Evaluate the surface integral\int \int F \cdot dS(flux of F across S)∫∫F(x,y,x) = yi-xj+2zkis the hemisphere x2+y2+z2=4, z>0,oriented downward.

Answers

Answer 1

To evaluate the surface integral, use the divergence theorem which states "the flux of a vector field F across a closed surface S is equal to the triple integral of the divergence of F over the enclosed volume V".

Since the hemisphere x^2 + y^2 + z^2 = 4, z > 0, is a closed surface, we can apply the divergence theorem. First, we need to find the divergence of F:

div F = ∂(yi)/∂x + ∂(-xi)/∂y + ∂(2zk)/∂z

     = 0 + 0 + 2

     = 2

Next, we need to find the enclosed volume V. The hemisphere x^2 + y^2 + z^2 = 4, z > 0, has radius 2 and is centered at the origin. Thus, its enclosed volume is half the volume of a sphere of radius 2:

V = (1/2)(4/3)π(2^3)

 = (32/3)π

Now, we can use the divergence theorem to evaluate the surface integral:

∬F · dS = ∭div F dV

        = 2V

        = (64/3)π

Therefore, the flux of F across the hemisphere x^2 + y^2 + z^2 = 4, z > 0, oriented downward is (64/3)π.

To know more about flux, visit:

https://brainly.com/question/14527109

#SPJ11


Related Questions

Which expression is equivalent to the one below

Answers

Answer:

C. 8 * 1/9

Step-by-step explanation:

the answer is C because 8 * 1/9 = 8/9, and 8/9 is a division equal to 8:9

This table shows some input-output pairs for a function f. Use this information to determine the vertical intercept and the horizontal intercept of the functions. + 0 0.1 1.5 15 0.3 -5 0 2 3.5 5 Vertical intercept - 15 and Horizontal intercept - 2 Vertical intercept -0.1 and Horizontal intercept - 15 Vertical intercept - 2 and Horizontal intercept - 15 Vertical intercept -0.1 and Horizontal intercept - -0.3 Vertical intercept = 2 and Horizontal intercept - 15 Submit Question 16 17. Points: 0 of 1 sible

Answers

So, the correct option is: Vertical intercept = -15 and Horizontal intercept = 2.

The vertical intercept of a function is the value of the function when the input is zero. In other words, it is the point where the function intersects the y-axis. To find the vertical intercept of this function, we need to find the value of f(0) from the table.

Similarly, the horizontal intercept of a function is the point where the function intersects the x-axis. In other words, it is the value of the input for which the output of the function is zero. To find the horizontal intercept of this function, we need to find the value of x for which f(x) = 0 from the table.

In this case, we see from the table that f(0) = -15, which means that the function intersects the y-axis at -15. And we also see that f(2) = 0, which means that the function intersects the x-axis at 2. Therefore, the vertical intercept of the function is -15, and the horizontal intercept of the function is 2.

To know more about Vertical intercept,

https://brainly.com/question/29277179

#SPJ11

the composition of two rotations with the same center is a rotation. to do so, you might want to use lemma 10.3.3. it makes things muuuuuch nicer.

Answers

The composition R2(R1(x)) is a rotation about the center C with angle of rotation given by the angle between the vectors P-Q and R2(R1(P))-C.

Lemma 10.3.3 states that any rigid motion of the plane is either a translation a rotation about a fixed point or a reflection across a line.

To prove that the composition of two rotations with the same center is a rotation can use the following argument:

Let R1 and R2 be two rotations with the same center C and let theta1 and theta2 be their respective angles of rotation.

Without loss of generality can assume that R1 is applied before R2.

By Lemma 10.3.3 know that any rotation about a fixed point is a rigid motion of the plane.

R1 and R2 are both rigid motions of the plane and their composition R2(R1(x)) is also a rigid motion of the plane.

The effect of R1 followed by R2 on a point P in the plane. Let P' be the image of P under R1 and let P'' be the image of P' under R2.

Then, we have:

P'' = R2(R1(P))

= R2(P')

Let theta be the angle of rotation of the composition R2(R1(x)).

We want to show that theta is also a rotation about the center C.

To find a point Q in the plane that is fixed by the composition R2(R1(x)).

The angle of rotation theta must be the angle between the line segment CQ and its image under the composition R2(R1(x)).

Let Q be the image of C under R1, i.e., Q = R1(C).

Then, we have:

R2(Q) = R2(R1(C)) = C

This means that the center C is fixed by the composition R2(R1(x)). Moreover, for any point P in the plane, we have:

R2(R1(P)) - C = R2(R1(P) - Q)

The right-hand side of this equation is the image of the vector P-Q under the composition R2(R1(x)).

The composition R2(R1(x)) is a rotation about the center C angle of rotation given by the angle between the vectors P-Q and R2(R1(P))-C.

The composition of two rotations with the same center is a rotation about that center.

For similar questions on composition

https://brainly.com/question/9464122

#SPJ11

The point P is on the unit circle. If the y-coordinate of P is -3/8 , and P is in quadrant III , then x= what ?

Answers

The value of x is -sqrt(55)/8.

Let's use the Pythagorean theorem to find the value of x.

Since P is on the unit circle, we know that the distance from the origin to P is 1. Let's call the x-coordinate of P "x".

We can use the Pythagorean theorem to write:

x^2 + (-3/8)^2 = 1^2

Simplifying, we get:

x^2 + 9/64 = 1

Subtracting 9/64 from both sides, we get:

x^2 = 55/64

Taking the square root of both sides, we get:

x = ±sqrt(55)/8

Since P is in quadrant III, we know that x is negative. Therefore,

x = -sqrt(55)/8

So the value of x is -sqrt(55)/8.

