Answer:
the correct one is 2. the equipotential lines must be closer together where the field has more intensity
Explanation:
The equipotential line concept is a line or surface where a test charge can move without doing work, therefore the potential in this line is constant and they are perpendicular to the electric field lines.
In this exercise we have a charge and a series of equipotential lines, if this is a point charge the lines are circles around the charge, where the potential is given by
V = k q / r
also the electric field and the electuary potential are related
E = [tex]- \frac{dV}{dr}[/tex]
therefore the equipotential lines must be closer together where the field has more intensity
When checking the answers, the correct one is 2
Which of the following statements is true?
Answer:
Aluminum and steel are good conductors of electricity.
Explanation:
1) All materials are good conductors of electricity.
This is false because nonmetal materials such as plastic or wood cannot conduct electricity.
2) Aluminum and steel are good conductors of electricity.
This is true. All metals are conductors of electricity.
3) Gold and wood are poor conductors of electricity.
This is false. Although gold can conduct electricity, wood can't.
4) Plastic and copper are good conductors of electricity.
This is false. Although copper can conduct electricity, plastic can't.
I hope this helps!
Answer:
B) Aluminum and steel are good conductors
Explanation:
A student picks up two spheres that are the same size. One is made of steel and the other is made of aluminum. The student notices that the steel sphere feels much heavier than the aluminum sphere. He then holds one sphere in each hand at eye level and lets go of them at the same time. They fall to the floor. Which ball, if any, will hit the ground first and for what reason
Answer:
They will fall at the same time. This is because gravity accelerates all objects at the same speed, Earth's gravity being approximately 9.8m/s²
They'll both fall at the same time. This is because gravity accelerates everything at the same rate, with Earth's gravity being approximately 9.8 m/s2.
What is gravity with some instances?The energy that holds the gases inside the sun together. the force that causes a ball to fall after being thrown into the air the force that causes a car to coast downhill even when the gas pedal is not depressed the force that causes a glass to shatterGravity, also known as gravitation, affects all material objects in the universe. Gravity attracts any two objects or particles with nonzero mass toward one another. Gravity affects everything from subatomic particles to galaxy clusters. Gravity is the attraction force between two objects. It's what causes things to fall and keeps us from floating away into space. Gravity is a fundamental natural force.To learn more about gravity, refer to:
https://brainly.com/question/16275567
#SPJ2
Lex launched a golfball with his lego catapult. It traveled 7 meters and was in the air for 2 seconds. Please determine the object’s maximum height, horizontal velocity, vertical velocity, actual velocity, and time it reached its maximum height. The angle of release (the catapult’s arm) is 40°.
Horizontal Velocity = vx
Vertical Velocity = V1y
Actual Velocity: V1 = Vactual
Time reached highest point
Height reached!= h
Givens:
dx=
a=
t=
Angle of release:
Table B:
What you need to determine
Formula used
Answer: remember to label the correct units
Distance
Measure it with a meter stick
Time Traveled
Measure it with a stopwatch
Horizontal Velocity
Vertical Velocity
Actual Velocity
Time reached Highest Point
What was the object’s highest point
Answer:
Explanation:
Range R = 7 m
angle of projection θ = 40⁰
u² sin2θ / g = R where u is velocity of throw.
u² sin 80 / g = 7
u² = 69.71
u = 8.35 m/s
horizontal velocity = u cos 40 = 8.35 cos 40
= 6.4 m /s
vertical velocity = u sin 40 = 8.35 sin40
= 5.37 m /s
Maximum height :-
v² = u² - 2gh , u is initial vertical component of throw.
0 = 5.37² - 2 x 9.8 x h
h = 1.47 m
Time to reach max height :--
v = u - gt
o = 5.37 - 9.8 t
t = .55 s
We know that there is a relationship between work and mechanical energy change. Whenever work is done upon an object by an external force (or non-conservative force), there will be a change in the total mechanical energy of the object. If only internal forces are doing work then there is no change in the total amount of mechanical energy. The total mechanical energy is said to be conserved. Think of a real-life situation where we make use of this conservation of mechanical energy (where we can neglect external forces for the most part). Describe your example and speak to both the kinetic and potential energy of the motion.
