Answer:
[tex]25[/tex]
Step-by-step explanation:
[tex](4 + 6 \times 3) + 3[/tex]
[tex]=(4 + 18) + 3[/tex]
[tex]=(22) + 3[/tex]
[tex]=22+3[/tex]
[tex]=25[/tex]
Answer:25
Step-by-step explanation:
Pemdas
(4+6*3)+3
(Parentheses and Multiplication first)
4+18
22+3
Then addition
22+3=25
The promising alternative energy sources currently under development are fuel cell technology and large-scale solar energy power. The probabilities that these two sources will be successfully developed and commercially viable in the next 10 years are 0.70 and 0.85, respectively. The successful development of these two energy sources are statistically independent. Determine the following: a. The probability that there will be energy supplied by these two alternative sources in the next 10 years. b. The probability that only one of the two alternative energy sources will be commercially viable in the next 10 years.
Answer:
Step-by-step explanation:
a) Denote the event of commercially availability of f_uel cell technology as F_, commercial availability of solar power technology as S
Write the probability of energy supplied by these energy sources in the next 10 years
P(energy supplied) = P(S ∪ F) -----(1)
Rewrite eqn (1)
P(energy supplied) = P(S) + P(F) - P(F) P(S) ----(2)
substitute 0.85 for P(S) and 0,7 for P(F) in eqn (2) to find the probability of energy supplied by these energy sources
P(energy supplied) = 0.85 + 0.7 - (0.7 * 0.85)
= 0.85 + 0.7 - (0.595)
= 1.55 - 0.595
= 0.955
Therefore, the probability that there will be energy supplied by these two alternative sources in the next 10 years is 0.955
B) write the probability of only one source of energy available
P(only one source of energy available) = [tex]P(\bar F S)[/tex] ∪ [tex]P( \bar S F)[/tex] ---(3)
Rewrite the equation (3)
P(only one source of energy available) =
[tex]=P(\bar F S)+P(\bar S F)\\\\=\{[1-P(F)]P(S)+[1-P(S)]P(F)\}---(4)[/tex]
[tex]=\{[1-0.7]0.85+[1-0.85]0.7\}\\\\=0.255+0.105\\\\=0.36[/tex]
Therefore,The probability that only one of the two alternative energy sources will be commercially viable in the next 10 years is 0.36
What is the answer? x^2-y^2=55
Answer:
To solve for x we can write:
x² - y² = 55
x² = y² + 55
x = ±√(y² + 55)
To solve for y:
x² - y² = 55
y² = x² - 55
y = ±√(x² - 55)
2)
Which of these objects are two-dimensional? Check all that apply.
A.Point
B.Segment
C.Square
D. Line
E. Solid
F. Plane
Answer:
Option C and F
Step-by-step explanation:
=> Square and Plane a two-dimensional objects.
Rest of the objects are either 1 - dimensional or 3- dimensional.
HELP!!!!!!!!!!!!
A random number generator is used to create a real number between 0 and 1, equally likely to fall anywhere in this interval of values. (For the instance, 0.3794259832... is a possible outcome). a. Sketch a curve of the probability distribution of this random variable, which is the continuous version of the uniform distribution.
Answer:
The graph of the probability density function is attached.
Step-by-step explanation:
The probability function for this random number generator will be like the uniform distribution and defined for X ∈ [0, 1].
The probability density function can be written as:
[tex]f(x)={\begin{cases}{\dfrac {1}{1-0}}=1&\mathrm {for} \ 0\leq x\leq 1,\\[8pt]0&\mathrm {for} \ x<0\ \mathrm {or} \ x>1\end{cases}}[/tex]
The graph of the probability density function is attached.
Which theoretical probabilities are equal to 1/3? Check all that apply.
Answer:
2/6, 4/12, 8/24, 16/48, 32/96 ect....
Step-by-step explanation:
I hope this helps I really didnt know if this is what you were asking about
answer this please ????