To know more about Pythagorean theorem  refer here:

https://brainly.com/question/14930619

#SPJ11

A cream is sold in a 26-gram container. the average amount of cream used per application is 1 6 7 grams. how many applications can be made with the container?

Answers

To find out how many applications can be made with the 26-gram container, we need to divide the total amount of cream in the container by the average amount of cream used per application.

Total amount of cream (container) = 26 grams
Average amount of cream per application = 1 6/7 grams

First, let's convert the mixed fraction 1 6/7 to an improper fraction:
(1 * 7) + 6 = 13/7 grams

Now, divide the total amount of cream by the average amount of cream per application:

26 grams ÷ 13/7 grams

To divide by a fraction, you multiply by its reciprocal (the fraction flipped):

26 * 7/13

Now, cancel out the common factor (13):

(26/13) * (7/1)

2 * 7 = 14

So, you can make 14 applications with the 26-gram container.

To know more about applications, visit:

https://brainly.com/question/31164894

#SPJ11

Can anyone give me the answer to what 1 2/5 = 1/6K is i keep getting K=72/5 but my teacher says its wrong i'm in 6th grade and need help ASAP

Answers

Answer:

k = [tex]\frac{12}{5}[/tex]

Step-by-step explanation:

[tex]\frac{12}{5}[/tex] = [tex]\frac{1}{6k}[/tex] ( cross- multiply )

72k = 5 ( divide both sides by 72 )

k = [tex]\frac{5}{72}[/tex]

Answer: k=8.4 or 42/5

Step-by-step explanation: to find k you take 1 2/5 and divide it by 1/6. When I did it I got 8.4. To check my work I replaced the variable in the equation and it was correct.

Test the claim about the differences between two population variances sd 2/1 and sd 2/2 at the given level of significance alpha using the given sample statistics. Assume that the sample statistics are from independent samples that are randomly selected and each population has a normal distribution
​Claim: σ21=σ22​, α=0.01
Sample​ statistics: s21=5.7​, n1=13​, s22=5.1​, n2=8
Find the null and alternative hypotheses.
A. H0​: σ21≠σ22 Ha​: σ21=σ22
B. H0​: σ21≥σ22 Ha​: σ21<σ22
C. H0​: σ21=σ22 Ha​: σ21≠σ22
D. H0​: σ21≤σ22 Ha​:σ21>σ22
Find the critical value.

Answers

The null and alternative hypotheses are: H0: σ21 = σ22 and Ha: σ21 ≠ σ22(C).

To find the critical value, we need to use the F-distribution with degrees of freedom (df1 = n1 - 1, df2 = n2 - 1) at a significance level of α/2 = 0.005 (since this is a two-tailed test).

Using a calculator or a table, we find that the critical values are F0.005(12,7) = 4.963 (for the left tail) and F0.995(12,7) = 0.202 (for the right tail).

The test statistic is calculated as F = s21/s22, where s21 and s22 are the sample variances and n1 and n2 are the sample sizes. Plugging in the given values, we get F = 5.7^2/5.1^2 = 1.707.

Since this value is not in the rejection region (i.e., it is between the critical values), we fail to reject the null hypothesis. Therefore, we do not have sufficient evidence to claim that the population variances are different at the 0.01 level of significance.

So C is correct option.

For more questions like Null hypothesis click the link below:

https://brainly.com/question/28920252

#SPJ11

if n is a positive integer, then [3−5−90−12]n is ⎡⎣⎢⎢ ⎤⎦⎥⎥ (hint: diagonalize the matrix [3−5−90−12] first. note that your answers will be formulas that involves n. be careful with parentheses.)

Answers

If we diagonalize the matrix [3 -5; -9 0] as [6 -3; 0 -2] and raise it to the power of n, then [3 -5 -9 -12]n is given by the formula [6n(-3)n; 0 (-2)n].

The problem asks us to find a formula for the matrix [3 -5; -9 0]^n, where n is a positive integer. This formula involves powers of the eigenvalues and can be expressed using complex numbers in integers.

To do this, we first diagonalize the matrix by finding its eigenvalues and eigenvectors.

We obtain two eigenvalues λ1 = (3 + i√21)/2 and λ2 = (3 - i√21)/2, and corresponding eigenvectors v1 and v2.

Using these eigenvectors as columns, we form the matrix P, and the diagonal matrix D with the eigenvalues on the diagonal. We then have [3 -5; -9 0] = P D P^(-1). From here, we can raise this expression to the power n, which gives us [3 -5; -9 0]^n = P D^n P^(-1). Since D is diagonal, we can easily compute D^n as a diagonal matrix with the nth powers of the eigenvalues on the diagonal.

Finally, we can substitute all the matrices and simplify to get the formula for [3 -5; -9 0]^n as a function of n. This formula involves powers of the eigenvalues and can be expressed using complex numbers in integers.

To learn more about “integer” refer to the https://brainly.com/question/929808

#SPJ11

describe mitigation techniques of buffer overflow, including non-excitable (nx), aslr, canary.

Answers

Buffer overflow mitigation techniques are designed to prevent or minimize the impact of buffer overflow attacks.

Key techniques of buffer overflow

1. Non-executable (NX) memory: This technique marks certain areas of memory as non-executable, preventing the injected malicious code from being executed.

2. Address Space Layout Randomization (ASLR): ASLR randomizes the memory addresses used by programs, making it difficult for attackers to predict the location of the injected code, reducing the chances of a successful exploit.

3. Stack canaries: Canary values are placed between the buffer and control data on the stack to detect buffer overflow. If the canary value is altered during a buffer overflow, it indicates an attack, allowing the program to terminate safely before control data is compromised.

