Evaluate the numerical expression open parentheses 5 to the power of negative 4 close parentheses to the power of one half.


25

−25

1 over 25

negative 1 over 25

Answers

Answer 1

The value of the given numerical expression is 1/25. Answer: 1 over 25.

When we have an expression with a power raised to another power, we can simplify it by multiplying the exponents. In this case, the expression is (5^(-4))^1/2, which means we have 5 raised to the power of -4 and then that result raised to the power of 1/2.

Using the exponent rule mentioned above, we can multiply -4 and 1/2 as follows:

(5^(-4))^1/2 = 5^(-4 * 1/2) = 5^(-2)

So, we get 5 raised to the power of -2.

Now, any number raised to a negative power can be rewritten as 1 divided by the number raised to the positive power. Therefore, we can write 5^(-2) as 1/5^2, which simplifies to 1/25.

Hence, the value of the given numerical expression is 1/25.

Learn more about  expression from

https://brainly.com/question/1859113

#SPJ11


Related Questions

The function f(x)=215(2x 2
−4x−6) models the cost, in dollars, of a rug with width x feet. What is the cost of a rug that is 9 feet wide? A. $120 B. $258 C. $606 D. $655

Answers

The cost of a rug that is 9 feet wide, according to the given function f(x) = 215(2x^2 - 4x - 6), is $655. Which can be found by using algebraic equation. Therefore, the correct answer is D.

To find the cost of a rug that is 9 feet wide, we substitute x = 9 into the given function f(x) = 215(2x^2 - 4x - 6). Plugging in x = 9, we have f(9) = 215(2(9)^2 - 4(9) - 6). Simplifying this expression, we get f(9) = 215(162 - 36 - 6) = 215(120) = $25800.

Therefore, the cost of a rug that is 9 feet wide is $25800. However, we need to select the answer in dollars, so we divide $25800 by 100 to convert it to dollars. Thus, the cost of a 9-foot wide rug is $258.Among the given answer choices, the closest one to $258 is option D, which is $655. Therefore, the correct answer is D.

To know more about algebraic equation refer here:

https://brainly.com/question/11862255

#SPJ11

which law deals with the truth value of p and q

law of detachment

law of deduction

law of syllogism

law of seperation

Answers

The law that deals with the truth value of propositions p and q is the Law of Syllogism, which allows us to draw conclusions based on two conditional statements.

The law that deals with the truth value of propositions p and q is called the Law of Syllogism. The Law of Syllogism allows us to draw conclusions from two conditional statements by combining them into a single statement. It is also known as the transitive property of implication.

The Law of Syllogism states that if we have two conditional statements in the form "If p, then q" and "If q, then r," we can conclude a third conditional statement "If p, then r." In other words, if the antecedent (p) of the first statement implies the consequent (q), and the antecedent (q) of the second statement implies the consequent (r), then the antecedent (p) of the first statement implies the consequent (r).

This law is an important tool in deductive reasoning and logical arguments. It allows us to make logical inferences and draw conclusions based on the relationships between different propositions. By applying the Law of Syllogism, we can expand our understanding of logical relationships and make deductions that follow from given premises.

It is worth noting that the terms "law of detachment" and "law of deduction" are sometimes used interchangeably with the Law of Syllogism. However, the Law of Syllogism specifically refers to the transitive property of implication, whereas the terms "detachment" and "deduction" can have broader meanings in the context of logic and reasoning.

for such more question on propositions

https://brainly.com/question/870035

#SPJ8

On 16 April Dumi deposited an amount of money in a savings amount that eams 8.5% per annum, simple interest. She intends to withdraw the balance of R2 599 on B December of the same year to buy her brother a smartphone. The amount of money that Dumi deposited is A. R2 46003 B. R2 46546 . C. R2 461,82 . D. R2 463,60 . Zola has an individual retirement plan. The money is invested in a money market fund that pays interest on a daily.basis. Over a two year period in which no deposits or withdrawals were made, the balance of his account grew from R4 500,00 to R5268,24. The effective interest rate over this period is approximately. A. 8,2% B. 8,5% C. 9.0% D. 6,1% Rambau has been given the option of either paying his {2500 personal loan now or settling it for R2 730 after four months. If he chooses to pay atter four merths, the simple interest rate per annum, at which he wauld be charged, is A. 27.60%. B. 25,27% C0,26\%: D. 2.30%. Mamzodwa wants to buy a R30 835.42 mobile kitchen for her food catering business. How long will it take her to save towards this amount if she deposits 125000 now into a kavings account eaming 10.5% interest per year, compounded weekly? A. 52 weeks B. 104 weeks C. 2 weeks D. 24 weeks

Answers

Dumi deposited R2,461.82 in the savings account. Zola's account had an effective interest rate of approximately 18.14% over two years. Rambau would be charged a simple interest rate of 23.0% per annum. Mamzodwa will need 2 years and 1.6 weeks to save for the R30,835.42 mobile kitchen.

On 16 April, Dumi deposited an amount of money in a savings account that earns 8.5% per annum, simple interest. She intends to withdraw the balance of R2 599 on B December of the same year to buy her brother a smartphone. The amount of money that Dumi deposited is calculated as follows:

Let the amount deposited = P

The amount withdrawn = R2 599

Interest rate = 8.5%

Simple Interest formula = I = PRT

Where R = 8.5%, P = ?, I = R2 599, and T = 8 months = 8/12 years

Substituting the values gives:

R2 599 = P × 8.5% × 8/12

Simplifying and solving for P gives:

P = R2 599 / (8.5% × 8/12) = R2 461.82

Therefore, the amount of money that Dumi deposited is R2 461.82.

Approximately, what is the effective interest rate over two years for Zola's account if the balance of his account grew from R4 500,00 to R5268,24, and the money is invested in a money market fund that pays interest on a daily basis?

The effective annual interest rate is calculated using the formula:

R = [(1 + r/n)^n - 1]

where R is the effective annual interest rate, r is the nominal interest rate, and n is the number of compounding periods per year.

Let r be the nominal interest rate and n be the number of compounding periods per year. Since interest is compounded daily, then n = 365 days in a year.

The effective annual interest rate is therefore:

R = [(1 + r/365)^365 - 1]

Given that the balance of his account grew from R4 500,00 to R5268,24 in two years, the interest earned during the two years is:

R5268,24 - R4 500,00 = R768.24

The nominal interest rate is the ratio of the interest earned to the principal amount of R4 500,00. Therefore,

r = (768.24 / 4 500) × 100% = 17.07%

The effective annual interest rate is:

R = [(1 + 17.07%/365)^365 - 1] = 18.14%

Therefore, the effective interest rate over this period is approximately 18.14%.

Rambau has been given the option of either paying his R2 500 personal loan now or settling it for R2 730 after four months. If he chooses to pay after four months, the simple interest rate per annum, at which he would be charged, is:

Let the interest rate be r.

The interest to be charged in 4 months = R2 730 - R2 500 = R230

Simple interest formula, I = PRT

Where P = R2 500, T = 4/12 years and I = R230.