Answer:
a. x = 4
b. x = 17.5
Step-by-step explanation:
a. 5x/2 + 1 = 11
5x/2 = 10
5x = 20
x = 4
b. 2x/7 - 3 = 2
2x/7 = 5
2x = 35
x = 35/2
Answer:
a) x = 4
b) x = 17.5
Step-by-step explanation:
a)
(5x)/2 + 1 = 11
(5x)/2 = 10
5x = 20
x = 4
b)
(2x)/7 - 3 = 2
(2x)/7 = 5
2x = 35
x = 17.5
The mean of 10 positive numbers is 16. when another number is added, the mean becomes 18. Find the number added
Answer:
The number added was 38.
Step-by-step explanation:
(16x10+x)/11 = 18
160+x = 198
x = 38
Best Regards!
Find the volume of a right circular cone that has a height of 4.2m and a base with a radius of 3.4m
Answer:
about 50.8 cubic meters
Step-by-step explanation:
The formula for the volume of a cone is ...
V = (1/3)πr²h
Put the given values into the formula and do the arithmetic.
V = (1/3)π(3.4 m)²(4.2 m) = 16.194π m³
__
For π to calculator precision, this is ...
V ≈ 50.84 m³
For π = 3.14, this is ...
V ≈ 50.82 m³
Please answer this correctly
Answer:
3| 4 4 7
4| 0 3 4
5| 5 5 5
6| 0 1 3 8 9
7| 9
8| 1 4 6 8
hope it helps!
Step-by-step explanation:
Check the numbers and list out the tens digit in stem (that is 3-8) and then write the corresponding leaf values
Any help would be great
Answer:
15
Step-by-step explanation:
38=10+13+c
c=38-10-13=15
Hope this helps!
State the domain of f(a,b) = e^ab
Answer:
a2+b2=c2
Step-by-step explanation:
find the saqure roof of two
Answer:
(∞,∞), (a /a∉R)
Step-by-step explanation:
When 1760 is divided into 14 equal parts, the remainder is 10. What is a correct way to write the quotient?
Answer:
125 r. 10
Step-by-step explanation:
Sixteen of 80 dogs in a rescue kennel are puppies.what percent of the dogs in the kennel are puppies?
Answer:
20%
Step-by-step explanation:
Answer:
20%
Step-by-step explanation: All you have to do is 16 divided by 80 which is 0.2. 0.2 as a decimal is 20%.
Stealers, study components: In a study of the relationship between socio-economic class and unethical behavior, 129 University of California undergraduates at Berkeley were asked to identify themselves as having low or high social-class by comparing themselves to others with the most (least) money, most (least) education, and most (least) respected jobs. They were also presented with a jar of individually wrapped candies and informed that the candies were for children in a nearby laboratory, but that they could take some if they wanted. After completing some unrelated tasks, participants reported the number of candies they had taken. It was found that those who were identified as upper-class took more candy than others (Piff, 2012). Identify the following about this study.
a) What are the cases?_____
b) What are the variables and their types?_____
c) What is the main research question?_____
Answer:
a) 129 University of California undergraduates at Berkeley.
b) (i) social-class (ordinal), (ii) money (continuous), (iii) education (ordinal) , (iv) respected job (ordinal), (v) number of candies (continuous)
c) The main question is to find the relationship between socio-economic class and unethical behaviour
Step-by-step explanation:
a) 129 University of California undergraduates at Berkeley.
b)
i) social-class (ordinal)
ii) money (continuous)
iii) education (ordinal)
iv) respected job (ordinal)
v) number of candies (continuous)
c) The main question is to find the relationship between socio-economic class and unethical behaviour
In the matrix equation below, what are the values of x and y?
