Each set of parametric equations below describes the path of a particle that moves along the circlex^2+(y-1)^2=4in some manner. Match each set of parametric equations to the path that it describes.
A. Once around clockwise, starting at (2, 1).
B. Three times around counterclockwise, starting at (2, 1).
C. Halfway around counterclockwise, starting at (0, 3).

Answers

Answer 1

a. Since the particle moves once around the circle clockwise, starting at (2, 1), these parametric equations match option A.

b. Since the particle moves three times around the circle counterclockwise, starting at (2, 1), these parametric equations match option B.

c. Since the particle moves halfway around the circle counterclockwise, starting at (0, 3), these parametric equations match option C.

How to explain the equation

a. The equation of the circle is given by: x² + (y - 1)² = 4

A. Once around clockwise, starting at (2, 1):

The parametric equations for this path can be written as:

x = 2 + 2cos(t)

y = 1 + 2sin(t)

Since the particle moves once around the circle clockwise, starting at (2, 1), these parametric equations match option A.

B. Three times around counterclockwise, starting at (2, 1):

The parametric equations for this path can be written as:

x = 2 + 2cos(3t)

y = 1 + 2sin(3t)

Since the particle moves three times around the circle counterclockwise, starting at (2, 1), these parametric equations match option B.

C. Halfway around counterclockwise, starting at (0, 3):

The parametric equations for this path can be written as:

x = -2cos(t)

y = 3 - 2sin(t)

Since the particle moves halfway around the circle counterclockwise, starting at (0, 3), these parametric equations match option C.

Learn more about equations on

https://brainly.com/question/2972832

#SPJ4


Related Questions

let x be a discrete random variable with symmetric distribution, i.e. p(x = x) = p(x = −x) for all x ∈x(ω). show that x and y := x2 are uncorrelated but not independent

Answers

Answer:

Step-by-step explanation:

The random variables x and y = x^2 are uncorrelated but not independent. This means that while there is no linear relationship between x and y, their values are not independent of each other.

To show that x and y are uncorrelated, we need to demonstrate that the covariance between x and y is zero. Since x is a symmetric random variable, we can write its probability distribution as p(x) = p(-x).

The covariance between x and y can be calculated as Cov(x, y) = E[(x - E[x])(y - E[y])], where E denotes the expectation.

Expanding the expression for Cov(x, y) and using the fact that y = x^2, we have:

Cov(x, y) = E[(x - E[x])(x^2 - E[x^2])]

Since the distribution of x is symmetric, E[x] = 0, and E[x^2] = E[(-x)^2] = E[x^2]. Therefore, the expression simplifies to:

Cov(x, y) = E[x^3 - xE[x^2]]

Now, the third moment of x, E[x^3], can be nonzero due to the symmetry of the distribution. However, the term xE[x^2] is always zero since x and E[x^2] have opposite signs and equal magnitudes.

Hence, Cov(x, y) = E[x^3 - xE[x^2]] = E[x^3] - E[xE[x^2]] = E[x^3] - E[x]E[x^2] = E[x^3] = 0

This shows that x and y are uncorrelated.

However, to demonstrate that x and y are not independent, we can observe that for any positive value of x, y will always be positive. Thus, knowledge about the value of x provides information about the value of y, indicating that x and y are dependent and, therefore, not independent.

Learn more about Probability Distribution here :

]brainly.com/question/28197859

#SPJ11

Solve the given equation. (If there is no solution, enter NO SOLUTION.) x(x−3)8​=x−34​

Answers

The given equation is x(x−3)÷8= 4/x−3 . By simplifying and rearranging the equation, we find that x=6 is the solution.

To solve the equation, we start by multiplying both sides of the equation by 8 to eliminate the denominator, resulting in x(x−3)=2(x−3). Expanding the equation, we get x ^2−3x=2x−6.

Next, we combine like terms by moving all terms to one side of the equation, which gives us x ^2−3x−2x+6=0. Simplifying further, we have

x^2−5x+6=0.

To solve this quadratic equation, we can factor it as (x−2)(x−3)=0. By applying the zero product property, we find two possible solutions: x=2 and x=3.

However, we need to check if these solutions satisfy the original equation. Substituting x=2 into the equation gives us 2(2−3)÷8=

2−3/4, which simplifies to -1/8 = -1/4 . Since this is not true, we discard x=2 as a solution. Substituting x=3 into the equation gives us  3(3−3)÷8=

3−3/4​ , which simplifies to 0=0. This is true, so x=3 is the valid solution.

Therefore, the solution to the equation is x=3.

To know more about  equations click here:  brainly.com/question/29538993

#SPJ11

Suppose a
3×8
coefficient matrix for a system has
three
pivot columns. Is the system​ consistent? Why or why​ not?
Question content area bottom
Part 1
Choose the correct answer below.
A.There is a pivot position in each row of the coefficient matrix. The augmented matrix will have
four
columns and will not have a row of the form
0 0 0 1
​, so the system is consistent.
B.There is at least one row of the coefficient matrix that does not have a pivot position. This means the augmented​ matrix, which will have
nine
​columns, could have a row of the form
0 0 0 0 0 0 0 0 1
​, so the system could be inconsistent.
C.There is a pivot position in each row of the coefficient matrix. The augmented matrix will have
nine
columns and will not have a row of the form
0 0 0 0 0 0 0 0 1
​, so the system is consistent.
D.There is at least one row of the coefficient matrix that does not have a pivot position. This means the augmented​ matrix, which will have
nine
​columns, must have a row of the form
0 0 0 0 0 0 0 0 1
​, so the system is inconsistent.