Substituting the values gives:

R230 = R2 500 × r × 4/12

Solving for r gives:

r = (R230 × 12) / (R2 500 × 4) = 23.0%

Therefore, the simple interest rate per annum, at which Rambau would be charged, is 23.0%.

How long will it take Mamzodwa to save towards a R30 835.42 mobile kitchen for her food catering business if she deposits R125 000 now into a savings account earning 10.5% interest per year, compounded weekly?

The formula for the future value of a deposit compounded weekly at an interest rate of r is given by:

A = P(1 + r/52)^(52t)

where A is the future value, P is the principal amount, r is the interest rate per annum, t is the time in years, and 52 is the number of compounding periods per year.

Let t be the time in years that it will take to accumulate the R30 835.42 necessary for Mamzodwa's mobile kitchen, with a deposit of R125 000 now at an interest rate of 10.5% compounded weekly.

Substituting the given values gives:

R30 835.42 = R125 000(1 + 10.5%/52)^(52t)

Simplifying the above equation gives:

(1 + 10.5%/52)^(52t) = R30 835.42 / R125 000

(1 + 10.5%/52)^(52t) = 1.246683256

Using logarithms, t is solved as follows:

52t × log(1 + 10.5%/52) = log(1.246683256)

t = [log(1.246683256)] / [52 × log(1 + 10.5%/52)]

t ≈ 2.14 years = 2 years and 1.6 weeks

Therefore, it will take Mamzodwa 2 years and 1.6 weeks to save towards this amount. (Option B)

Learn more about simple interest: https://brainly.com/question/25845758

#SPJ11

What happens to a figure when it is dilated with a scale factor of 1?.

Answers

When a figure is dilated with a scale factor of 1, there is no change in size or shape. The figure remains unchanged, with every point retaining its original position. This is because a scale factor of 1 indicates that there is no stretching or shrinking occurring.

When a figure is dilated with a scale factor of 1, it means that the size and shape of the figure remains unchanged. The word "dilate" means to stretch or expand, but in this case, a scale factor of 1 implies that there is no stretching or shrinking occurring.

To understand this concept better, let's consider an example. Imagine we have a square with side length 5 units. If we dilate this square with a scale factor of 1, the resulting figure will have the same side length of 5 units as the original square. The shape and proportions of the figure will be identical to the original square.

This happens because a scale factor of 1 means that every point in the figure remains in the same position. There is no change in size or shape. The figure is essentially a copy of the original, overlapping perfectly.

Learn more about scale factor from the link:

https://brainly.com/question/25722260

#SPJ11

mesn mumber of calories consumed per day for the population with the confidence leveis shown below. a. BR ह. b. 96% c. 99% a. The 92% confidence interval has a lowee litit of and an upper limit of (Round 10 one decimai place as needed)

Answers

Therefore, the answer is: Lower limit = 1971.69

Upper limit = 2228.31

Given data: a. The confidence level = 92%

b. The lower limit = ?

c. The upper limit = ?

Formula used:

Given a sample size n ≥ 30 or a population with a known standard deviation, the mean is calculated as:

μ = M

where M is the sample mean

For a given level of confidence, the formula for a confidence interval (CI) for a population mean is:

CI = X ± z* (σ / √n)

where: X = sample mean

z* = z-score

σ = population standard deviation

n = sample size

Substitute the given values in the above formula as follows:

For a 92% confidence interval, z* = 1.75 (as z-value for 0.08, i.e. (1-0.92)/2 = 0.04 is 1.75)

Lower limit = X - z* (σ / √n)

Upper limit = X + z* (σ / √n)

The standard deviation is unknown, so the margin of error is calculated using the t-distribution.

The t-distribution is used because the population standard deviation is unknown and the sample size is less than 30.

For a 92% confidence interval, degree of freedom = n-1 = 18-1 = 17

t-value for a 92% confidence level and degree of freedom = 17 is 1.739

Calculate the mean:μ = 2100

Calculate the standard deviation: s = 265

√n = √19 = 4.359

For a 92% confidence interval, the margin of error (E) is calculated as:

E = t*(s/√n) = 2.110*(265/4.359) = 128.31

The 92% confidence interval has a lower limit of 1971.69 and an upper limit of 2228.31 (rounded to one decimal place as required).

Therefore, the answer is: Lower limit = 1971.69

Upper limit = 2228.31

Explanation:

A confidence interval is the range of values within which the true value is likely to lie within a given level of confidence. A confidence level is a probability that the true population parameter lies within the confidence interval.

To know more about standard deviation, visit:

https://brainly.com/question/29115611

#SPJ11

a group of 95 students were surveyed about the courses they were taking at their college with the following results: 57 students said they were taking math. 57 students said they were taking english. 62 students said they were taking history. 32 students said they were taking math and english. 39 students said they were taking math and history. 36 students said they were taking english and history. 19 students said they were taking all three courses. how many students took none of the courses?

Answers

Out of the 95 students surveyed, 7 students took none of the courses. To find the number of students who took none of the courses, we need to subtract the number of students who took at least one course from the total number of students surveyed.

First, let's find the number of students who took at least one course. We can do this by adding the number of students who took each course individually, and then subtracting the students who took two courses and the students who took all three courses.

The number of students who took math is 57, the number who took English is 57, and the number who took history is 62. To find the total number of students who took at least one course, we add these numbers: 57 + 57 + 62 = 176.

Now, we need to subtract the number of students who took two courses. We know that 32 students took math and English, 39 students took math and history, and 36 students took English and history. To find the total number of students who took two courses, we add these numbers: 32 + 39 + 36 = 107.

Next, we need to subtract the number of students who took all three courses. We know that 19 students took all three courses.

To find the number of students who took none of the courses, we subtract the students who took at least one course (176) from the students who took two courses (107) and the students who took all three courses (19):

95 - 176 + 107 - 19 = 7.

Therefore, the number of students who took none of the courses is 7.

Learn more about number of students from the link:

https://brainly.com/question/30961207

#SPJ11

Water Pressure Application In certain deep parts of oceans, the pressure of sea water, P, in pounds per square foot, at a depth of d feet below the surface, is given by the following equation P=12+4/13 d. Use this equation to complete the statements below. Round your answers to the nearest tenth as needed. The pressure of sea water is 75 pounds per square foot at a depth of feet below the surface of the water. The pressure of sea water is pounds per square foot at a depth of 65 feet below the surface of the water.

Answers

The  pressure water is 75 pounds per square foot at a depth of [unknown] feet below the surface of the water.

We are given the equation for water pressure in pounds per square foot as P = 12 + (4/13)d, where d represents the depth below the surface in feet.

To find the depth at which the pressure is 75 pounds per square foot, we need to solve the equation for d.

12 + (4/13)d = 75

To isolate d, we subtract 12 from both sides:

(4/13)d = 75 - 12

(4/13)d = 63

Next, we multiply both sides by the reciprocal of (4/13), which is (13/4):

d = (13/4) * 63

d = 204.75

Rounding to the nearest tenth, the depth is approximately 204.8 feet.

The pressure of sea water is 75 pounds per square foot at a depth of approximately 204.8 feet below the surface of the water.