Answer: x=3 y=1
Step-by-step explanation:
A simple random sample of 5 months of sales data provided the following information: Month: 1 2 3 4 5 Units Sold: 94 105 85 94 92 (a) Develop a point estimate of the population mean number of units sold per month. x = (b) Develop a point estimate of the population standard deviation. If required, round your answer to two decimal places. s =
Answer:
a) x = 94 units/month
b) s = 51.50 units/month
Step-by-step explanation:
The adequate point estimation of the population mean and standard deviation are the sample mean and sample standard deviation.
a) Point estimation of the population (sample mean)
[tex]M=\dfrac{1}{n}\sum_{i=1}^n\,x_i\\\\\\M=\dfrac{1}{5}(94+105+85+94+92)\\\\\\M=\dfrac{470}{5}\\\\\\M=94\\\\\\[/tex]
b) Point estimation of the population standard deviation (sample standard deviation)
[tex]s=\dfrac{1}{n-1}\sum_{i=1}^n\,(x_i-M)^2\\\\\\s=\dfrac{1}{4}((94-94)^2+(105-94)^2+(85-94)^2+(94-94)^2+(92-94)^2)\\\\\\s=\dfrac{206}{4}\\\\\\s=51.50\\\\\\[/tex]
Using statistical concepts, it is found that:
a) The point estimate for the population mean is of: [tex]\overline{x} = 94[/tex]
b) The point estimate for the population standard deviation is of: [tex]s = 7.18[/tex]
Item a:
The mean of a data-set is the sum of all observations in the data-set divided by the number of observations.The point estimate for the population mean is the sample mean.In this problem, the sample is: 94, 105, 85, 94, 92.
Thus, the mean is:
[tex]\overline{x} = \frac{94 + 105 + 85 + 94 + 92}{5} = 94[/tex]
Item b:
The standard deviation of a data-set is the square root of the sum of the differences squared between each observation and the mean, divided by one less than the number of values.The point estimate for the population standard deviation is the sample standard deviation.Then:
[tex]s = \sqrt{\frac{(94-94)^2+(105-94)^2+(85-94)^2+(94-94)^2+(92-94)^2}{4}} = 7.18[/tex]
A similar problem is given at https://brainly.com/question/13451786
How is the vertex related to the maximum or minimum of a parabola?
Answer:
Vertical parabolas give an important piece of information: When the parabola opens up, the vertex is the lowest point on the graph — called the minimum, or min. When the parabola opens down, the vertex is the highest point on the graph — called the maximum, or max.
Step-by-step explanation:
The y coordinate of the vertex tells you the highest or lowest point, depending on whether the parabola opens downward or upward.
For something like y = -2(x-5)^2 + 10, it opens downward and has the vertex at (5,10). The highest point is (5,10) so the largest y value or output is y = 10. This is the maximum of the function. Note the value of 'a' is a = -2 which is negative. Also note the vertex form y = a(x-h)^2 + k with vertex (h,k).
For an example like y = 7(x+2)^2 - 8 we have a = 7 so the parabola opens upward meaning we'll have a minimum this time. The lowest point is the vertex (h,k) = (-2,-8). The minimum of the function is y = -8.
4(4x - 2) = x + 4
asnwerplsssssssss
Answer:
4(4x - 2) = x + 4
16x - 8 = x + 4
15x = 12
x = 12/15 = 4/5
Answer:
x = 0.8
Step-by-step explanation:
4(4x - 2) = x + 4
16x - 8 = x + 4
16x - x = 4 + 8
15x = 12
x = 0.8
The measures of two angles of a triangle are 105 and 31 degrees. Find the measure of the third angle.
Answer: 44°
Step-by-step explanation:
Measures of the angles of a triangle
= 180°
Therefore, 180 - 105 + 31 = 44°
The measure of the third angle is 44 degrees.
We have,
To find the measure of the third angle in a triangle, we can use the fact that the sum of the measures of all three angles in a triangle is always 180 degrees.
Let's denote the measure of the third angle as "x".
We are given that the measures of the other two angles are 105 degrees and 31 degrees.
Using the sum of angles in a triangle, we can set up the equation:
105 + 31 + x = 180
Simplifying the equation:
136 + x = 180
To isolate "x", we subtract 136 from both sides of the equation:
x = 180 - 136
x = 44
Therefore,
The measure of the third angle is 44 degrees.
Learn more about triangles here:
https://brainly.com/question/25950519
#SPJ2
Assume that the population proportion is 0.56. Compute the standard error of the proportion, σp, for sample sizes of 100, 200, 500, and 1,000. (Round your answers to four decimal places.)
