thermal reservoir, and Z is the partition function, which is a normalization factor.

Since T is low enough such that k_B T << ℏω, we can use the approximation:

exp[-E_n/(k_B T)] ≈ 1 - E_n/(k_B T)

(a) The ratio of the probability of being in the first excited state (n=1) to the probability of its being in the ground state (n=0) is:

P(1)/P(0) = [1 - E_1/(k_B T)]/[1 - E_0/(k_B T)]

Substituting the energy levels, we get:

P(1)/P(0) = [1 - (3/2)/(k_B T)]/[1 - (1/2)/(k_B T)]

Simplifying this expression, we get:

P(1)/P(0) = (k_B T)/(ℏω)

(b) Assuming that only the ground state and first excited state are appreciable, the total probability is:

P(0) + P(1) = 1

Substituting the Boltzmann factors, we get:

exp[-E_0/(k_B T)] + exp[-E_1/(k_B T)] = 1

Using the approximation for low temperatures, we get:

2 - [E_0/(k_B T) + E_1/(k_B T)] ≈ 1

Substituting the energy levels, we get:

2 - [(1/2)/(k_B T) + (3/2)/(k_B T)] ≈ 1

Simplifying this expression, we get:

(k_B T)/(ℏω) ≈ 1/2

Therefore, the ratio of the probability of being in the first excited state to the probability of its being in the ground state is approximately 1/2.

Visit to know more about Ground state:-

brainly.com/question/12580955

#SPJ11

From greatest to least, rank the accelerations of the boxes. Rank from greatest to least. To rank items as equivalent, overlap them. Reset Help 10 N<-- 10 kg -->15 N 5 N<-- 5 kg -->10 N 15 N<-- 20 kg -->10 N 15 N<-- 5 kg -->5NGreatest Least

Answers

To rank the accelerations of the boxes from greatest to least, we need to apply Newton's second law, which states that the acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. That is, a = F/m.

First, let's calculate the acceleration of each box. For the 10 kg box with a 10 N force, a = 10 N / 10 kg = 1 m/s^2. For the 5 kg box with a 5 N force, a = 5 N / 5 kg = 1 m/s^2. For the 20 kg box with a 15 N force, a = 15 N / 20 kg = 0.75 m/s^2. Finally, for the 5 kg box with a 15 N force, a = 15 N / 5 kg = 3 m/s^2.

Therefore, the accelerations from greatest to least are: 5 kg box with 15 N force (3 m/s^2), 10 kg box with 10 N force (1 m/s^2) and 5 kg box with 5 N force (1 m/s^2), and 20 kg box with 15 N force (0.75 m/s^2).

In summary, the 5 kg box with a 15 N force has the greatest acceleration, followed by the 10 kg box with a 10 N force and the 5 kg box with a 5 N force, and finally, the 20 kg box with a 15 N force has the least acceleration.

Learn more about Acceleration :

https://brainly.com/question/460763

#SPJ11

two forces of 640 n and 410 n (newtons) act on an object. the angle between the forces is 55°. find the magnitude of the resultant and the angle that it makes with the larger force.

Answers

The magnitude of the resultant force is 942.18 N, and the angle it makes with the larger force is 39.7°.

To solve this problem, we can use the following steps:

1. Calculate the magnitude of the resultant force using the law of cosines.

F_resultant^2 = F1^2 + F2^2 - 2 * F1 * F2 * cos(angle)

F_resultant^2 = (640 N)^2 + (410 N)^2 - 2 * (640 N) * (410 N) * cos(55°)

F_resultant^2 ≈ 276687

F_resultant ≈ 526 N

2. Calculate the angle between the resultant force and the larger force using the law of sines.

sin(angle) / F2 = sin(opposite_angle) / F_resultant

sin(angle) = (sin(opposite_angle) * F2) / F_resultant

sin(angle) = (sin(55°) * 410 N) / 526 N

angle ≈ 39.7°

So, the magnitude of the resultant force acting on the object is approximately 942.18 N, and it makes an angle of approximately 39.7° with a larger force of 640 N.