The pressure of sea water is [unknown] pounds per square foot at a depth of 65 feet below the surface of the water.

We are given the equation for water pressure in pounds per square foot as P = 12 + (4/13)d, where d represents the depth below the surface in feet.

P = 12 + (4/13) * 65

P = 12 + (4/13) * 65

P = 12 + (260/13)

P = 12 + 20

P = 32

Therefore, the pressure of sea water at a depth of 65 feet below the surface is 32 pounds per square foot.

The pressure of sea water is 32 pounds per square foot at a depth of 65 feet below the surface of the water.

To know more about pressure, visit;
https://brainly.com/question/28012687
#SPJ11

If n is an odd integer, then it is the difference of two perfect squares. The number n is an odd integer if and only if 3n+5=6k+8 for some integer k. . The number n is an even integer if and only if 3n+2=6k+2 for some integer k.

Answers

The statements provided can be rewritten as follows: 1. If n is an odd integer, then there exist integers a and b such that n = a^2 - b^2. 2. n is an odd integer if and only if 3n + 5 is of the form 6k + 8 for some integer k. 3. n is an even integer if and only if 3n + 2 is of the form 6k + 2 for some integer k.

Let's analyze these statements:

1. If n is an odd integer, then there exist integers a and b such that n = a^2 - b^2.

  This statement is true and can be proven using the concept of the difference of squares. For any odd integer n, we can express it as the difference of two perfect squares: n = (a + b)(a - b), where a and b are integers. This shows that n can be written as the difference of two squares.

2. n is an odd integer if and only if 3n + 5 is of the form 6k + 8 for some integer k.

  This statement is not true. Consider the counterexample where n = 1. In this case, 3n + 5 = 8, which is not of the form 6k + 8 for any integer k.

3. n is an even integer if and only if 3n + 2 is of the form 6k + 2 for some integer k.

  This statement is true. For any even integer n, we can express it as n = 2k, where k is an integer. Substituting this into the given equation, we get 3n + 2 = 3(2k) + 2 = 6k + 2, which is of the form 6k + 2.

In conclusion, statement 1 is true, statement 2 is false, and statement 3 is true.

To know more about integers, visit:

https://brainly.com/question/490943#

#SPJ11

Solve The Following Seeond Order Non-Homogeneous Diffe Y′′′−6y′′=3−Cosx

Answers

The solution to the second-order non-homogeneous differential equation Y′′′ − 6Y′′ = 3 − cos(x) is given by: [tex]Y(x) = c1 + c2x + c3e^{(6x)} + a - (3/5)sin(x)[/tex] where c1, c2, c3, and a are arbitrary constants.

To solve the second-order non-homogeneous differential equation Y′′′ − 6Y′′ = 3 − cos(x), we can use the method of undetermined coefficients. First, let's find the general solution to the corresponding homogeneous equation Y′′′ − 6Y′′ = 0. The characteristic equation is given by [tex]r^3 - 6r^2 = 0[/tex].  Next, we need to find a particular solution to the non-homogeneous equation Y′′′ − 6Y′′ = 3 − cos(x). Since the right-hand side contains a constant term and a cosine term, we assume a particular solution of the form Y_p(x) = a + bcos(x) + csin(x), where a, b, and c are unknown coefficients.

Now, we calculate the derivatives of Y_p(x):

Y_p′(x) = 0 - bsin(x) + ccos(x)

Y_p′′(x) = -bcos(x) - csin(x)

Y_p′′′(x) = bsin(x) - ccos(x)

Substituting these derivatives back into the non-homogeneous equation, we have:

(bsin(x) - ccos(x)) - 6(-bcos(x) - csin(x)) = 3 - cos(x)

Simplifying the equation, we get:

7bcos(x) - 5csin(x) = 3

Comparing the coefficients of the trigonometric functions on both sides, we have:

7b = 0 and -5c = 3

From the first equation, we have b = 0, and from the second equation, we have c = -3/5. Substituting these values back into Y_p(x), we have Y_p(x) = a - (3/5)sin(x).

Finally, the general solution to the non-homogeneous equation is given by the sum of the homogeneous and particular solutions:

Y(x) = Y_h(x) + Y_p(x)

= c1 + c2x + c3e(6x) + a - (3/5)sin(x)

To know more about differential equation,

https://brainly.com/question/33114034

#SPJ11

The owner of a computer repair shop has determined that their daily revenue has mean $7200 and standard deviation $1200. The daily revenue totals for the next 30 days will be monitored. What is the probability that the mean daily reverue for the next 30 days will be less than $7000 ? A) 0.8186 B) 0.4325 C) 0.5675 D) 0.1814

Answers

The mean daily revenue for the next 30 days is $7200 with a standard deviation of $1200. To find the probability of the mean revenue being less than $7000, use the z-score formula and find the correct option (D) at 0.1814.

Given:Mean daily revenue = $7200Standard deviation = $1200Number of days, n = 30We need to find the probability that the mean daily revenue for the next 30 days will be less than $7000.Now, we need to find the z-score.

z-score formula is:

[tex]$z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}$[/tex]

Where[tex]$\bar{x}$[/tex] is the sample mean, $\mu$ is the population mean, $\sigma$ is the population standard deviation, and n is the sample size.

Putting the values in the formula, we get:

[tex]$z=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{7000-7200}{\frac{1200}{\sqrt{30}}}$$z=-\frac{200}{219.09}=-0.913$[/tex]

Now, we need to find the probability that the mean daily revenue for the next 30 days will be less than $7000$.

Therefore, $P(z < -0.913) = 0.1814$.Hence, the correct option is (D) 0.1814.

To know more about standard deviation Visit:

https://brainly.com/question/29115611

#SPJ11

Using the Venn diagram show that If A,B and C are three events in a sample space, then the probability that atleast one of them occurring is given by (1) P(A∪B∪C)=P(A)+P(B)+P(C)−P(A∩B)−P(A∩C)−P(B∩C)+P(A∩B∩C)

Answers

The given probability states that if A, B, and C are three events in a sample space, the probability that at least one of them occurs is given by P(A∪B∪C) = P(A) + P(B) + P(C) − P(A∩B) − P(A∩C) − P(B∩C) + P(A∩B∩C).

We represent the given probability in a Venn diagram as shown below:where U is the universal set, A, B, and C are the three sets representing events, and the shaded region shows the area in which at least one of the events A, B, or C occur.Now, the above equation can be written as:

P(A∪B∪C) = P(A) + P(B) + P(C) − P(A and B) − P(A and C) − P(B and C) + P(A and B and C)

If A, B, and C are three events in a sample space, then the probability that at least one of them occurs is given by P(A∪B∪C) = P(A) + P(B) + P(C) − P(A∩B) − P(A∩C) − P(B∩C) + P(A∩B∩C).

The above formula for the probability that at least one of the events A, B, or C occur is a fundamental concept of probability that can be applied in many real-world problems such as calculating the probability of winning a lottery if you buy a certain number of tickets or calculating the probability of getting a disease if you live in a certain geographic area.The Venn diagram helps to visualize the probability that at least one of the events A, B, or C occur by dividing the sample space into different regions that represent each event. The shaded region shows the area in which at least one of the events A, B, or C occur. The probability of the shaded region is given by the above equation.