Answer:
Standard errors are 0.049, 0.035, 0.022, and 0.016.
Step-by-step explanation:
The given value of population proportion (P) = 0.56
Given sample sizes (n ) 100, 200, 500, and 1000.
Now standard error is required to calculate.
Use the below formula to find standard error.
When sample size is n = 100
[tex]\sqrt{\frac{P(1-P)}{n}} = \sqrt{\frac{0.56(1-0.56)}{100}} =0.049[/tex]
When sample size is n = 200
[tex]\sqrt{\frac{P(1-P)}{n}} = \sqrt{\frac{0.56(1-0.56)}{200}} = 0.035[/tex]
When sample size is n = 500
[tex]\sqrt{\frac{P(1-P)}{n}} = \sqrt{\frac{0.56(1-0.56)}{500}} =0.022[/tex]
When sample size is n = 1000
[tex]\sqrt{\frac{P(1-P)}{n}} = \sqrt{\frac{0.56(1-0.56)}{1000}} = 0.016[/tex]
If
f(x) = 13x + 1, then
f-1(x) =
Answer:
(x-1)/13
Step-by-step explanation:
y = 13x+1
To find the inverse, exchange x and y
x = 13y+1
Solve for y
Subtract 1 from each side
x-1 =13y+1-1
x-1 = 13y
Divide each side by 13
(x-1)/13 = y
The inverse is (x-1)/13
Answer:
f(x) = 13x + 1
To find the inverse let f(x) = y
y = 13x + 1
x = 13y + 1
13y = x - 1
y = (x-1)/13
The inverse is x-1/13.
how much money do you earn in 1 hour if you earn 20 in 4 hours
Answer:
let’s make a Unit rate.
$20/4 hours = $5 per hour
So you earn $5 in 1 hour if you earn $20 in 4 hours.
hope this helps and pls mark me brainliest if it did ;)
Answer:
$5
Step-by-step explanation:
Let's set up a proportion using the following setup.
money/hours=money/hours
We know that $20 is earned in 4 hours. We don't know how much is earned in 1 hour, so we can say $x is earned in 1 hour.
$20/4 hours= $x/1 hour
20/4=x/1
x/1 is equal to x.
20/4=x
Divide 20 by 4.
5=x
$5 is earned in 1 hour.
A sofa sells for $1255.00 on the installment plan, which includes the finance charge. The payment plan calls for 10 percent down and the balance in 12 equal payments. The amount of each payment is $125.50. $86.43. $94.13. $120.00.
Answer:
$94.125
Step-by-step explanation:
Question 2: The average price for a BMW 3 Series Coupe 335i is $39,368. Suppose these prices are also normally distributed with a standard deviation of $2,367. What percentage of BMW dealers are pricing the BMW 3 Series Coupe 335i at more than the average price ($44,520) for a Mercedes CLK350 Coupe? Round your answer to 3 decimal places.
Answer:
0.015 = 1.5% of BMW dealers are pricing the BMW 3 Series Coupe 335i at more than the average price ($44,520) for a Mercedes CLK350 Coupe
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
[tex]\mu = 39368, \sigma = 2367[/tex]
What percentage of BMW dealers are pricing the BMW 3 Series Coupe 335i at more than the average price ($44,520) for a Mercedes CLK350 Coupe?
This is 1 subtracted by the pvalue of Z when X = 44520. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{44520 - 39368}{2367}[/tex]
[tex]Z = 2.18[/tex]
[tex]Z = 2.18[/tex] has a pvalue of 0.985
1 - 0.985 = 0.015
0.015 = 1.5% of BMW dealers are pricing the BMW 3 Series Coupe 335i at more than the average price ($44,520) for a Mercedes CLK350 Coupe
The length of a 95% confidence interval for mean Age is which of the following? (Because of potential roundoff, choose the closest.) Click here to reference the data needed to answer the question. a. 3.37 b. 3.72 c. 4.27 d. 3.11
Answer:
The length of a 95% confidence interval for mean Age is 3.72.