To know more about the resultant force, click here;

https://brainly.com/question/16380983

#SPJ11

The earth's magnetic field strength is 5.0x10^-5 T. How fast would you have to drive your car to create a 4.0Vmotional emf along your 1.0m-long radio antenna? Assume that the motion of the antenna is perpendicular to\vec {B}

Answers

The car would have to be driven at a speed of 8.0x[tex]10^4[/tex] m/s to create a 4.0 V motional emf along the 1.0 m-long radio antenna perpendicular to the earth's magnetic field.

To calculate the speed required to create a 4.0 V motional emf along a 1.0 m-long radio antenna perpendicular to the earth's magnetic field, we can use the equation:

emf = Blv

Where emf is the motional emf, B is the magnetic field strength, l is the length of the antenna, and v is the velocity of the antenna.

Substituting the given values, we have:

4.0 V = (5.0x[tex]10^-^5[/tex] T)(1.0 m)(v)

Solving for v, we get:

v = 8.0x[tex]10^4[/tex]m/s

Therefore, the car would have to be driven at a speed of 8.0x[tex]10^4[/tex] m/s to create a 4.0 V motional emf along the 1.0 m-long radio antenna perpendicular to the earth's magnetic field. This speed is much greater than the speed of sound and is impossible to achieve with current technology.

To know more about  magnetic field refer here :

https://brainly.com/question/7802337

#SPJ11

If it is 95°F today, how much water vapor would be needed to saturate the air in g/kgO 10 g/kgO 14 g/kgO 20 g/kgO 26.5 g/kgO 35 g/kg

Answers

The amount of water vapor needed to saturate the air at 95°F is approximately 0.0127 g/kgO.

The amount of water vapor needed to saturate the air depends on the air temperature and pressure. At a given temperature, there is a limit to the amount of water vapor that the air can hold, which is called the saturation point. If the air already contains some water vapor, we can calculate the relative humidity (RH) as the ratio of the actual water vapor pressure to the saturation water vapor pressure at that temperature.

Assuming standard atmospheric pressure, we can use the following table to find the saturation water vapor pressure at 95°F:

| Temperature (°F) | Saturation water vapor pressure (kPa) |

|------------------|--------------------------------------|

| 80               | 0.38                                 |

| 85               | 0.57                                 |

| 90               | 0.85                                 |

| 95               | 1.27                                 |

| 100              | 1.87                                 |

We can see that at 95°F, the saturation water vapor pressure is 1.27 kPa. To convert this to g/kgO, we can use the following conversion factor:

1 kPa = 10 g/m2O

Therefore, the saturation water vapor density at 95°F is:

1.27 kPa x 10 g/m2O = 12.7 g/m2O

To convert this to g/kgO, we need to divide by 1000, which gives:

12.7 g/m2O / 1000 = 0.0127 g/kgO

Learn more about vapor density here:

https://brainly.com/question/13014982

#SPJ11

Use the curved-arrow notation to draw the mechanism for the formation of polystyrene from styrene and benzoyl peroxide. Linear polystyrene has phenyl groups that are attached to alternate, not adjacent, carbons of the polymer chain. Refer to the answer to question four to explain the mechanistic basis for this fact.

Answers

Benzoyl peroxide initiates styrene polymerization by generating radicals; double bond addition alternates due to stability, forming linear polystyrene.

The formation of polystyrene from styrene and benzoyl peroxide involves a radical polymerization mechanism.

Benzoyl peroxide, as an initiator, breaks down into two benzoyl radicals.

These radicals react with the double bond of a styrene monomer, creating a new radical at the end of the styrene.

This radical reacts with another styrene monomer's double bond, propagating the polymer chain.

Phenyl groups attach to alternate carbons due to the stabilization of the radical in the intermediate, as adjacent carbons would destabilize the radical.

This process continues, forming a linear polystyrene polymer with phenyl groups on alternate carbons.

For more such questions on polymerization, click on:

https://brainly.com/question/25177308

#SPJ11

Calculate the horizontal force P on the light 10° wedge necessary to initiate movement of the 40-kg cylinder. The coefficient of static friction for both pairs of contacting surfaces is 0.25. Also determine the friction force FB at point B. (Caution: Check carefully your assumption of where slipping occurs.)

Answers

A horizontal force of 68.56 N is required to initiate the movement of the cylinder and the friction force at point B is 98 N.

To find the force P necessary to initiate movement of the cylinder, we can use the equation:

P = mg * tan(θ) + μmg * cos(θ)

where m is the mass of the cylinder, g is the acceleration due to gravity, θ is the angle of the wedge, and μ is the coefficient of static friction between the cylinder and the wedge.