Thus, using the Venn diagram, we can visualize the probability that at least one of the events A, B, or C occur, and using the formula, we can calculate the probability of the shaded region. The probability that at least one of the events A, B, or C occur is a fundamental concept of probability that can be applied in many real-world problems.

To learn more about Venn diagram visit:

brainly.com/question/20795347

#SPJ11

Which of the following expressions expresses the idea that if there were one more red ball in the box there would be twice as many red balls as yellow balls in the box. Use R to represent the number of red balls and Y to represent the number of yellow balls. 2(R+1)=Y None of these answers are correct. R+1=2Y 2R+1=Y

Answers

The given expression that expresses the idea that if there were one more red ball in the box there would be twice as many red balls as yellow balls in the box is none of these answers are correct.

Given that the expression that expresses the idea that if there were one more red ball in the box there would be twice as many red balls as yellow balls in the box is `2(R+1)=Y`.

Here, `R` represents the number of red balls and `Y` represents the number of yellow balls in the box.

To find which of the given options is correct, we will substitute R+1 for R in each option and check which one satisfies the given condition.

Substituting R+1 for R in the expression `2(R+1)=Y`,

we get:

2(R+1) = 2R + 2Y

We know that there is one more red ball, i.e., R + 1 red balls, so the total number of red balls will be (R + 1). And as per the given statement, this number should be twice the number of yellow balls in the box.

So, the total number of yellow balls will be 2(R + 1).

Therefore, the equation becomes:

2(R + 1) = Y

4R + 2 = Y

We can observe that none of the given options satisfies the above equation, so none of these answers are correct. Hence, the correct expression is none of these answers are correct.

Therefore, the given expression that expresses the idea that if there were one more red ball in the box there would be twice as many red balls as yellow balls in the box is none of these answers are correct.

To know more about expression visit:

brainly.com/question/28170201

#SPJ11

Which best describes how the angles K, L, and M are related?

Answers

The exterior angle theorem, which describes the relationship between the angles K, L, and M indicates that the measure of the angle M is the sum of the angles K and M, therefore;

K + L = M

What is the exterior angle theorem?

The exterior angle theorem states that the measure of the exterior angle of a triangle is equivalent to the sum of the two remote or non adjacent interior angles.

The angle M is the exterior angle to the triangle, therefore, according to the exterior angle theorem, the angle M is equivalent to the sum of the angles L and K therefore, we get;

k + L  = M

Learn more on the exterior angle theorem here: https://brainly.com/question/28960684

#SPJ1

Suppose a vent manufacturer has the total cost function C(x) = 37 + 1,530 and the total revenue function R(x) = 71x.
How many fans must be sold to avoid losing money?

Answers

To determine the number of fans that must be sold to avoid losing money, we need to find the break-even point where the total revenue equals the total cost.

The break-even point occurs when the total revenue (R(x)) equals the total cost (C(x)). In this case, the total revenue function is given as R(x) = 71x and the total cost function is given as C(x) = 37 + 1,530.

Setting R(x) equal to C(x), we have:

71x = 37 + 1,530

To solve for x, we subtract 37 from both sides:

71x - 37 = 1,530

Next, we isolate x by dividing both sides by 71:

x = 1,530 / 71

Calculating the value, x ≈ 21.55.

Therefore, approximately 22 fans must be sold to avoid losing money, as selling 21 fans would not cover the total cost and result in a loss.

Learn more about number here: brainly.com/question/10547079

#SPJ11

Verify that F Y

(t)= ⎩



0,
t 2
,
1,

t<0
0≤t≤1
t>1

is a distribution function and specify the probability density function for Y. Use it to compute Pr( 4
1

1

)

Answers

To verify if F_Y(t) is a distribution function, we need to check three conditions:

1. F_Y(t) is non-decreasing: In this case, F_Y(t) is non-decreasing because for any t_1 and t_2 where t_1 < t_2, F_Y(t_1) ≤ F_Y(t_2). Hence, the first condition is satisfied.

2. F_Y(t) is right-continuous: F_Y(t) is right-continuous as it has no jumps. Thus, the second condition is fulfilled.

3. lim(t->-∞) F_Y(t) = 0 and lim(t->∞) F_Y(t) = 1: Since F_Y(t) = 0 when t < 0 and F_Y(t) = 1 when t > 1, the third condition is met.

Therefore, F_Y(t) = 0 for t < 0, F_Y(t) = t^2 for 0 ≤ t ≤ 1, and F_Y(t) = 1 for t > 1 is a valid distribution function.

To find the probability density function (pdf) for Y, we differentiate F_Y(t) with respect to t.

For 0 ≤ t ≤ 1, the pdf f_Y(t) is given by f_Y(t) = d/dt (t^2) = 2t.

For t < 0 or t > 1, the pdf f_Y(t) is 0.

To compute Pr(4 < Y < 11), we integrate the pdf over the interval [4, 11]:

Pr(4 < Y < 11) = ∫[4, 11] 2t dt = ∫[4, 11] 2t dt = [t^2] from 4 to 11 = (11^2) - (4^2) = 121 - 16 = 105.

Therefore, Pr(4 < Y < 11) is 105.

To know more about  distribution function visit

https://brainly.com/question/30402457

#SPJ11







vi. Explain TWO (2) types of measurement scale. vii. Explain on discrete data and continuous data.

Answers

VI. Nominal scale is a type of categorical measurement scale where data is divided into distinct categories. Interval scale is a numerical measurement scale where the data is measured on an ordered scale with equal intervals between consecutive values.

VII. Discrete data consists of separate, distinct values that cannot be subdivided further, while continuous data can take on any value within a given range and can be divided into smaller measurements without limit.

VI. Measurement scales are used to classify data based on their properties and characteristics. Two types of measurement scales are:

Nominal scale: This is a type of categorical measurement scale where data is divided into distinct categories or groups. A nominal scale can be used to categorize data into non-numeric values such as colors, gender, race, religion, etc. Each category has its own unique label, and there is no inherent order or ranking among them.

Interval scale: This is a type of numerical measurement scale where the data is measured on an ordered scale with equal intervals between consecutive values. The difference between any two adjacent values is equal and meaningful. Examples include temperature readings or pH levels, where a difference of one unit represents the same amount of change across the entire range of values.

VII. Discrete data refers to data that can only take on certain specific values within a given range. In other words, discrete data consists of separate, distinct values that cannot be subdivided further. For example, the number of students in a class is discrete, as it can only be a whole number and cannot take on fractional values. Other examples of discrete data include the number of cars sold, the number of patients treated in a hospital, etc.

Continuous data, on the other hand, refers to data that can take on any value within a given range. Continuous data can be described by an infinite number of possible values within a certain range.