Answers

The correct answer is B. There is at least one row of the coefficient matrix that does not have a pivot position. This means the augmented matrix, which will have nine columns, could have a row of the form 0 0 0 0 0 0 0 0 1, so the system could be inconsistent.

In a coefficient matrix, a pivot position is a leading entry in a row that is the leftmost nonzero entry. The number of pivot positions determines the number of pivot columns. In this case, since there are three pivot columns, it means that there are three leading entries, and the other five entries in these rows are zero.

To determine if the system is consistent or not, we need to consider the augmented matrix, which includes the constant terms on the right-hand side. Since the augmented matrix will have nine columns (eight for the coefficient matrix and one for the constant terms), it means that each row of the coefficient matrix will correspond to a row of the augmented matrix with an additional column for the constant term.

If there is at least one row in the coefficient matrix without a pivot position, it implies that the augmented matrix can have a row of the form 0 0 0 0 0 0 0 0 1. This indicates that there is a contradictory equation in the system, where the coefficient of the variable associated with the last column is zero, but the constant term is nonzero. Therefore, the system could be inconsistent.

Learn more about  coefficient matrix here:

https://brainly.com/question/16355467

#SPJ11

Find the slope of the tangent line to the graph of r=2−2cosθ when θ= π/2

Answers

Thus, x = (2 − 2cosθ)cosθ and y = (2 − 2cosθ)sinθ. The derivative of y with respect to x can be found as follows: dy/dx = (dy/dθ)/(dx/dθ) = (2sinθ)/(−2sinθ) = −1 .Therefore, the slope of the tangent line at θ = π/2 is -1.

The slope of the tangent line to the graph of r=2−2cosθ when θ= π/2 is -1. In order to find the slope of the tangent line to the graph of r=2−2cosθ when θ= π/2, the steps to follow are as follows:

1: Find the derivative of r with respect to θ. r(θ) = 2 − 2cos θDifferentiating both sides with respect to θ, we get dr/dθ = 2sinθ

2: Find the slope of the tangent line when θ = π/2We are given that θ = π/2, substituting into the derivative obtained in  1 gives: dr/dθ = 2sinπ/2 = 2(1) = 2Thus the slope of the tangent line at θ=π/2 is 2

. However, we require the slope of the tangent line at θ=π/2 in terms of polar coordinates.

3: Use the polar-rectangular conversion formula to find the slope of the tangent line in terms of polar coordinatesLet r = 2 − 2cos θ be the polar equation of a curve.

The polar-rectangular conversion formula is as follows: x = rcos θ, y = rsinθ.Using this formula, we can express the polar equation in terms of rectangular coordinates.

Thus, x = (2 − 2cosθ)cosθ and y = (2 − 2cosθ)sinθThe derivative of y with respect to x can be found as follows:dy/dx = (dy/dθ)/(dx/dθ) = (2sinθ)/(−2sinθ) = −1

Therefore, the slope of the tangent line at θ = π/2 is -1.

Learn more about tangent line here:

https://brainly.com/question/31617205

#SPJ11

Find the absolute maximum and minimum values of the following function in the closed region bounded by the triangle with vertices (0,0), (0,2), and (1,2) in the first quadrant f(x,y)=2x 2
−4x+y 2
−4y+6 Determine the absolute maximum value of f. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. On the given region, the function's absolute maximum is 8. On the given region, the function has no absolute maximum value. The function assumes this value at (Type an ordered pair. Use a comma to separate answers as needed.) Detnmine the absolute maximum value of f. Select the correct choice beiow and, if necessary, fiil in the answer box fo complete your choice. A. On the given region, the function's absolute minimum is B. On the given region, the function has no absolute minimum value. The function assumes this value at (Type an ordared pale. Use a comna to separate answers as needed.)

Answers

The correct choices are:

A. On the given region, the function's absolute maximum is 6. The function assumes this value at (0, 0).

B. On the given region, the function's absolute minimum is -2. The function assumes this value at (0, 2) and (1, 2).

To find the absolute maximum and minimum values of the function f(x, y) = 2x^2 - 4x + y^2 - 4y + 6 in the closed region bounded by the triangle with vertices (0,0), (0,2), and (1,2) in the first quadrant, we need to evaluate the function at the vertices and critical points within the region.

Step 1: Evaluate the function at the vertices of the triangle:

f(0, 0) = 2(0)^2 - 4(0) + (0)^2 - 4(0) + 6 = 6

f(0, 2) = 2(0)^2 - 4(0) + (2)^2 - 4(2) + 6 = -2

f(1, 2) = 2(1)^2 - 4(1) + (2)^2 - 4(2) + 6 = -2

Step 2: Find the critical points within the region:

To find the critical points, we need to take the partial derivatives of f(x, y) with respect to x and y and set them equal to zero.