Substituting the values given, we get:

P = 40 kg * 9.8 m/s^2 * tan(10°) + 0.25 * 40 kg * 9.8 m/s^2 * cos(10°)

P = 68.56 N

To find the friction force FB at point B, we need to first determine if slipping occurs at point A or point B. Assuming that slipping occurs at point B, we can calculate the friction force as:

FB = μN

where N is the normal force acting on the cylinder at point B. The normal force is equal to the weight of the cylinder, which is:

N = mg = 40 kg * 9.8 m/s^2 = 392 N

Substituting this into the equation for FB, we get:

FB = 0.25 * 392 N = 98 N

For more such questions on friction force:

https://brainly.com/question/30280752

#SPJ11

A horizontal force of 68.56 N is required to initiate the movement of the cylinder and the friction force at point B is 98 N.

To find the force P necessary to initiate movement of the cylinder, we can use the equation:

P = mg * tan(θ) + μmg * cos(θ)

where m is the mass of the cylinder, g is the acceleration due to gravity, θ is the angle of the wedge, and μ is the coefficient of static friction between the cylinder and the wedge.

Substituting the values given, we get:

P = 40 kg * 9.8 m/s^2 * tan(10°) + 0.25 * 40 kg * 9.8 m/s^2 * cos(10°)

P = 68.56 N

To find the friction force FB at point B, we need to first determine if slipping occurs at point A or point B. Assuming that slipping occurs at point B, we can calculate the friction force as:

FB = μN

where N is the normal force acting on the cylinder at point B. The normal force is equal to the weight of the cylinder, which is:

N = mg = 40 kg * 9.8 m/s^2 = 392 N

Substituting this into the equation for FB, we get:

FB = 0.25 * 392 N = 98 N

Visit to know more about Friction force:-

brainly.com/question/30280752

#SPJ11

at room temperature, what fraction of the nitrogen molecules in the air are moving at less than 300 m/s?

Answers

The fraction of nitrogen molecules in the air that are moving at less than 300 m/s is likely to be very high, since this is well below the average speed of nitrogen molecules at room temperature. However, the exact fraction will depend on the specific temperature and pressure conditions.

At room temperature, the majority of nitrogen molecules in the air move at speeds less than 300 m/s. The average speed of nitrogen molecules in the air is around 500 m/s, but the speed distribution follows a bell-shaped curve, with a small fraction of molecules moving much faster and a small fraction moving much slower than the average.
The distribution of molecular speeds is determined by the Maxwell-Boltzmann distribution, which describes how the speeds of gas molecules are related to temperature. The distribution shows that at any given temperature, only a small fraction of molecules have speeds greater than a certain value.
For example, at room temperature (around 25°C or 298 K), only about 2.5% of nitrogen molecules in the air have speeds greater than 500 m/s, while the vast majority (over 97%) have speeds less than this value. Even fewer molecules (less than 0.1%) have speeds greater than 1000 m/s, which is much faster than the speed of sound in air.
Overall, the fraction of nitrogen molecules in the air that are moving at less than 300 m/s is likely to be very high, since this is well below the average speed of nitrogen molecules at room temperature. However, the exact fraction will depend on the specific temperature and pressure conditions.

To know more about fraction visit :