These techniques work together to enhance system security and minimize the risk of buffer overflow attacks.

Learn more about Buffer Overflow at

https://brainly.com/question/31181638

#SPJ11

A 6 ounce contaier of greek yogurt contains 150 calories . Find rate of calories per ounce

Answers

Answer:

the answer is B 25 calories/1 ounce

explanation:

6 ounce/150 calories = X/ 1 calories

= 25/1

4a. what do we know about the long-run equilibrium in perfect competition? in long-run equilibrium, economic profit is _____ and ____.

Answers

In long-run equilibrium in perfect competition, economic profit is zero and firms are producing at their efficient scale.

In the long-run equilibrium of perfect competition, we know that firms operate efficiently and economic forces balance supply and demand. In this market structure, numerous firms produce identical products, with no barriers to entry or exit.

Due to free entry and exit, firms cannot maintain any long-term economic profit. In the long-run equilibrium, economic profit is zero and firms earn a normal profit.

This outcome occurs because if firms were to earn positive economic profits, new firms would enter the market, increasing competition and driving down prices until profits are eliminated.

Conversely, if firms experience losses, some will exit the market, reducing competition and allowing prices to rise until the remaining firms reach a break-even point.

As a result, resources are allocated efficiently, and consumer and producer surpluses are maximized.

Learn more about long-run equilibrium at

https://brainly.com/question/13998424

#SPJ11

evaluate exactly, using the fundamental theorem of calculus: ∫b0 (x^6/3 6x)dx

Answers

The exact value of the integral ∫b0 (x^6/3 * 6x) dx is b^8.

The Fundamental Theorem of Calculus (FTC) is a theorem that connects the two branches of calculus: differential calculus and integral calculus. It states that differentiation and integration are inverse operations of each other, which means that differentiation "undoes" integration and integration "undoes" differentiation.

The first part of the FTC (also called the evaluation theorem) states that if a function f(x) is continuous on the closed interval [a, b] and F(x) is an antiderivative of f(x) on that interval, then:

∫ab f(x) dx = F(b) - F(a)

In other words, the definite integral of a function f(x) over an interval [a, b] can be evaluated by finding any antiderivative F(x) of f(x), and then plugging in the endpoints b and a and taking their difference.

The second part of the FTC (also called the differentiation theorem) states that if a function f(x) is continuous on an open interval I, and if F(x) is any antiderivative of f(x) on I, then:

d/dx ∫u(x) v(x) f(t) dt = u(x) f(v(x)) - v(x) f(u(x))

In other words, the derivative of a definite integral of a function f(x) with respect to x can be obtained by evaluating the integrand at the upper and lower limits of integration u(x) and v(x), respectively, and then multiplying by the corresponding derivative of u(x) and v(x) and subtracting.

Both parts of the FTC are fundamental to many applications of calculus in science, engineering, and mathematics.

Let's start by finding the antiderivative of the integrand:

∫ (x^6/3 * 6x) dx = ∫ 2x^7 dx = x^8 + C

Using the Fundamental Theorem of Calculus, we have:

∫b0 (x^6/3 * 6x) dx = [x^8]b0 = b^8 - 0^8 = b^8

Therefore, the exact value of the integral ∫b0 (x^6/3 * 6x) dx is b^8.

To know more about integral visit:

brainly.com/question/30094386

#SPJ11

a) let f = 5y i 2 j − k and c be the line from (3, 2, -2) to (6, 1, 7). find f · dr c = ____

Answers

the answer is: f · dr = -30

To find f · dr for the line c from (3, 2, -2) to (6, 1, 7), we first need to parametrize the line in terms of a vector function r(t). We can do this as follows:

r(t) = <3, 2, -2> + t<3, -1, 9>

This gives us a vector function that describes all the points on the line c as t varies.

Next, we need to calculate f · dr for this line. We can use the formula:

f · dr = ∫c f · dr

where the integral is taken over the line c. We can evaluate this integral by substituting r(t) for dr and evaluating the dot product:

f · dr = ∫c f · dr = ∫[3,6] f(r(t)) · r'(t) dt

where [3,6] is the interval of values for t that correspond to the endpoints of the line c. We can evaluate the dot product f(r(t)) · r'(t) as follows:

f(r(t)) · r'(t) = <5y, 2, -1> · <3, -1, 9>

= 15y - 2 - 9

= 15y - 11

where we used the given expression for f and the derivative of r(t), which is r'(t) = <3, -1, 9>.

Plugging this dot product back into the integral, we get:

f · dr = ∫[3,6] f(r(t)) · r'(t) dt

= ∫[3,6] (15y - 11) dt

To evaluate this integral, we need to express y in terms of t. We can do this by using the equation for the y-component of r(t):

y = 2 - t/3

Substituting this into the integral, we get:

f · dr = ∫[3,6] (15(2 - t/3) - 11) dt

= ∫[3,6] (19 - 5t) dt

= [(19t - 5t^2/2)]|[3,6]

= (57/2 - 117/2)

= -30

Therefore, the answer is:

f · dr = -30

Learn more about line here:

https://brainly.com/question/2696693

#SPJ11

evaluate the integral using the following values. integral 2 to 6 1/5x^3 dx = 320

Answers

The value of the integral ∫(2 to 6) 1/5x^3 dx is 64, which is consistent with the given value of 320.

The given integral is ∫(2 to 6) 1/5x^3 dx.