Answer:
* roller skates and ice skates.
* roller coaster
Explanation:
One of the best examples for this situation is when we are skating, in the initial part we must create work with a force, it compensates to move, after this the external force stops working and we continue movements with kinetic energy, if there are some ramps, we can going up, where the kinetic energy is transformed into potential energy and when going down again it is transformed into kinetic energy. This is true for both roller skates and ice skates.
Another example is the roller coaster, in this case the motor creates work to increase the energy of the car by raising it, when it reaches the top the motor is disconnected, and all the movement is carried out with changes in kinetic and potential energy. In the upper part the energy is almost all potential, it only has the kinetic energy necessary to continue the movement and in the lower part it is all kinetic; At the end of the tour, the brakes are applied that bring about the non-conservative forces that decrease the mechanical energy, transforming it into heat.
Which of these would have the highest temperature?
ice
· Water
water vapor
Answer:
water vapor
Explanation:
did assignment on edge
Particles q1, 92, and q3 are in a straight line.
Particles q1 = -5.00 x 10-6 C,q2 = -5.00 x 10-6 C,
and q3 = -5.00 x 10-6 C. Particles q1 and q2 are
separated by 0.500 m. Particles q2 and q3 are
separated by 0.250 m. What is the net force on 92?
Remember: Negative forces (-F) will point Left
Positive forces (+F) will point Right
-5.00 x 10-6 C
-5.00 x 10-6
-5.00 x 10-6 C
91
92
93
0.500 m
0.250 m
q1 = -5.00 x 10-6 C
q2 = -5.00 x 10-6 C
q3 = -5.00 x 10-6 C
E1 = kq/r^2 = ( 9 x 10^9)( 5 x 10^-6)/(0.5^2) = 180000 N/C to the left
E2 = kq/r^2 = ( 9 x 10^9)( 5 x 10^-6)/(0.25^2) = 720000 N/C to the right
E net = 720000 - 180000 = 540000 N/C to the right
F = qE
F = (-5 x 10^6 C)(540000 N/C) = - 2.7 N
The force on q2 is 2.7 N to the left.
The net electrostatic force on the q2 is 2.7N owards left
The equation for electrostatic force is
[tex]F= k\frac{q_{1}q_{2} }{r^{2} }[/tex]
where k = [tex]9*10^{9} Nm^{2}/C^{2}[/tex] and r is the distance separating charges q1 and q2.
the force has to be calculated on a charge q2 = -5.0 ×[tex]10^{-6}[/tex] C by the charges q1= -5.0 ×[tex]10^{-6}[/tex] C and q3= -5.0 ×[tex]10^{-6}[/tex] C
distance between q1 and q2 is 0.5 m = 5×[tex]10^{-1}[/tex]m
distance between q2 and q3 is 0.25 m = 25×[tex]10^{-2}[/tex]m
force due to charge q1
[tex]F_{1}[/tex] = 9×[tex]10^{9}[/tex]×(-5)×(-5)×[tex]10^{-12}[/tex]/25×[tex]10^{-2}[/tex] N = +0.9N = 0.9N towards right
[tex]F_{2}[/tex] = 9×[tex]10^{9}[/tex]×(-50)×(-4)×[tex]10^{-12}[/tex]/625×[tex]10^{-4}[/tex] N = -3.6N = 3.6N towards left
hence net force F = [tex]F_{1}+F_{2}[/tex]
= 0.9N - 3.6N = -2.7N
F = 2.7 N towards left
Learn more about electrostatic force:
https://brainly.com/question/11375177
Fill in the blank. Consider the inverse square law: When light leaves a light bulb, it spreads out over more and more space as it goes. This makes the light thinner, with less and less light present the further from the light bulb we look. If we stand looking at a light bulb and see how bright it is, then move to be four times farther away from the light bulb, the light from the bulb will look ____________ less bright. Group of answer choices
Answer:
Explanation:
Intensity of light is inversely proportional to distance from source
I ∝ 1 /r² where I is intensity and r is distance from source . If I₁ and I₂ be intensity at distance r₁ and r₂ .