For example, height and weight are continuous variables as they can take on any value within a certain range and can have decimal places. Time is another example of continuous data because it can be divided into smaller and smaller measurements without limit. Continuous data is often measured using interval scales.

learn more about Nominal scale here

https://brainly.com/question/28500245

#SPJ11

Are the points I(1,0,0), J(0,1,0) and K(0,0,1) coplanar? Please provide a sketch.

Answers

The three points I(1,0,0), J(0,1,0), and K(0,0,1) are the standard basis vectors for the vector space R^3. They are not coplanar, since they form a basis for the entire space R^3, which means that any three non-collinear points in R^3 are not coplanar.

To visualize this, you can imagine that the point I is located at (1,0,0) along the x-axis, the point J is located at (0,1,0) along the y-axis, and the point K is located at (0,0,1) along the z-axis. The three points form a right-handed coordinate system, where the x-axis, y-axis, and z-axis are mutually perpendicular. Since any plane in R^3 can be spanned by two linearly independent vectors, and the three standard basis vectors are linearly independent, it follows that the points I, J, and K are not coplanar.

Here's a sketch to help visualize the three points and their relationship to the coordinate axes:

          z

          |

          |

          K (0,0,1)

          |

          |

 y--------|--------x

          |

          |

          J (0,1,0)

          |

          |

          I (1,0,0)

Learn more about "Coplanar Vector space" : https://brainly.com/question/24250339

#SPJ11

What is the average rate of change of f(x)=[-(x-9)^(2),(x+4)^(3)] from x=10 to x=12 ? Your answer must be accurate to within 1%.

Answers

The average rate of change of f(x)=[-(x-9)², (x+4)³] from x=10 to x=12 is 8795.

The given function is f(x)=[-(x-9)², (x+4)³].

We need to determine the average rate of change of this function from x=10 to x=12.Explanation:To calculate the average rate of change of the function

f(x)=[-(x-9)², (x+4)³],

we need to use the following formula:

Average rate of change = (f(b) - f(a))/(b - a)

Where a and b are the given values of x, which are a = 10 and b = 12.

We can now substitute the given values of a, b, and the function f(x) in the formula. The function f(x) has two components, so we will calculate the average rate of change of each component separately.

First, let's calculate the average rate of change of the first component of f(x), which is -(x-9)².

We have:

f(10) = -1, f(12) = -9

So, the average rate of change of the first component of f(x) from x = 10 to x = 12 is:

(f(b) - f(a))/(b - a) = (-9 - (-1))/(12 - 10)

= -4

Secondly, let's calculate the average rate of change of the second component of f(x), which is (x+4)³. We have:

f(10) = 19683,

f(12) = 54872

So, the average rate of change of the second component of f(x) from x = 10 to x = 12 is:

(f(b) - f(a))/(b - a) = (54872 - 19683)/(12 - 10)

= 17594

Now, to find the overall average rate of change of f(x), we can take the average of the average rates of change of the two components. We have:

(-4 + 17594)/2 = 8795

So, the average rate of change of the function

f(x)=[-(x-9)², (x+4)³]

from x=10 to x=12 is 8795, accurate to within 1%.

Therefore, the average rate of change of f(x)=[-(x-9)², (x+4)³] from x=10 to x=12 is 8795.

To know more about average rate visit:

https://brainly.com/question/28739131

#SPJ11

Expand to the first 4 non-zero terms with Taylor Series:
1/(1 + x + x^2)

Answers

the Taylor series expansion of f(x) around x = 0 (up to the first 4 non-zero terms) is:

f(x) ≈ 1 - x + 3x^2 - 9x^3

To expand the function f(x) = 1/(1 + x + x^2) into a Taylor series, we need to find the derivatives of f(x) and evaluate them at the point where we want to expand the series.

Let's start by finding the derivatives of f(x):

f'(x) = - (1 + x + x^2)^(-2) * (1 + 2x)

f''(x) = 2(1 + x + x^2)^(-3) * (1 + 2x)^2 - 2(1 + x + x^2)^(-2)

f'''(x) = -6(1 + x + x^2)^(-4) * (1 + 2x)^3 + 12(1 + x + x^2)^(-3) * (1 + 2x)

Now, let's evaluate these derivatives at x = 0 to obtain the coefficients of the Taylor series:

f(0) = 1

f'(0) = -1

f''(0) = 3

f'''(0) = -9

Using these coefficients, the Taylor series expansion of f(x) around x = 0 (up to the first 4 non-zero terms) is:

f(x) ≈ 1 - x + 3x^2 - 9x^3

Learn more about series expansion here :-

https://brainly.com/question/30842723

#SPJ11

For each of the following variables, indicate whether it is quantitative or qualitative and specify the measurement scale that is employed when taking measurement on each (5pts) : a. Marital status of patients followed at a medical clinical facility b. Admitting diagnosis of patients admitted to a mental health clinic c. Weight of babies born in a hospital during a year d. Gender of babies born in a hospital during a year e. Number of active researchers at Universidad Central del Caribe

Answers

Marital status of patients followed at a medical clinical facility Variable: Marital status

Type: Qualitative Measurement Scale: Nominal scale

 Admitting diagnosis of patients admitted to a mental health clinic Variable: Admitting diagnosis Type: Qualitative Measurement Scale: Nominal scale  Weight of babies born in a hospital during a year Variable: Weight Quantitative Measurement Scale: Ratio scale Gender of babies born in a hospital during a year Type: Qualitative Measurement Scale: Nominal scale  Number of active researchers at Universidad Central del Caribe

Learn more about Qualitative here

https://brainly.com/question/29004144

#SPJ11

At a factory that produces pistons for cars, Machine 1 produced 819 satisfactory pistons and 91 unsatisfactory pistons today. Machine 2 produced 480 satisfactory pistons and 320 unsatisfactory pistons today. Suppose that one piston from Machine 1 and one piston from Machine 2 are chosen at random from today's batch. What is the probability that the piston chosen from Machine 1 is unsatisfactory and the piston chosen from Machine 2 is satisfactory?
Do not round your answer. (If necessary, consult a list of formulas.)

Answers

To find the probability that the piston chosen from Machine 1 is unsatisfactory and the piston chosen from Machine 2 is satisfactory, we need to consider the probability of each event separately and then multiply them together.

Let's denote the event of choosing an unsatisfactory piston from Machine 1 as A and the event of choosing a satisfactory piston from Machine 2 as B.

P(A) = (number of unsatisfactory pistons from Machine 1) / (total number of pistons from Machine 1)

     = 91 / (819 + 91)

     = 91 / 910

P(B) = (number of satisfactory pistons from Machine 2) / (total number of pistons from Machine 2)

     = 480 / (480 + 320)

     = 480 / 800

Now, to find the probability of both events happening (A and B), we multiply the individual probabilities:

P(A and B) = P(A) * P(B)

          = (91 / 910) * (480 / 800)

Calculating this expression gives us the probability that the piston chosen from Machine 1 is unsatisfactory and the piston chosen from Machine 2 is satisfactory.