To evaluate this integral, we can use the power rule of integration, which states that the integral of x^n with respect to x is (1/(n+1))x^(n+1) + C, where C is the constant of integration. Applying this rule to the integrand, we get:

∫(2 to 6) 1/5x^3 dx = (1/5) ∫(2 to 6) x^3 dx

Using the power rule of integration, we can now find the antiderivative of x^3, which is (1/4)x^4. So, we have:

(1/5) ∫(2 to 6) x^3 dx = (1/5) [(1/4)x^4] from 2 to 6

Substituting the upper and lower limits of integration, we get:

(1/5) [(1/4)6^4 - (1/4)2^4]

Simplifying this expression, we get:

(1/5) [(1/4)(1296 - 16)]

= (1/5) [(1/4)1280]

= (1/5) 320

= 64

Therefore, we have shown that the value of the integral ∫(2 to 6) 1/5x^3 dx is 64, which is consistent with the given value of 320.

In conclusion, we evaluated the integral ∫(2 to 6) 1/5x^3 dx using the power rule of integration and the given values of the upper and lower limits of integration. By substituting these values into the antiderivative of the integrand, we were able to simplify the expression and find the value of the integral as 64, which is consistent with the given value.

Learn more about integral here

https://brainly.com/question/30094386

#SPJ11

show that the rejection region is of the form {x ≤ x0} ∪ {x ≥ x1}, where x0 and x1 are determined by c.

Answers

The rejection region is given by: {F(x) ≤ c} ∪ {F(x) ≥ 1 - c} which is of the form {x ≤ x0} ∪ {x ≥ x1}, where x0 and x1 are determined by c.

To show that the rejection region is of the form {x ≤ x0} ∪ {x ≥ x1}, we can use the fact that the critical value c divides the sampling distribution of the test statistic into two parts, the rejection region and the acceptance region.

Let F(x) be the cumulative distribution function (CDF) of the test statistic. By definition, the rejection region consists of all values of the test statistic for which F(x) ≤ c or F(x) ≥ 1 - c.

Since the sampling distribution is symmetric about the mean under the null hypothesis, we have F(-x) = 1 - F(x) for all x. Therefore, if c is the critical value, then the rejection region is given by:

{F(x) ≤ c} ∪ {1 - F(x) ≤ c}

= {F(x) ≤ c} ∪ {F(-x) ≥ 1 - c}

= {F(x) ≤ c} ∪ {F(x) ≥ 1 - c}

This shows that the rejection region is of the form {x ≤ x0} ∪ {x ≥ x1}, where x0 and x1 are determined by c. Specifically, x0 is the value such that F(x0) = c, and x1 is the value such that F(x1) = 1 - c.

Know more about rejection region here:

https://brainly.com/question/31046299

#SPJ11

Musk's age is 2/3of abu's age the sum of their age is 30

Answers

Musk is 12 years old, Abu is 18 years old and the sum of their ages is 30.

Let's find out the current ages of Musk and Abu from the given information.

Musk's age is 2/3 of Abu's age.

We can express it as; Musk's age = 2/3 × Abu's age Also, the sum of their age is 30.

So we can express it as: Musk's age + Abu's age = 30

Substitute the first equation into the second one:2/3 × Abu's age + Abu's age = 30

Simplify the equation and solve for Abu's age:5/3 × Abu's age = 30Abu's age = 18

Substitute Abu's age into the first equation to find Musk's age:

Musk's age = 2/3 × 18Musk's age = 12

To know more about age visit

https://brainly.com/question/29963980

#SPJ11

a closed system undergoes a process for which s2 = s1. must the process be internally reversible? explain

Answers

A process with s2 = s1 in a closed system may be externally reversible, but it is not guaranteed to be internally reversible.

In a closed system, if s2 = s1, it means that the entropy change (Δs) between the initial state (s1) and the final state (s2) is zero. However, this does not necessarily mean that the process is internally reversible. Here's why:

1. A closed system refers to a system in which mass is not exchanged with its surroundings, but energy transfer (like heat or work) can still occur.
2. Entropy (s) is a thermodynamic property that measures the level of molecular disorder in a system. When Δs = 0, it implies that the total entropy change in the system and its surroundings is zero.
3. A reversible process is a theoretical concept in which the system and its surroundings are always infinitesimally close to equilibrium, meaning it can be reversed without any net changes to the system and surroundings.

Now, when s2 = s1, it is possible for a process to be externally reversible, meaning the entropy change in the surroundings is also zero. However, internal reversibility depends on the absence of any dissipative effects, like friction or inelastic deformation, within the system itself.

In conclusion, a process with s2 = s1 in a closed system may be externally reversible, but it is not guaranteed to be internally reversible. Internal reversibility depends on whether the process occurs without any dissipative effects within the system.

Learn more about reversible here:

https://brainly.com/question/29736884

#SPJ11

Weights of eggs: 95% confidence; n = 22, = 1.37 oz, s = 0.33 oz

Answers

The 95% confidence interval is 1.23 to 1.51

How to calculate the 95% confidence interval

From the question, we have the following parameters that can be used in our computation:

Sample, n = 22

Mean, x = 1.37 oz

Standard deviation, s = 0.33 oz

Start by calculating the margin of error using

E = s/√n

So, we have

E = 0.33/√22

E = 0.07

The 95% confidence interval is

CI = x ± zE

Where

z = 1.96 i.e. z-score at 95% CI

So, we have

CI = 1.37 ± 1.96 * 0.07

Evaluate

CI = 1.37 ± 0.14

This gives

CI = 1.23 to 1.51

Hence, the 95% confidence interval is 1.23 to 1.51

Read more about confidence interval at

https://brainly.com/question/20309162

#SPJ4

The random variables X and Y have a joint density function given by f(x, y) = ( 2e(−2x) /x, 0 ≤ x < [infinity], 0 ≤ y ≤ x , otherwise.
(a) Compute Cov(X, Y ).
(b) Find E(Y | X).
(c) Compute Cov(X,E(Y | X)) and show that it is the same as Cov(X, Y ).
How general do you think is the identity that Cov(X,E(Y | X))=Cov(X, Y )?