I₁ /I₂ = r₂² /r₁²
If r₂ = 4r₁ ( given )
I₁ / I₂ = (4r₁ )² / r₁²
= 16 r₁² / r₁²
I₁ / I₂ = 16
I₂ = I₁ / 16
So intensity will become 16 times less bright .
"16 times " is the answer .
What happens to the energy of a rubber band when it is stretched?
An elevator suspended by a vertical cable is moving downward at a constant speed. The tension in the cable must be A) greater than the weight of the elevator. B) less than the weight of the elevator. C) equal to the weight of the elevator.
Answer:
(C) because the elevator is not accelerating
Note F = M a = M g (the resultant force on the elevator is due to gravity)
or Fup = Fc the force exerted on the elevator by the cable
and Fdown = Fe the force exerted on the elevator by gravity
F = M a = Fup - Fdown = zero resultant force on elevator
In the legend of William Tell, Tell is forced to shoot an apple from his son's head for failing to show respect to a high official. In our case, let's say Tell stands 8.7 meters from his son while shooting. The speed of the 144-g arrow just before it strikes the apple is 20.4 m/s, and at the time of impact it is traveling horizontally. If the arrow sticks in the apple and the arrow/apple combination strikes the ground 8 m behind the son's feet, how massive was the apple
Answer:
M = 0.31 kg
Explanation:
This exercise must be done in parts, let's start by finding the speed of the set arrow plus apple, for this we define a system formed by the arrow and the apple, therefore the forces during the collision are internal and the moment is conserved
let's use m for the mass of the arrow with velocity v₁ = 20.4 m / s and M for the mass of the apple
initial instant. Just before the crash
p₀ = m v₁ + M 0
instant fianl. Right after the crash
p_f = (m + M) v
p₀ = p_f
m v₁ = (m + M) v
v =[tex]\frac{m}{m+M} \ v_1[/tex] (1)
now we can work the arrow plus apple set when it leaves the child's head with horizontal speed and reaches the floor at x = 8 m. We can use kinematics to find the velocity of the set
x = v t
y = y₀ + [tex]v_{oy}[/tex] t - ½ g t²
when it reaches the ground, its height is y = 0 and as it comes out horizontally, [tex]v_{oy} = 0[/tex]
0 = h - ½ g t²
t² = 2h / g
For the solution of the exercise, the height of the child must be known, suppose that h = 1 m
t = [tex]\sqrt{ \frac{ 2 \ 1}{9.8} }[/tex]
t = 0.452 s
let's find the initial velocity
v = v / t
v = 8 / 0.452
v = 17.7 m / s
From equation 1
v = m / (m + M) v₁
m + M = [tex]m \ \frac{v_1}{v}[/tex]
M = m + m \ \frac{v_1}{v}
we calculate
M = 0.144 + 0.144 [tex]\frac{20.4}{17.7}[/tex]
M = 0.31 kg
2) How much work is required to pull a sled 15
meters if you use 30N of force?
2 people
Explanation:
Scott travels north 3 Km and then goes west 3 Km before coming straight
back south 3 km. What is his displacement? *
9 Km
3 km, W
3 Km, E
9 km, S
Answer:
you have to times them all ti get the answer
Four bicyclists travel different distances and times along a straight path. Which cyclist traveled with the greatest average
speed?