Learn more about probability here:

https://brainly.com/question/31828911

#SPJ11

Use 2-dimensional array to allow five students 4 different payments to enter their boarding fees. If they live on Wedderburn Hall, they paid $2,500 for boarding if they live on Val Hall they pay $5,000 for boarding and V hall they pay $6,000 for boarding board. Use a function called total remaining fees to output if they have paid all their total fees

Answers

A 2-dimensional array is used to store the boarding fees of five students for four different payments. A function called "total remaining fees" calculates the remaining fees for each student and determines if they have paid all their fees based on the sum of their paid fees compared to the total fees.

To solve this problem, we can use a 2-dimensional array to store the boarding fees of five students for four different payments.

Each row of the array represents a student, and each column represents a payment. The array will have a dimension of 5x4.

Here's an example implementation in Python:

#python

def total_remaining_fees(fees):

   total_fees = [2500, 5000, 6000]  # Boarding fees for Wedderburn Hall, Val Hall, and V Hall

   for student_fees in fees:

       remaining_fees = sum(total_fees) - sum(student_fees)

       if remaining_fees == 0:

           print("Student has paid all their fees.")

       else:

           print("Student has remaining fees of $" + str(remaining_fees))

# Example usage

boarding_fees = [

   [2500, 2500, 2500, 2500],  # Fees for student 1

   [5000, 5000, 5000, 5000],  # Fees for student 2

   [6000, 6000, 6000, 6000],  # Fees for student 3

   [2500, 5000, 2500, 5000],  # Fees for student 4

   [6000, 5000, 2500, 6000]   # Fees for student 5

]

total_remaining_fees(boarding_fees)

In this code, the `total_remaining_fees` function takes the 2-dimensional array `fees` as input. It calculates the remaining fees for each student by subtracting the sum of their paid fees from the sum of the total fees.

If the remaining fees are zero, it indicates that the student has paid all their fees.

Otherwise, it outputs the amount of remaining fees. The code provides an example of a 5x4 array with fees for five students and four payments.

To know more about array refer here:

https://brainly.com/question/26104158#

#SPJ11

1. Find the derivative of the function by using the chain rule, power rule and linearity of the derivative.
f(t)=(4t^2-5t+10)^3/2 2. Use the quotient rule to find the derivative of the function.
f(x)=[x^3-7]/[x^2+11]

Answers

The derivative of f(x) with respect to x is (x⁴ + 36x)/(x² + 11)².

Here are the solutions to the given problems.

1. Find the derivative of the function by using the chain rule, power rule and linearity of the derivative.

f(t) = (4t² - 5t + 10)³/²Given function f(t) = (4t² - 5t + 10)³/²

Differentiating both sides with respect to t, we get:

df(t)/dt = d/dt(4t² - 5t + 10)³/²

Using the chain rule, we get:

df(t)/dt = 3(4t² - 5t + 10)²(8t - 5)/2(4t² - 5t + 10)

Using the power rule, we get: df(t)/dt = 3(4t² - 5t + 10)²(8t - 5)/[2(4t² - 5t + 10)]

Using the linearity of the derivative, we get:

df(t)/dt

= 3(4t² - 5t + 10)²(8t - 5)/(2[4t² - 5t + 10])df(t)/dt

= 3(4t² - 5t + 10)²(8t - 5)/[8t² - 10t + 20]

Therefore, the derivative of f(t) with respect to t is 3(4t² - 5t + 10)²(8t - 5)/[8t² - 10t + 20].2.

Use the quotient rule to find the derivative of the function.

f(x) = (x³ - 7)/(x² + 11)

Let y = (x³ - 7) and

z = (x² + 11).

Therefore, f(x) = y/z

To find the derivative of the given function f(x), we use the quotient rule which is given as:

d/dx[f(x)] = [z * d/dx(y) - y * d/dx(z)]/z²

Now, we find the derivative of y, which is given by:

d/dx(y)

= d/dx(x³ - 7)

3x²

Similarly, we find the derivative of z, which is given by:

d/dx(z)

= d/dx(x² + 11)

= 2x

Substituting the values in the formula, we get:

d/dx[f(x)] = [(x² + 11) * 3x² - (x³ - 7) * 2x]/(x² + 11)²

On simplifying, we get:

d/dx[f(x)]

= [3x⁴ + 22x - 2x⁴ + 14x]/(x² + 11)²d/dx[f(x)]

= (x⁴ + 36x)/(x² + 11)²

Therefore, the derivative of f(x) with respect to x is (x⁴ + 36x)/(x² + 11)².

To know more about derivative visit:

https://brainly.com/question/29144258

#SPJ11

Solve the following equation by using the Quadratic Formula. When necessary, give answers in simplest radical form. 3x^(2)+4x+1=5

Answers

Given equation is 3x²+4x+1 = 5We need to solve the above equation using the quadratic formula.

[tex]x = (-b±sqrt(b²-4ac))/2a[/tex]

[tex]x = (-4±sqrt(4²-4(3)(1)))/2(3)x = (-4±sqrt(16-12))/6x = (-4±sqrt(4))/6[/tex]

Where a, b and c are the coefficients of quadratic On comparing the given equation with the quadratic equation.

[tex]ax²+bx+c=0[/tex]

We get a=3, b=4 and c=1 Substitute the values of a, b and c in the quadratic formula to get the roots of the equation. Solving the equation we get,

[tex]x = (-4±sqrt(4²-4(3)(1)))/2(3)x = (-4±sqrt(16-12))/6x = (-4±sqrt(4))/6[/tex]

To know more about quadratic visit:

https://brainly.com/question/22364785

#SPJ11

Claim: The mean pulse rate (in beats per minute) of adult males is equal to 69bpm. For a random sample of 146 adult males, the mean pulse rate is 68.8bpm and the standard deviation is 11.2bpm. Complete parts (a) and (b) below. a. Express the original claim in symbolic form. bpm (Type an integer or a decimal. Do not round.) b. Identify the null and alternative hypotheses. H
0

:bpm

Answers

a. Expressing the original claim in symbolic form:

The mean pulse rate (in beats per minute) of adult males: μ = 69 bpm

b. Identifying the null and alternative hypotheses:

Null hypothesis (H0): The mean pulse rate of adult males is equal to 69 bpm.

Alternative hypothesis (H1): The mean pulse rate of adult males is not equal to 69 bpm.

Symbolically:

H0: μ = 69 bpm

H1: μ ≠ 69 bpm

To know more about mean visit:

brainly.com/question/31101410

#SPJ11


The number of different words that can be formed by re-arranging
letters of the word KOMPRESSOR in such a way that the vowels are
the first two letters are identical is
[ANSWER ]

Answers

Therefore, the number of different words that can be formed by rearranging the letters of the word "KOMPRESSOR" such that the vowels are the first two letters and are identical is 15,120.

To find the number of different words that can be formed by rearranging the letters of the word "KOMPRESSOR" such that the vowels are the first two letters and are identical, we need to consider the arrangements of the remaining consonants.

The word "KOMPRESSOR" has 3 vowels (O, E, O) and 7 consonants (K, M, P, R, S, S, R).

Since the vowels are the first two letters and are identical, we can treat them as one letter. So, we have 9 "letters" to arrange: (OO, K, M, P, R, E, S, S, R).