Answers

(a) Cov(X, Y) = 1/2, (b) E(Y|X) = X/2, (c) Cov(X,E(Y|X)) = Cov(X, Y) = 1/2, and the identity Cov(X,E(Y|X)) = Cov(X, Y) holds true for any joint distribution of X and Y.

(a) To compute Cov(X, Y), we need to first find the marginal density of X and the marginal density of Y.

The marginal density of X is:

f_X(x) = ∫[0,x] f(x,y) dy

= ∫[0,x] 2e^(-2x) / x dy

= 2e^(-2x)

The marginal density of Y is:

f_Y(y) = ∫[y,∞] f(x,y) dx

= ∫[y,∞] 2e^(-2x) / x dx

= -2e^(-2y)

Next, we can use the formula for covariance:

Cov(X, Y) = E(XY) - E(X)E(Y)

To find E(XY), we can integrate over the joint density:

E(XY) = ∫∫ xyf(x,y) dxdy

= ∫∫ 2xye^(-2x) / x dxdy

= ∫ 2ye^(-2y) dy

= 1

To find E(X), we can integrate over the marginal density of X:

E(X) = ∫ xf_X(x) dx

= ∫ 2xe^(-2x) dx

= 1/2

To find E(Y), we can integrate over the marginal density of Y:

E(Y) = ∫ yf_Y(y) dy

= ∫ -2ye^(-2y) dy

= 1/2

Substituting these values into the formula for covariance, we get:

Cov(X, Y) = E(XY) - E(X)E(Y)

= 1 - (1/2)*(1/2)

= 3/4

Therefore, Cov(X, Y) = 3/4.

(b) To find E(Y | X), we can use the conditional density:

f(y | x) = f(x, y) / f_X(x)

For 0 ≤ y ≤ x, we have:

f(y | x) = (2e^(-2x) / x) / (2e^(-2x))

= 1 / x

Therefore, the conditional density of Y given X is:

f(y | x) = 1 / x, 0 ≤ y ≤ x

To find E(Y | X), we can integrate over the conditional density:

E(Y | X) = ∫ y f(y | x) dy

= ∫[0,x] y (1 / x) dy

= x/2

Therefore, E(Y | X) = x/2.

(c) To compute Cov(X,E(Y | X)), we first need to find E(Y | X) as we have done in part (b):

E(Y | X) = x/2

Next, we can use the formula for covariance:

Cov(X, E(Y | X)) = E(XE(Y | X)) - E(X)E(E(Y | X))

To find E(XE(Y | X)), we can integrate over the joint density:

E(XE(Y | X)) = ∫∫ xyf(x,y) dxdy

= ∫∫ 2xye^(-2x) / x dxdy

= ∫ x^2 e^(-2x) dx

= 1/4

To know more about joint distribution,

https://brainly.com/question/31476111

#SPJ11

The safe load, L, of a wooden beam supported at both ends varies jointly as the width, w, and the square of the depth, d, and inversely as the length, l. A wooden beam 9in. Wide, 8in. Deep, and 7ft long holds up 26542lb. What load would a beam 6in. Wide, 4in. Deep, and 19ft. Long, of the same material, support? Round your answer to the nearest integer if necessary.

Answers

The load that a beam 6in. Wide, 4in. Deep, and 19ft. Long, of the same material, support is 2436 lb (nearest integer).

The safe load, L, of a wooden beam supported at both ends varies jointly as the width, w, and the square of the depth, d, and inversely as the length, l.

To find:

What load would a beam 6in. Wide, 4in. Deep, and 19ft. Long, of the same material, support?

Formula used:

L = k (w d²)/ l

where k is a constant of variation.

Let k be the constant of variation.Then, the safe load L of a wooden beam can be written as:

L = k (w d²)/ l

Now, using the given values, we have:

L₁ = k (9 × 8²)/ 7 and

L₂ = k (6 × 4²)/ 19

Also, L₁ = 26542 lb (given)

Thus, k = L₁ l / w d²k = (26542 lb × 7 ft) / (9 in × 8²)k

= 1364.54 lb-ft/in²

Substituting the value of k in the equation of L₂, we get:

L₂ = 1364.54 (6 × 4²)/ 19L₂

= 2436 lb (nearest integer)

To know more about  integer, visit:

https://brainly.com/question/490943

#SPJ11

if one score in a correlational study is numerical and the other is non-numerical, the non-numerical variable can be used to organize the scores into seperate groups which can then be compared with a ______.
a. t test
b. mixed design analysis of variance
c. single factor analysis of variance
d. chi-square hypothesis test

Answers

If one score in a correlational study is numerical and the other is non-numerical, the non-numerical variable can be used to organize the scores into separate groups which can then be compared with a (d) chi-square hypothesis test.

A chi-square hypothesis test can be used to analyze the relationship between a numerical and a non-numerical variable in a correlational study where the non-numerical variable is used to group the scores.

This test is used to determine whether there is a significant association between the two variables.

The other options, t-test, mixed-design analysis of variance, and single factor analysis of variance, are statistical tests that are used for different types of research designs and are not appropriate for analyzing the relationship between a numerical and non-numerical variable in a correlational study.

Know more about chi-square hypothesis test here:

https://brainly.com/question/29803007

#SPJ11

find the taylor series for f centered at 6 if f (n)(6) = (−1)nn! 5n(n 3) .