Step-by-step explanation:
The data is provided for the age of 100 adults.
The mean and standard deviation are:
[tex]\bar x=47.8\\\\s=9.3744[/tex]
As the sample size is too large the z-interval will be used for the 95% confidence interval for mean.
The critical value of z for 95% confidence level is, z = 1.96.
The length of a confidence interval is given by:
[tex]\text{Length}=2\cdot z_{\alpha/2}\cdot\frac{s}{\sqrt{n}}[/tex]
[tex]=2\times 1.96\times\frac{9.3744}{\sqrt{100}}\\\\=3.6747648\\\\\approx 3.67\\\\\approx 3.72[/tex]
Thus, the length of a 95% confidence interval for mean Age is 3.72.
paulina plays both volleyball and soccer .the probability of her getting injured playing soccer is 0.10 and the probability of her getting injured playing soccer is 0.20 .which of the event is more likely
Step-by-step explanation:
While playing volleyball, probability of getting hurt is
P(A) = 0.1 = 1/10
and in the case of soccer, it is
P(B) = 0.2 = 2/10 = 1/5
Here we see, P(A) < P(B)
Answer: We can conclude that the probability of getting injured while playing soccer is more likely.
The area of a triangle is 80cm² and its base is 8cm. If its height is (6+k) cm, find the value if k.
(3marks)
Answer:
K=14
Step-by-step explanation:
A=1/2*b*h
80=1/2*8*(6+k) multiply by 2 on both sides
160=8*(6+k) distribute by 8
160=48+8k subtract 48 from both sides
112=8k divide by 8
14=K
Suppose tossing a coin 8 times represents the 8 cups of tea, heads represents a correct identification of what was poured first, tea or milk, and tails represents an incorrect identification of what was poured first. Select the best conclusion you would draw about whether the woman was just guessing.
A. Repeat the process many times (1000). If 6 correct out of 8 cups rarely occurs, then it is most likely that the woman was just guessing as to what was poured first.
B. Repeat the process many times (1000). If 8 correct out of 8 cups rarely occurs, then it is unlikely that the woman was just guessing as to what was poured first.
C. Repeat the process many times (1000). If 8 correct out of 8 cups rarely occurs, then it is likely that the woman was just guessing as to what was poured first.
D. Repeat the process many times (1000). If 4 correct out of 8 cups rarely occurs, then it is unlikely that the woman was just guessing as to what was poured first.
Answer:
A. Repeat the process many times (1000). If 6 correct out of 8 cups rarely occurs, then it is most likely that the woman was just guessing as to what was poured first.
Step-by-step explanation:
Since tossing a coin 8 times implies 8 cups of tea, with the given conditions.
The sample space = 1000
Then;
[tex]\frac{6}{8}[/tex] × 1000 = 750
If 6 correct out of 8 cups occurs (750 out of 1000), the woman got 750 correctly. Thus it can be inferred that it is likely that she knew what was poured first, either the tea or milk.
But, if 6 correct out of 8 cups rarely occurs (i.e 250 out of 1000), then it is most likely that the woman was just guessing as to what was poured first.
A kite is flying 85 ft off the ground, and its string is pulled taut. The angle of elevation of the kite is 52degrees. Find the length of the string. Round your answer to the nearest tenth.
Answer:
107.9 ft
Step-by-step explanation:
Imagine Kite is a point A. The person ,who keeps the string is point B.
The height of flying is AC=85 ft. So we have right triangle ABC :angle C=90 degrees, angle B is 52 degrees. Length of AB (triangle ABC hypotenuse) is the length of the string.
AB=AC/sinB=85/sin52=107.8665...=approx 107.9 ft
Please answer this correctly
Answer:
Step-by-step explanation:
Baltimore orioles : 1,000,000 + 1,000,000 + 500,000
Click 2 full bag and 1 half bag
Kansas city royals : 1,000,000 +500,000
Click 1 full bag and 1 half bag
Newyork Yankees : 1,000,000 + 1,000,000 + 1,000,000 +1,000,000 +1,000,000 + 500,000
Click 5 full bag + 1 half bag