https://brainly.com/question/8633349

#SPJ11

Lab 08: Reflection and Refraction of Light You will need to run a simulation to do the lab. Answer the following questions as you work through the lab. Write your answers in blue. (Note that we may miss your response if it does not stand out ) Re-load the file in word or PDF format in Canvas before the due date. Overview Light bends when it enters from one medium to another. This bending of light is called Refraction of light. The relationship between the angle of incidence (medium 1) and the angle of refraction (in the medium 2) is given by Snell’s Law: n_1 sin⁡〖θ_1=n_2 sin⁡〖θ_2 〗 〗 Eq. 8.1 Where n_1 is the index of refraction, θ_1 angle of incidence in medium 1; n_2 is the index of refraction, θ_2 is the angle of refraction in medium 2. The angles, θ are measured with respect to the normal to the surface between the two mediums. When light travels from an optically light medium to an optically dense medium, i.e. n_1 n2, the refracted light bends away from the normal. For a certain angle of incidence (called the critical angle, θ_c) the refracted ray will be 90 from the normal. If the angle of incidence is any larger, the ray is totally reflected in medium 1 and no light comes out of medium 2. This is called Total Internal Reflection. For this part of the lab, you will find the critical angle for different sets of boundaries. Select "More Tools" tab . Check the "normal" and "angle" box to view and measure the angles. 1. Set the Medium 1 = Glass (n1 = 1.5); Medium 2 = Air (n2 = 1.0). 2. Start with θ_1=0. Gradually increase θ_1 until the refracted ray, θ_2=90°. This incident angle is the critical angle, θ_c . If you keep on increasing θ_1, there will only be reflected light. In this way, you can figure out the critical angle for different mediums at the boundaries listed in the table below. Table 8.5: Critical angle of different sets of boundaries Medium 1 (n1) Medium 2 (n2) Critical Angle (c) Water Air Glass Air Glass Water Mystery Medium A Air Mystery Medium A Glass 3. Conclusion Question: (i) Based on your observation in the table, what is the condition for total internal reflection? (ii) Is there a total internal reflection if both mediums have same index of refraction (e.g. n_1=n_2 )? Explain your answer.

Answers

The condition for total internal reflection is when the angle of incidence (θ₁) is greater than the critical angle (θ_c).No, there is no total internal reflection if both mediums have the same index of refraction (n₁ = n₂).Based on your observations in the table, what is the condition for total internal reflection, and is there total internal reflection if both mediums have the same index of refraction (e.g., n₁ = n₂)?

Based on the observations in the table, the condition for total internal reflection is when the angle of incidence (θ₁) is larger than the critical angle (θ_

When the angle of incidence exceeds the critical angle, the refracted ray cannot escape the first medium and is totally reflected back into it.

No, there is no total internal reflection if both mediums have the same index of refraction (n₁ = n₂). Total internal reflection can only occur when light travels from a medium with a higher refractive index to a medium with a lower refractive index.

If the indices of refraction are equal, the angle of refraction (θ₂) will always be equal to the angle of incidence (θ₁), as determined by Snell's Law. In this case, the light will continue to propagate through the interface between the two mediums without any total internal reflection occurring.

Total internal reflection requires a change in the refractive index between the two mediums to cause a significant change in the angle of refraction, allowing the critical angle to be reached or exceeded.

Learn more about   internal reflection

brainly.com/question/13088998

#SPJ11

a girl tosses a candy bar across a room with an initial velocity of 8.2 m/s and an angle of 56o. how far away does it land? 6.4 m 4.0 m 13 m 19 m

Answers

The candy bar lands approximately 13 meters away from the girl who tossed it.

To find the distance the candy bar travels, we can use the horizontal component of its initial velocity.

Using trigonometry, we can determine that the horizontal component of the velocity is 6.5 m/s. We can then use the equation:

d = vt,

where,

d is the distance,

v is the velocity, and

t is the time.

Since there is no horizontal acceleration, the time it takes for the candy bar to land is the same as the time it takes for it to reach its maximum height, which is half of the total time in the air.

We can calculate the total time in the air using the vertical component of the velocity and the acceleration due to gravity.

After some calculations, we find that the candy bar lands approximately 13 meters away from the girl who tossed it.

For more such questions on meters, click on:

https://brainly.com/question/28529268

#SPJ11

sunlight of intensity 600 w m−2 is incident on a building at 60° to the vertical. what is the solar intensity or insolation, on (a) a horizontal surface? and (b) a vertical surface?

Answers

When sunlight with an intensity of 600 W/m² is incident on a building at a 60° angle to the vertical, the solar intensity or insolation on different surfaces can be calculated using trigonometry.

(a) For a horizontal surface, the effective solar intensity is the incident intensity multiplied by the cosine of the angle. In this case, cos(60°) = 0.5. Therefore, the solar intensity on a horizontal surface is 600 W/m² × 0.5 = 300 W/m².

(b) For a vertical surface, the effective solar intensity is the incident intensity multiplied by the sine of the angle. In this case, sin(60°) = √3/2 ≈ 0.866. Therefore, the solar intensity on a vertical surface is 600 W/m² × 0.866 ≈ 519.6 W/m².
So, the insolation on a horizontal surface is 300 W/m² and on a vertical surface is approximately 519.6 W/m².