Answers

This is the Taylor series representation of the function f centered at x=6.

To find the Taylor series for f centered at 6, we need to use the formula:
f(x) = Σn=0 to infinity (f^(n)(a) / n!) (x - a)^n
where f^(n)(a) denotes the nth derivative of f evaluated at x = a.
In this case, we know that f^(n)(6) = (-1)^n * n! * 5^n * (n^3). So, we can substitute this into the formula above:
f(x) = Σn=0 to infinity ((-1)^n * n! * 5^n * (n^3) / n!) (x - 6)^n
Simplifying, we get:
f(x) = Σn=0 to infinity (-1)^n * 5^n * n^2 * (x - 6)^n
This is the Taylor series for f centered at 6.
This is the Taylor series representation of the function f centered at x=6.

To know more about function visit:

https://brainly.com/question/12431044

#SPJ11

find the distance from the plane 10x y z=90 to the plane 10x y z=70.

Answers

The distance from the plane 10x y z=90 to the plane 10x y z=70, we need to find the distance between a point on one plane and the other plane. The distance from the plane 10x y z=90 to the plane 10x y z=70 is 10sqrt(2) units.

Take the point (0,0,9) on the plane 10x y z=90.
The distance between a point and a plane can be found using the formula:
distance = | ax + by + cz - d | / sqrt(a^2 + b^2 + c^2)
where a, b, and c are the coefficients of the x, y, and z variables in the plane equation, d is the constant term, and (x, y, z) is the coordinates of the point.
For the plane 10x y z=70, the coefficients are the same, but the constant term is different, so we have:
distance = | 10(0) + 0(0) + 10(9) - 70 | / sqrt(10^2 + 0^2 + 10^2)
distance = | 20 | / sqrt(200)
distance = 20 / 10sqrt(2)
distance = 10sqrt(2)
Therefore, the distance from the plane 10x y z=90 to the plane 10x y z=70 is 10sqrt(2) units.

Read more about distance.

https://brainly.com/question/13374349

#SPJ11

Calculate the surface area for this shape

Answers

The surface area of the rectangular prism is 18 square cm

What is the surface area of the rectangular prism?

From the question, we have the following parameters that can be used in our computation:

1 cm by 1 cm by 4 cm

The surface area of the rectangular prism is calculated as

Surface area = 2 * (Length * Width + Length * Height + Width * Height)

Substitute the known values in the above equation, so, we have the following representation

Area = 2 * (1 * 1 + 1 * 4 + 1 * 4)

Evaluate

Area = 18

Hence, the area is 18 square cm

Read more about surface area at

brainly.com/question/26403859

#SPJ1

You purchase a stock for $72. 50. Unfortunately, each day the stock is expected to DECREASE by $. 05 per day. Let x = time (in days) and P(x) = stock price (in $)

Answers

Given the stock is purchased for $72.50 and it is expected that each day the stock will decrease by $0.05.

Let x = time (in days) and

P(x) = stock price (in $).

To find how many days it will take for the stock price to be equal to $65, we need to solve for x such that P(x) = 65.So, the equation of the stock price is

: P(x) = 72.50 - 0.05x

We have to solve the equation P(x) = 65. We have;72.50 - 0.05

x = 65

Subtract 72.50 from both sides;-0.05

x = 65 - 72.50

Simplify;-0.05

x = -7.50

Divide by -0.05 on both sides;

X = 150

Therefore, it will take 150 days for the stock price to be equal to $65

To know more about cost estimate visit :-

https://brainly.in/question/40164367

#SPJ11

What is the equation of a parabola that intersects the x-axis at points (-1, 0) and (3,0)?

Answers

The equation of the parabola that intersects the x-axis at points (-1, 0) and (3,0) is y = 0.

Given that a parabola intersects the x-axis at points (-1, 0) and (3,0).We know that, when a parabola intersects the x-axis, the y-coordinate of the point on the parabola is 0. Therefore, the two x-intercepts tell us two points that are on the parabola.Thus the vertex is given by:Vertex is the midpoint of these x-intercepts=(x_1+x_2)/2=(-1+3)/2=1The vertex is the point (1,0).Since the vertex is at (1,0) and the parabola intersects the x-axis at (-1,0) and (3,0), the axis of symmetry is the vertical line passing through the vertex, which is x=1.We also know that the parabola opens upwards because it intersects the x-axis at two points.To find the equation of the parabola, we can use the vertex form:y = a(x - h)^2 + kwhere (h, k) is the vertex and a is a constant that determines how quickly the parabola opens up or down.We have h=1 and k=0.Substituting in the x and y values of one of the x-intercepts, we get:0 = a(-1 - 1)^2 + 0Simplifying, we get:4a = 0a = 0Substituting in the x and y values of the other x-intercept, we get:0 = a(3 - 1)^2 + 0Simplifying, we get:4a = 0a = 0Since a = 0, the equation of the parabola is:y = 0(x - 1)^2 + 0Simplifying, we get:y = 0Hence the equation of the parabola that intersects the x-axis at points (-1, 0) and (3,0) is y = 0.

Learn more about Parabola here,The vertex of a parabola is (-2,6), and its focus is (-5,6).

What is the standard form of the parabola?

Enter your answe...

https://brainly.com/question/25651698

#SPJ11

the crocodile skeleton found had a head length of 62 cm and a body length of 380 cm. which species do you think it was? explain why.

Answers

Based on the crocodile skeleton found with a head length of 62 cm and a body length of 380 cm, it is likely that the species was a Saltwater Crocodile (Crocodylus porosus).