The number of arrangements can be calculated using the concept of permutations. In this case, we have repeated letters, so we need to consider the repetitions.

The number of arrangements with repeated letters is given by the formula:

n! / (r1! * r2! * ... * rk!)

Where n is the total number of letters and r1, r2, ..., rk are the frequencies of the repeated letters.

In our case, we have:

n = 9

r1 = 2 (for the repeated letter "S")

r2 = 2 (for the repeated letter "R")

r3 = 2 (for the repeated letter "O")

Using the formula, we can calculate the number of arrangements:

9! / (2! * 2! * 2!) = (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1) / (2 * 1 * 2 * 1 * 2 * 1) = 9 * 8 * 7 * 6 * 5 = 15,120

Learn more about identical here

https://brainly.com/question/11539896

#SPJ11

Complete each of the following problems. You do not need to include explanations, but be sure to use the specific definitions of relevant terms (don't use facts like "even+odd=odd", etc.) Also, if you introduce any variables not given in the statement of the problem, be sure to declare what they stand for (an integer, a real number, etc.). 1. Given: a is an even integer Show: 3a+5 is odd 2. Given: m is 2 more than a multiple of 6 Show: m is even 3. Given: m and n are both divisible by 10 Show: mn is a multiple of 50 4. Given: m is odd and n is even Show: 3m−7n is odd 5. Given: n is 3 more than a multiple of 4 Show: n^2 is 1 more than a multiple of 8 6. Given: a is divisible by 8 , and b is 2 more than a multiple of 4 Show: a+2b is divisible by 4

Answers

If a is an even integer, then 3a + 5 is odd.If m is 2 more than a multiple of 6, then m is even.If m and n are both divisible by 10, then mn is a multiple of 50.If m is odd and n is even, then 3m - 7n is odd.If n is 3 more than a multiple of 4, then n^2 is 1 more than a multiple of 8.If a is divisible by 8 and b is 2 more than a multiple of 4, then a + 2b is divisible by 4.

1. Proof: Let's assume a is an even integer. By definition, an even integer can be written as a = 2k, where k is an integer. Substituting this into the expression 3a + 5, we get 3(2k) + 5 = 6k + 5. Now, let's consider the parity of 6k + 5. An odd number can be represented as 2n + 1, where n is an integer. If we let n = 3k + 2, we have 2n + 1 = 2(3k + 2) + 1 = 6k + 4 + 1 = 6k + 5. Therefore, 3a + 5 is odd.

2. Proof: Given m is 2 more than a multiple of 6, we can express it as m = 6k + 2, where k is an integer. By definition, an even number can be represented as 2n, where n is an integer. Let's substitute m = 6k + 2 into the expression 2n. We have 2n = 2(6k + 2) = 12k + 4 = 2(6k + 2) + 2 = m + 2. Therefore, m is even.

3. Proof: Given m and n are both divisible by 10, we can express them as m = 10k and n = 10l, where k and l are integers. Now, let's consider the product mn. Substituting the values of m and n, we have mn = (10k)(10l) = 100kl. Since 100 is a multiple of 50, mn = 100kl is a multiple of 50.

4. Proof: Given m is odd and n is even, we can express them as m = 2k + 1 and n = 2l, where k and l are integers. Now, let's consider the expression 3m - 7n. Substituting the values of m and n, we have 3(2k + 1) - 7(2l) = 6k + 3 - 14l = 6k - 14l + 3. By factoring out 2 from both terms, we get 2(3k - 7l) + 3. Since 3k - 7l is an integer, the expression 2(3k - 7l) + 3 is odd.

5. Proof: Given n is 3 more than a multiple of 4, we can express it as n = 4k + 3, where k is an integer. Now, let's consider the expression n^2. Substituting the value of n, we have (4k + 3)^2 = 16k^2 + 24k + 9. Factoring out 8 from the first two terms, we get 8(2k^2 + 3k) + 9. Since 2k^2 + 3k is an integer, the expression 8(2k^2 + 3k) + 9 is 1 more than a multiple of 8.

6. Proof: Given a is divisible by 8 and b is 2 more than a multiple of 4, we can express them as a = 8k and b = 4l + 2, where k and l are integers. Now, let's consider the expression a + 2b. Substituting the values of a and b, we have 8k + 2(4l + 2) = 8k + 8l + 4 = 4(2k + 2l + 1). Since 2k + 2l + 1 is an integer, the expression 4(2k + 2l + 1) is divisible by 4.

To learn more about integers visit : https://brainly.com/question/929808

#SPJ11

f(x)=5(x−1)21−cos(4x−4)​;a=1 Use a graphing utility to graph f. Select the correct graph below.. A. B. Each graph is displayed in a [−1,3] by [0,3] window. Use the graphing utility to estimate limx→1​f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The limit appears to be approximately (Round to the nearest tenth as needed.) 3. The limit does not exist. b. Evaluate f(x) for values of x near 1 to support your conjecture. Does the table from the previous step support your conjecture? A. Yes, it does. The graph and the table of values both show that f(x) approaches the same value. B. Yes, it does. The graph and the table of values both indicate that the limit as x approaches 1 does not exist. C. No, it does not. The function approaches different values in the table of values as x approaches 1 from the left and from the right. D. No, it does not. The function f(x) approaches a different value in the table of values than in the graph.

Answers

Hence, the correct choice is A. Yes, it does. The graph and the table of values both show that f(x) approaches the same value.

The given function is f(x) = 5(x - 1) / (2 - cos(4x - 4)) and a = 1.

The graph of the given function is shown below:

Therefore, the graph which represents the given function is the graph shown in the option A.

Now, let's estimate the limit limx → 1 f(x) using the graph:

We can observe from the graph that the value of f(x) approaches 3 as x approaches 1.

Hence, we can say that the limit limx → 1 f(x) is equal to 3.

The table of values of f(x) for values of x near 1 is shown below:

x f(x)0.9 3.0101 2.998100.99 2.9998010.999 3.0000001

From the table, we can observe that the function approaches the same value of 3 as x approaches 1 from both sides.

Therefore, the table from the previous step supports the conjecture that the limit limx → 1 f(x) is equal to 3.

To know more about graph visit:

https://brainly.com/question/17267403

#SPJ11

If your main goal in regression is inference (i.e., better understanding the relationship between your X variables and y) do you need to be concerned about correlation between variables? Does this change if your goal is prediction? Explain your reasoning

Answers

In contrast, when the main goal is prediction, the emphasis is on the overall predictive performance, and while correlation may still be considered, its impact on individual coefficients may be less critical.

If your main goal in regression is inference, it is important to be concerned about the correlation between variables. The reason is that correlation between variables indicates a relationship and can help in understanding the relationship between the predictor variables (X variables) and the response variable (y). By considering the correlation, you can determine which variables are significantly associated with the response variable and make inferences about the direction and strength of the relationships.

In the context of inference, it is crucial to identify and account for the correlation between variables to ensure that the estimated regression coefficients are reliable and meaningful. Correlation can affect the interpretation of individual coefficients and can also lead to multicollinearity issues, where predictors are highly correlated with each other, making it difficult to isolate their individual effects on the response variable.