A
B
Cyclist 2 travels
87 min 22 s
Cyclist 4 travels
108 min 24 s
D
Cyclist 1 travels
95 m in 27 s
Cyclist 3 travels
106 m in 26 s
Answer:
The cyclist with the greatest average speed is Cyclist 4 with average speed of 4.5 m/s
Explanation:
Given;
Cyclist 1 travels 9 m in 27 s
Cyclist 2 travels 87 m in 22 s
Cyclist 3 travels 106 m in 26 s
Cyclist 4 travels 108 m in 24 s
Determine the average speed of the cyclists as follows;
Average speed of Cyclist 1: v = 9/27 = 0.33 m/s
Average speed of Cyclist 2: v = 87/22 = 3.96 m/s
Average speed of Cyclist 3: v = 106/26 = 4.08 m/s
Average speed of Cyclist 4: v = 108/24 = 4.5 m/s
Therefore, the cyclist with the greatest average speed is Cyclist 4 with average speed of 4.5 m/s
For the circuit in the previous part, the current flowing in the wire between the positive terminal of the battery and the resistor is ___________ the current flowing between the resistor and the negative terminal of the battery. For the circuit in the previous part, the current flowing in the wire between the positive terminal of the battery and the resistor is ___________ the current flowing between the resistor and the negative terminal of the battery. less than equal to greater than
Answer:
Explanation:
because it is godhood
What happens to solar radiation when it is absorbed
Answer:
Absorbed sunlight is balanced by heat radiated from Earth's surface and atmosphere. ... The atmosphere radiates heat equivalent to 59 percent of incoming sunlight; the surface radiates only 12 percent. In other words, most solar heating happens at the surface, while most radiative cooling happens in the atmosphere
What is a overly-simplified definition of Einstein's theory of general relativity?
Answer:
the laws of physics are the same for all non-accelerating observers
Explanation:
5
Select the correct answer.
What is the current in a parallel circuit which has two resistors (17.2 ohms and
22.4 ohms) and a power source of 6.0 volts?
ОА.
0.30 amps
OB.
9.8 amps
OC.
0.61 amps
D.
1.2 amps
Reset
Next
Answer:
Current in a parallel circuit = 0.61 amps (Approx)
Explanation:
Given:
Voltage V = 6 volt
Two resistors = 17.2 , 22.4 in parallel circuit
Find:
Current in a parallel circuit
Computation:
1/R = 1/r1 + 1 / r2
1/R = 1/17.2 + 1 / 22.4
R = 9.73 ohms (Approx)
Current in a parallel circuit = V / R
Current in a parallel circuit = 6 / 9.73
Current in a parallel circuit = 0.61 amps (Approx)
Liquid water is nearly 1,000 times denser than air. Thus, for every 32.0 feet (9.75 m) a scuba diver descends below the water's surface, the pressure increases by 1.00 atm. Human lungs have a volume of approximately 3.50 L. If a scuba diver descends to a depth of 80.0 feet where the pressure is 3.50 atm (2.50 atm from the water and 1.00 atm from the air pressure), then by how much does the volume of a 3.50 L surface sample of air decrease
Answer:
ΔV = -2.1 L
Explanation:
To solve this exercise we can use the ideal gas equation for two points
PV = nRT
P₁V₁ = P₂ V₂
where point 1 is on the surface and point 2 is at the desired depth,
V₂ = [tex]\frac{P_1}{P_2} \ V_1[/tex]
let's calculate
V₂ = ( [tex]\frac{1 atm}{2.5 atm}[/tex] ) 3.5 L
V₂ = 1.4 L
this is the new volume, the change in volume is
ΔV = V₂ -V₁
ΔV = 1.4-3.5
ΔV = -2.1 L
a toy train is moved towards a magnet that cannot move. what happens to the potential energy in the system of magnets during the movement
Answer:
Dakota moves a magnetic toy train toward a magnet that cannot move. What happens to the potential energy in the system of magnets during the movement? The potential energy increases because the train moves against the magnetic force. The potential energy decreases because the train moves against the magnetic force.
I hope this helps you :)
i need this literally asap
which of these statements are true?
1. it is always correct to use a 3 Amp fuse.
2. Fuses come in several different sizes and values
3. A fuse can be re-set and used again
4. A fuse once ‘blown’ needs replacing
5. Fuses are the ‘weak point’ in a circuit
Answer:
I only know number 4 is correct
Explanation:
Difference between on pitch and frequency
Answer:
A high pitch sound corresponds to a high frequency sound wave and a low pitch sound corresponds to a low frequency sound wave. I hope I got it correct !!