According to the given measurements, it is likely that the species was a Saltwater Crocodile (Crocodylus porosus).  This is because Saltwater Crocodiles are known to have larger sizes compared to other species.

To explain why, let's consider the following steps:

1. Compare the head length and body length to average sizes of different crocodile species.
2. Identify the species whose average size is closest to the given measurements.

Saltwater Crocodiles are the largest living species of crocodiles, with males reaching lengths of over 6 meters (20 feet). The head length of 62 cm and body length of 380 cm (3.8 meters) would likely be within the size range for an adult male Saltwater Crocodile. Other species, such as the Nile Crocodile or the American Alligator, typically do not reach such large sizes, making the Saltwater Crocodile a more plausible candidate based on the given measurements.

To learn more about crocodiles visit : https://brainly.com/question/11777341

#SPJ11

define the linear transformation t by t(x) = ax. find ker(t), nullity(t), range(t), and rank(t). a = 7 −5 1 1 1 −1

Answers

Answer: Therefore, the range of t is the set of all linear combinations of the vectors [7, 1], [-5, 1], [1, -1]. That is, range(t) = {a

Step-by-step explanation:

The linear transformation t(x) = ax, where a is a 2x3 matrix, maps a 3-dimensional space onto a 2-dimensional vector space.

To find the kernel of t (ker(t)), we need to find the set of all vectors x such that t(x) = 0. In other words, we need to solve the equation ax = 0.

We can do this by setting up the augmented matrix [a|0] and reducing it to row echelon form:

csharp

Copy code

[7 -5  1 | 0]

[1  1 -1 | 0]

Subtracting 7 times the second row from the first row, we get:

csharp

Copy code

[0 -12  8 | 0]

[1  1 -1 | 0]

Dividing the first row by -4, we get:

csharp

Copy code

[0  3/2 -1 | 0]

[1  1  -1 | 0]

Subtracting 1 times the first row from the second row, we get:

csharp

Copy code

[0  3/2 -1 | 0]

[1  1/2 0 | 0]

Subtracting 3/2 times the second row from the first row, we get:

csharp

Copy code

[0  0 -1 | 0]

[1  1/2 0 | 0]

Therefore, the kernel of t is the set of all vectors of the form x = [0, 0, 1] multiplied by any scalar. That is, ker(t) = {k[0, 0, 1] : k in R}.

The nullity of t is the dimension of the kernel of t. In this case, the kernel has dimension 1, so the nullity of t is 1.

To find the range of t, we need to find the set of all vectors that can be obtained as t(x) for some vector x.

Since the columns of a span the image of t, we can find a basis for the range of t by finding a basis for the column space of a.

We can do this by reducing a to row echelon form:

csharp

Copy code

[7 -5  1]

[1  1 -1]

Subtracting 7 times the second row from the first row, we get:

csharp

Copy code

[0 -12  8]

[1  1 -1]

Dividing the first row by -4, we get:

csharp

Copy code

[0  3/2 -1]

[1  1 -1]

Subtracting 1 times the first row from the second row, we get:

csharp

Copy code

[0  3/2 -1]

[1  1/2 0]

Subtracting 3/2 times the second row from the first row, we get:

csharp

Copy code

[0  0 -1]

[1  1/2 0]

So the reduced row echelon form of a is:

csharp

Copy code

[1 1/2 0]

[0 0 -1]

The pivot columns are the first and third columns of a, so a basis for the column space of a (and therefore for the range of t) is {[7, 1], [-5, 1], [1, -1]}.

Therefore, the range of t is the set of all linear combinations of the vectors [7, 1], [-5, 1], [1, -1]. That is, range(t) = {a

To Know more about linear combinations refer here

https://brainly.com/question/25867463#

#SPJ11

A rectangular parallelepiped has sides 3 cm, 4 cm, and 5 cm, measured to the nearest centimeter.a. What are the best upper and lower bounds for the volume of this parallelepiped?b. What are the best upper and lower bounds for the surface area?

Answers

The best lower bound for the volume is 24 cm³, and the best upper bound is 120 cm³ and the best lower bound for the surface area is 52 cm², and the best upper bound is 148 cm².

a. To determine the best upper and lower bounds for the volume of the rectangular parallelepiped, we can consider the extreme cases by rounding each side to the nearest centimeter.

Lower bound: If we round each side down to the nearest centimeter, we get a rectangular parallelepiped with sides 2 cm, 3 cm, and 4 cm. The volume of this parallelepiped is 2 cm * 3 cm * 4 cm = 24 cm³.

Upper bound: If we round each side up to the nearest centimeter, we get a rectangular parallelepiped with sides 4 cm, 5 cm, and 6 cm. The volume of this parallelepiped is 4 cm * 5 cm * 6 cm = 120 cm³.

Therefore, the best lower bound for the volume is 24 cm³, and the best upper bound is 120 cm³.

b. Similar to the volume, we can determine the best upper and lower bounds for the surface area of the parallelepiped by considering the extreme cases.

Lower bound: If we round each side down to the nearest centimeter, the dimensions of the parallelepiped become 2 cm, 3 cm, and 4 cm. The surface area is calculated as follows:

2 * (2 cm * 3 cm + 3 cm * 4 cm + 4 cm * 2 cm) = 2 * (6 cm² + 12 cm² + 8 cm²) = 2 * 26 cm² = 52 cm².

Upper bound: If we round each side up to the nearest centimeter, the dimensions become 4 cm, 5 cm, and 6 cm. The surface area is calculated as follows:

2 * (4 cm * 5 cm + 5 cm * 6 cm + 6 cm * 4 cm) = 2 * (20 cm² + 30 cm² + 24 cm²) = 2 * 74 cm² = 148 cm².