On the other hand, if the main goal is prediction, the concern about correlation between variables may be reduced. In prediction, the focus is on creating a model that can accurately forecast the response variable using the available predictor variables. While correlation between variables can still be considered for feature selection and model building, it may not be the primary concern. Prediction models can handle correlated predictors as long as they contribute to the prediction accuracy, even if the interpretation of individual coefficients may be less important.

In summary, when the main goal is inference, correlation between variables is important to understand the relationship between predictors and the response.

Learn more about coefficients  here

https://brainly.com/question/1594145

#SPJ11

Explain why the following function is a discrete probability distribution function. what is the expected value and variance of it? (x) = x2 ―2 50 o x= 2, 4, 6

Answers

The function is a discrete probability distribution function because it satisfies the three requirements, namely;The probabilities are between zero and one, inclusive.The sum of probabilities must equal one.There are a finite number of possible values.

To show that the function is a discrete probability distribution function, we will verify the requirements for a discrete probability distribution function.For x = 2,

P(2) = 2² - 2/50 = 2/50 = 0.04

For x = 4, P(4) = 4² - 2/50 = 14/50 = 0.28For x = 6, P(6) = 6² - 2/50 = 34/50 = 0.68P(2) + P(4) + P(6) = 0.04 + 0.28 + 0.68 = 1

Therefore, the function is a discrete probability distribution function.Expected value

E(x) = ∑ (x*P(x))x  P(x)2  0.046  0.284  0.68E(x) = 2(0.04) + 4(0.28) + 6(0.68) = 5.08VarianceVar(x) = ∑(x – E(x))²*P(x)2  0.046  0.284  0.68x  – E(x)x – E(x)²*P(x)2  0 – 5.080  25.8040.04  0.165 -0.310 –0.05190.28  -0.080 6.4440.19920.68  0.920 4.5583.0954Var(x) = 0.0519 + 3.0954 = 3.1473

The given function is a discrete probability distribution function as it satisfies the three requirements for a discrete probability distribution function.The probabilities are between zero and one, inclusive. In the given function, for all values of x, the probability is greater than zero and less than one.The sum of probabilities must equal one. For x = 2, 4 and 6, the sum of the probabilities is equal to one.There are a finite number of possible values. In the given function, there are only three possible values of x.The expected value and variance of the given function can be calculated as follows:

Expected value (E(x)) = ∑ (x*P(x))x  P(x)2  0.046  0.284  0.68E(x) = 2(0.04) + 4(0.28) + 6(0.68) = 5.08

Variance (Var(x)) =

∑(x – E(x))²*P(x)2  0.046  0.284  0.68x  – E(x)x – E(x)²*P(x)2  0 – 5.080  25.8040.04  0.165 -0.310 –0.05190.28  -0.080 6.4440.19920.68  0.920 4.5583.0954Var(x) = 0.0519 + 3.0954 = 3.1473

The given function is a discrete probability distribution function as it satisfies the three requirements of a discrete probability distribution function.The expected value of the function is 5.08 and the variance of the function is 3.1473.

To learn more about discrete probability distribution function visit:

brainly.com/question/33189122

#SPJ11

Other Questions
km a. is the concentration of substrate where the enzyme achieves 1/2 vmax. b. is equal to ks. c. measures the stability of the product. d. is high if the enzyme has high affinity for the substrate. e. all of the above are correct. What product would you expect to obtain from catalytichydrogenation of this alkene? ) Determine the selection sets for1) S Ad2) A Bf3) B Cb4) C Dc5) D eb) Construct the parse table for this grammar.c) Show the sequence of input-stack configurations that occurs when your stack parser operates on the input strings ecbfd and ecbff.d) Implement the stack parser.3. Same as question 2 but for the input strings d and dd and the grammar1) S A2) A B3) B C4) C d8. Same as question 2 but for the input string and d and the grammar1) S ABCD2) A 3) B 4) C 5) D 9. Is the following grammar LL(1)?1) S 2) S Ad3) A bAS4) A Code should be written in Javawe have to write the parser code in Java A teacher wants to find the average score for a student in his class. The teacher's sample set has seven different test scores: 78,89,93,95,88,78,95. He adds all the scores together and gets a sum of 616 . Use the given dataset to calculate the sample standard deviation. T/F. in order to lift a bucket of concrete, you must pull up harder on the bucket than the bucket pulls down on you. You have a CT scan with an indeterminate nodule. What is the best next option for the evaluation and management of Mr. Little's condition? Choose the one best answer.A) Repeat CT scan in three monthsB) Repeat CXR in three monthsC) Needle biopsy (CT Guidance)D) Excisional biopsy (VATS procedure)E) PET scan Write a function, ulps(x,y), that takes two floating point parameters, x and y, and returnsthe number of ulps (floating-point intervals) between x and y. You will of course need totake into account that x and y may have different exponents of the floating-point base intheir representation. Also, do not assume that x a daily uniformity flood for a scintillation camera should contain a minimum of how many counts? Explanation of (the nearest neighbor method) with a definition, anexample, its advantages and disadvantages and its use. pear orchards is evaluating a new project that will require equipment of $217,000. the equipment will be depreciated on a 5-year macrs schedule. the annual depreciation percentages are 20.00 percent, 32.00 percent, 19.20 percent, 11.52 percent, and 11.52 percent, respectively. the company plans to shut down the project after 4 years. at that time, the equipment could be sold for $46,300. however, the company plans to keep the equipment for a different project in another state. the tax rate is 35 percent. what aftertax salvage value should the company use when evaluating the current project? the voltage v across a capacitor is given as a function of time t measured in seconds. what are the units of each constant in the equation Evaluate dxd where y=e lnx ex e x (lnx x1) e x(lnx+ x1 ) xe x What happens in Act 2 scene of Hamlet? Change the word phrase to an algebraic expression. Use x to represent the number. The product of 9 and two more than a number the tropical belt (region around the equator) has warmed the fastest of anywhere on earth over the last thirty years. true false in what two ways did technological innovations lead to the age of exploration? (PLEASE ANSWER ASAP)they helped sailors avoid difficult waters they allowed sailors to go on longer voyagesthey helped navigators map the coastlinethey gave sailors confidence that they would return more easilythey helped sailors locate large amounts of gold in Africa what is the surface area of the figure below!!! ANSWER NEEDED ASAP Find the indicated quantities for f(x)=2x2. (A) The slope of the secant line through the points (2,f(2)) and (2+h,f(2+h)),h=0 (B) The slope of the graph at (2,f(2)) (C) The equation of the tangent line at (2,f(2)) (A) The slope of the secant line through the points (2,f(2)) and (2+h,f(2+h)),h=0, is (B) The slope of the graph at (2,f(2)) is (Type an integer or a simplified fraction.) (C) The equation of the tangent line at (2,f(2)) is y= Show that the relation to be homocumerPhic (i,e x=y1 is an equivalince reation At what interest rate (compounded weekly) should you invest if you would like to grow $3,745.33 to $4,242.00 in 12 weeks? %