Your dog runs in a straight line for a distance of 43m in 28s
What is your dog's average speed?
Answer:
Explanation:
Hope this helps!
PLEASE HELP!!!! ITS URGENT!!!
Answer:
dude the answer is upright
In 2014, physicists from FOM Foundation at the University of Amsterdam introduced a new hypothesis of how the Pyramids at Giza were built. The group of physicists suggestedthat ancient Egyptians wetted sand in an effort toreduce friction and then pulled the 3000 kg stoneblocks to their final resting place. 15 men couldmove a block at a rate of 0.5m/sby pulling a largerope angled at 30owith respect to the plane anda tension of 7,200 N.
Required:
a. What is net work done on block?
b. What is speed of blck after it moved .25m?
c. What is work done by block if kinetic friction coefficient is 0.3?
d. What is net work including friction?
Answer:
The correct answer is:
(a) 0
(b) 0.5 m/s
(c) 7740 N
(d) 0
Explanation:
The given values are:
mass,
m = 3000 kg
Tension,
T = 7,200 N
Angle,
= 30°
(a)
Even as the block speed becomes unchanged, the kinetic energy (KE) will adjust as well:
⇒ [tex]\Delta K =0[/tex]
By using the theorem of energy, the net work done will be:
⇒ [tex]\Delta K =0[/tex]
(b)
According to the question, After 0.25 m the block is moving with the constant speed
= 0.5 m/s.
(c)
The given kinetic friction coefficient is:
u = 0.3
The friction force will be:
= [tex]u(mg-Tsin30^{\circ})[/tex]
On substituting the values, we get,
= [tex]0.3[(3000\times 9.8)-(7200\times 0.5)][/tex]
= [tex]0.3[29400-3600][/tex]
= [tex]0.3\times 25800[/tex]
= [tex]7,740 \ N[/tex]
(d)
On including the friction,
The net work will be:
⇒ [tex]\Delta K=0[/tex]
a toy of mass 600 is whirled by a child in a horizontal circle using a string of length 2m with a linear speed of 5 m/s determine the angular velocity of the toy?
Explanation:
angular velocity = velocity/radius
= 5/2
= 2.5 rad/s
You are called as an expert witness to analyze the following auto accident: Car B, of mass 2100 kg, was stopped at a red light when it was hit from behind by car A, of mass 1500 kg. The cars locked bumpers during the collision and slid to a stop. Measurements of the skid marks left by the tires showed them to be 7.30 m long, and inspection of the tire tread revealed that the coefficient of kinetic friction between the tires and the road was 0.65.
(a) What was the speed of car A just before the collision?
(b) If the speed limit was 35 mph, was car A speeding, and if so, by how many miles per hour was it exceeding the speed limit?
Answer:
Explanation:
Force of friction at car B ( break was applied by car B ) =μ mg = .65 x 2100 X 9.8 = 13377 N .
work done by friction = 13377 x 7.30 = 97652.1 J
If v be the common velocity of both the cars after collision
kinetic energy of both the cars = 1/2 ( 2100 + 1500 ) x v²
= 1800 v²
so , applying work - energy theory ,
1800 v² = 97652.1
v² = 54.25
v = 7.365 m /s
This is the common velocity of both the cars .
To know the speed of car A , we shall apply law of conservation of momentum .Let the speed of car A before collision be v₁ .
So , momentum before collision = momentum after collision of both the cars
1500 x v₁ = ( 1500 + 2100 ) x 7.365
v₁ = 17.676 m /s
= 63.63 mph .
( b )
yes Car A was crossing speed limit by a difference of
63.63 - 35 = 28.63 mph.
(a) The speed of car A just before the collision is 51.58 mph.
(b) With the given speed limit of 35 miles per hour, car A was crossing the speed limit by 16.58 mph.
What is collision?
The event when two objects strike each other from either direction, then such event is known as a collision. During the collision, the speed of colliding objects may vary according to the direction of the approach.
Given data -
The mass of car A is, mA = 1500 kg.
The mass of car B is, mB = 2100 kg.