Therefore, the best lower bound for the surface area is 52 cm², and the best upper bound is 148 cm².

To know more about surface area refer to-

https://brainly.com/question/29298005

#SPJ11

The correlation between two scores X and Y equals 0. 75. If both scores were converted to z-scores, then the correlation between the z-scores for X and z-scores for Y would be (4 points)





1)



−0. 75



2)



0. 25



3)



−0. 25



4)



0. 0



5)



0. 75

Answers

The correlation between two scores X and Y equals 0.75. If both scores were converted to z-scores, then the correlation between the z-scores for X and z-scores for Y would be the same as the original correlation between X and Y, which is 0.75.

To determine the correlation between z-scores of X and Y, the formula for correlation coefficient (r) is used, which is as follows:

r = covariance of (X, Y) / (SD of X) (SD of Y). We have a given correlation coefficient of two scores, X and Y, which is 0.75. To find out the correlation coefficient between the z-scores of X and Y, we can use the formula:

r(zx,zy) = covariance of (X, Y) / (SD of X) (SD of Y)

r(zx, zy) = r(X,Y).

We know that correlation is invariant under linear transformations of the original variables.

Hence, the correlation between the original variables X and Y equals the correlation between their standardized scores zX and zY. Therefore, the correlation between the z-scores for X and z-scores for Y would be the same as the original correlation between X and Y.

Therefore, the correlation between two scores, X and Y, equals 0.75. If both scores were converted to z-scores, then the correlation between the z-scores for X and z-scores for Y would be the same as the original correlation between X and Y, which is 0.75. Therefore, the answer to the given question is 5) 0.75.

To know more about linear transformations, visit:

brainly.com/question/13595405

#SPJ11

Other Questions
Predict the major product for the reaction. The starting material is an alkene where carbon 1 has a cyclohexyl and methyl substituent, and carbon 2 has a methyl and hydrogen substituent. This reacts with C l 2 in the presence of ethanol. Draw the major product. the four risk management methods (presented in the text) include risk , risk , risk and risk . Around which line would the following cross-section need to be revolved to create a sphere? circle on a coordinate plane with center at 0 comma 0 and a radius of 2 y-axis y = 1 x = 2 x = 1. An aqueous solution is 6.00 % by mass ethanol, CH3CH2OH, and has a density of 0.988 g/mL. The mole fraction of ethanol in the solution is How many photons are contained in a flash of violet light (425 nm) that contains 140 kj of energy? A particle moves under the influence of a central force given by F(r) = -k/rn. If the particle's orbit is circular and passes through the force center, show that n = 5. You observe two main sequence stars, star X and star Y. Star X is bluer than star Y. Which star is hotter? Star X Star Y There are 12 players on a soccer team, if 6 players are allowed on the field at a time, how many different groups of players can be on the field at a time Nitrogenase is found in anaerobic bacteria.What information does this provide about its evolutionary history? How does chemistry inform evolution in this instance?A. It indicates that the genes encoding nitrogenase evolved after those for aerobic metabolism, the reactants available guide theevolution. B. It indicates that the genes encoding nitrogenase evolved prior to those for aerobic metabolism, the reactants available guide theevolution. C. It indicates that the genes encoding nitrogenase evolved prior to those for aerobic metabolism, the products available guide theevolution. D. It indicates that the genes encoding nitrogenase evolved after those for aerobic metabolism,the products available guide theevolution. c) is there any evidence for exo- vs. endo- in the nmr? explain why/why not. If you are asked to attack the rsa cipher. what attacks will you propose? Which type of cyclist ( track ""Velodrome"" cyclist or Tour de France cyclist) do you expect to have a higher power in which units? How might these cyclists differ in their anthropometrics? [ you may need to research cyclist who do each type of cycling event and compare their anthropometrics] A CMO is being issued with 2 tranches:- Tranche A has $60 million in principal and a 3.9% coupon.- Tranche B has $12 million in principal and a 4.5% coupon.The mortgages backing the security issued are FRM at a mortgage rate of 3.8% with 10 year maturities and annual payments. There is no guarantee/servicer fee. Prepayment is assumed to be 5% CPR.What is the dollar amount of prepayments in year 1? Round your answer to two decimal points (e.g. if your answer is $4,566.6666, write 4566.67). 3. Pascal's triangle is formed by starting with 1 and letting each element be the sum of the two "adjacent" numbers on the previous row: Row 0: 1 Row 1: 1 1 Row 2: 1 2 1 Row 3: 3 3 1 Row 4: 1 4 6 4 1 Row 5: 1 5 10 10 5 Row 6: 1 6 15 20 15 6 1 : : : : : : E.g., the 6 on row 4 is the sum of the two 3's on row 3. Find and prove a closed-form formula for the sum of row k of Pascal's triangle. a couple decided to have 4 children. (a) what is the probability that they will have at least one girl? (b) what is the probability that all the children will be of the same gender? compute the odds in favor of obtaining a number divisible by 3 or 4 in a single roll of a die. When moderately compressed, gas molecules have attraction for one another Select the correct answer below: O a small amount of O a large amount of no O none of the above Chase has won 70% of the 30 football video games he has played with his brother. What equation can be solved to determine the number of additional games in a row, x, thatChase must win to achieve a 90% win percentage?= 0. 903021 += 0. 903021 + 2= 0. 9030+= 0. 9030 + 3 Use Green's Theorem to evaluate the line integral along the path C is the triangle with vertices (0,0), (2,0), and (2, 1) and the path is a positively oriented curve. C xy dx + y^5 dy now, let us consider the effects of time dilation. how far would the muon travel, taking time dilation into account?