You can read more about solar intensity at https://brainly.com/question/28895397

#SPJ11

Other Questions
do not write gibberish answer all questions properly for grade 10 students 1. a) What is the function of the worms digestive system? (Hint: it has the same general function as a humans) b) Name the organs you identified in your dissection that are part of the worms digestive system. c) Compare a worms digestive system to a humans. 2. a) What is the function of the worms respiratory system? (Hint: it has the same general function as a humans) b) How do worms breathe? c) Compare a worms respiratory system to a humans. 3. Compare at least one other human organ system with an organ system you observed in your worm dissection. 5 Students share their math grades out of 100 as shown below: 80, 45, 30, 93, 49 Estimate the number of students earning higher than 60% As you are walking across your laboratory, you notice a 5.25 L flask containing a gaseous mixture of 0.0205 mole NO2 (9) and 0.750 mol N204() at 25C. Is this mixture at equilibrium? If not, will the reaction proceed towards forming more products, or more reactants? N204(0) 2NO2 (g) Kc = 4.61 x 10-3 at 25C A. The answer cannot be determined with the given information. B. The mixture is not at equilibrium and will proceed towards forming more product C. The mixture is not at equilibrium and will proceed towards forming more reactants. D. The mixture is at equilibrium. A museum groundskeeper is creating a semicircular statuary garden with a diameter of 30 feet. There will be a fence around the garden. The fencing costs $8. 00 per linear foot. About how much will the fencing cost altogether? Round to the nearest hundredth. Use 3. 14 for This is due in 30 minutes which of these achievements are attributed to the gupta empire? select all that apply. chess, expansion of the textile trade, metallurgy (metal-working), establishment of hospitals and clinics, advancements in mathematics such as numerals 1-9, and the concept of zero. What kind of air would be characteristic of a continental tropical air mass?A. Cold, wetB. Cold, dryC. Warm, humidD. Warm, dry Given a data set consisting of 33 unique whole number observations, its five-number summary is:12, 24, 38, 51, 69How many observations are strictly less than 24? Springback in a sheet-metal bending operation is the result of which of the following (one best answer): (a) elastic modulus of the metal, (b) elastic recovery of the metal, (c) overbending, (d) overstraining, or (e) yield strength of the metal? A square rug measures 8 ft by 8 ft. Find the diagonal distance of the rug to the nearest whole number Potentially what could be the benefits of using racial/ethnic groups as a mascot for the racial/ethnicgroup? List and explain 3 benefits how many mlliliters ofa 12.0 m aqueous hno3 solution should you use to prepare 850.0 ml of a 0.250 m hno3 solution 4. Three conveyor belts are arranged to transport material and the conveyor belts must be started in reverse sequence (the last one first and the first one last) so that the material does not get piled on to a stopped or slow-moving conveyor. Each belt takes 45 seconds to reach full speed. Design a ladder logic that would control the start and stop of this three-conveyor system simplify to an expression of the form (a sin()). 6 sin 6 6 cos 6 a hydroelectric dam creates a reservoir of 10 km3. the average head of the reservoir is 100 m. compute the pe of the reservoir. The magnitude of the line voltage at the terminals of a balanced Y-connected load is 6600 V. The load impedance is 240-j70 22 per phase. The load is fed from a line that has an impedance of 0.5 + j42 per phase. a) What is the magnitude of the line current? b) What is the magnitude of the line voltage at the source? this assignment is designed to have you use object oriented design to design accounts with transaction processing at a bank. there will be the following 3 account types: Savings Account Checking Account Interest Checking AccountYour program must create classes for all the account types including a base class.All account types and the base class must use .h files for headers and .cpp for class implementations. The names of these files should be the names of the class used in the program. Javier investigated what happens when Earths plates meet. He found that as Earths plates meet at plate boundaries and interact, they move in three different ways. Explain the different kinds of events that can take place when convergent boundaries meet. Name one example of this from somewhere on Earth Evaluate the iterated integral. 6 1 x 0 (5x 2y) dy dx 4. (3 pts.) what is the algorithmic time complexity of binary search on a sorted array? All of the following are signs of adequate breathing and circulation in the newborn except: (A) heart rate greater than 100. (B) cyanosis of only the hands and feet. (C) relaxation of the extremities. (D) vigorous crying.