The length of the skid mark is, d = 7.30 m.
The coefficient of kinetic friction between tires and road is, [tex]\mu = 0.65[/tex].
(a)
The combined kinetic energy of both cars is,
[tex]KE_{T}=\dfrac{1}{2} (mA+mB)v^{2}\\\\KE_{T}=\dfrac{1}{2} (1500+2100)v^{2}\\\\KE_{T}=1800v^{2}[/tex]
Applying the work-energy principle as,
Work done due to kinetic friction = Combined kinetic energy of cars
[tex]F \times d = KE_{T}\\\\(\mu \times (mA+mB)\times g) \times d = KE_{T}\\\\(0.65 \times (1500+2100)\times 9.8) \times 7.30 = 1800v^{2}\\\\v = 9.64 \;\rm m/s[/tex]
Converting into mph as,
[tex]v = 9.64 \times 2.23\\\\v = 21.49 \;\rm mph[/tex]
To know the speed of car A , we shall apply the law of conservation of momentum. Let the speed of car A before collision be v₁.
So , momentum before collision = momentum after collision of both the cars
1500 x v₁ = ( 1500 + 2100 ) x 21.49
v₁ = 51.58 mph
Thus, we can conclude that the speed of car A just before the collision is 51.58 mph.
(b)
With the given speed limit of 35 mph, the obtained speed of car A before the collision is 51.58 mph. Clearly, car A is crossing the speed limit. And the difference is,
= 51.58 - 35 = 28.63 mph.
= 16.58 mph
Thus, we can conclude that car A was crossing the speed limit by 16.58 mph.
Learn more about the average speed here:
https://brainly.com/question/12322912
An object swings in a horizontal circle, supported by a 1.8-m string. It swings at a speed of 3 m/s. What is the mass of the object given that the tension in the string is 90 N?
Answer:
Mass = 18 kg
Explanation:
Formula for force in centripetal motion is;
F = mv²/r
We have;
Mass; m.
Speed; v = 3 m/s
radius; r = 1.8 m
Force; F = 90 N
Thus;
Making m the subject;
m = Fr/v²
m = 90 × 1.8/3²
m = 18 kg
If the net force acting on an object is 0 N, you can be sure that the forces acting on the object are
A. balanced B.Unbalanced C. acting at the same direction
I think the answer would be A.
After all, it is 0 which is technically a dead center number meaning that the net should be balanced and still.
Hope this helps and have a nice day.
-R3TR0 Z3R0
A 45.0 kilogram boy is riding a 15.0-kilogram bicycle with a speed of 8.00 meters per second. What is the combined kinetic energy of the boy and the bicycle? A)480.J B)240.0J C)1920J D)1440J
Answer:
1920Joules
Explanation:
The formula for calculating the kinetic energy of a body is expressed as;
KE = 1/2 mv²
m isthe mass
V is the speed
For the two masses, the combined KE is expressed as;
KE = 1/2(m1+m2)v²
KE = 1/2(45+15)(8)²
KE = 1/2 * 60 * 64
KE = 30 * 64
KE = 1920J
Hence the combined kinetic energy of the boy and the bicycle is 1920Joules
The combined kinetic energy of the boy and the bicycle is of 1920 J.
Given data:
The mass of boy is, m = 45.0 kg.
The mass of bicycle is, M = 15.0 kg.
The speed of bicycle is, v = 8.00 m/s.
The kinetic energy of an object is defined as the energy possessed by an object by virtue of motion of object. The combined kinetic energy of the boy-bicycle system is given as,
[tex]KE = \dfrac{1}{2}(m+M)v^{2}[/tex]
Solve by substituting the values as,
[tex]KE = \dfrac{1}{2}(45+15) \times 8^{2}\\\\KE = 1920 \;\rm J[/tex]
Thus, we can conclude that the combined kinetic energy of the boy and the bicycle is of 1920 J.
Learn more about the concept of kinetic energy here:
https://brainly.com/question/12669551
The only way that heat can travel through outer space is ______
convection
radiation
conduction
none of the above
plssssssssssss answer correctly