∂f/∂x = 4x - 4 = 0 => x = 1

∂f/∂y = 2y - 4 = 0 => y = 2

Step 3: Evaluate the function at the critical point (1, 2):

f(1, 2) = 2(1)^2 - 4(1) + (2)^2 - 4(2) + 6 = -2

Step 4: Compare the values obtained in steps 1 and 3:

The maximum value of f(x, y) is 6 at the point (0, 0), and the minimum value of f(x, y) is -2 at the points (0, 2) and (1, 2).

Therefore, the correct choices are:

A. On the given region, the function's absolute maximum is 6. The function assumes this value at (0, 0).

B. On the given region, the function's absolute minimum is -2. The function assumes this value at (0, 2) and (1, 2).

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

What is correct form of the particular solution associated with the differential equation y ′′′=8? (A) Ax 3 (B) A+Bx+Cx 2 +Dx 3 (C) Ax+Bx 2 +Cx 3 (D) A There is no correct answer from the given choices.

Answers

To find the particular solution associated with the differential equation y′′′ = 8, we integrate the equation three times.

Integrating the given equation once, we get:

y′′ = ∫ 8 dx

y′′ = 8x + C₁

Integrating again:

y′ = ∫ (8x + C₁) dx

y′ = 4x² + C₁x + C₂

Finally, integrating one more time:

y = ∫ (4x² + C₁x + C₂) dx

y = (4/3)x³ + (C₁/2)x² + C₂x + C₃

Comparing this result with the given choices, we see that the correct answer is (B) A + Bx + Cx² + Dx³, as it matches the form obtained through integration.

To know more about integration visit:

brainly.com/question/31744185

#SPJ11

Evaluate ∬ D

x 3
+xy 2
dA where D is the region in the first quadrant that is bounded between x=0,y=x,x 2
+y 2
=1 and x 2
+y 2
=4. In order to receive full redit, you must sketch the region of integration.

Answers

To sketch the region of integration, we can start with the graphs of the two circles x^2 + y^2 = 1 and x^2 + y^2 = 4. These two circles intersect at the points (1,0) and (-1,0), which are the endpoints of the line segment x=1 and x=-1.

The region of integration is bounded by this line segment on the right, the x-axis on the left, and the curve y=x between these two lines.

Here's a rough sketch of the region:

               |

               |    /\

               |   /  \

               |  /    \

               | /      \

               |/________\____

              -1        1

To evaluate the integral, we can use iterated integrals with the order dx dy. The limits of integration for y are from y=x to y=sqrt(4-x^2):

∫[x=-1,1] ∫[y=x,sqrt(4-x^2)] x^3 + xy^2 dy dx

Evaluating the inner integral gives:

∫[y=x,sqrt(4-x^2)] x^3 + xy^2 dy

= [ x^3 y + (1/3)x y^3 ] [y=x,sqrt(4-x^2)]

= (1/3)x (4-x^2)^(3/2) - (1/3)x^4

Substituting this into the outer integral and evaluating, we get:

∫[x=-1,1] (1/3)x (4-x^2)^(3/2) - (1/3)x^4 dx

= 2/3 [ -(4-x^2)^(5/2)/5 + x^2 (4-x^2)^(3/2)/3 ] from x=-1 to x=1

= 16/15 - 8/(3sqrt(2))

Therefore, the value of the integral is approximately 0.31.

Learn more about integration here:

https://brainly.com/question/31744185

#SPJ11

2. let d be a denumerable subset of r. construct an increasing function f with domain r that is continuous at every point in r\d but is discontinuous at every point in d.

Answers

To construct such a function, we can use the concept of a step function. Let's define the function f(x) as follows: For x in R\d (the complement of d in R), we define f(x) as the sum of indicator functions of intervals.

Specifically, for each n in d, we define f(x) as the sum of indicator functions of intervals (n-1, n) for n > 0, and (n, n+1) for n < 0. This means that f(x) is equal to the number of elements in d that are less than or equal to x. This construction ensures that f(x) is continuous at every point in R\d because it is constant within each interval (n-1, n) or (n, n+1). However, f(x) is discontinuous at every point in d because the value of f(x) jumps by 1 whenever x crosses a point in d.

Since d is denumerable, meaning countable, we can construct f(x) to be increasing by carefully choosing the intervals and their lengths. By construction, the function f(x) satisfies the given conditions of being continuous at every point in R\d but discontinuous at every point in the denumerable set d.

Learn more about the function f(x) here: brainly.com/question/30079653

#SPJ11

the distances male long jumpers for state college jump are approximately normal with a mean of 263 inches and a standard deviation of 14 inches. suppose a male long jumper's jump ranked in the 75th percentile (75% of jumpers jumped less distance). how long was his jump?

Answers

The male long jumper's jump, which ranked in the 75th percentile, was approximately 272.436 inches long.

To find the length of the male long jumper's jump at the 75th percentile, we can use the concept of z-scores and the standard normal distribution.

The 75th percentile corresponds to a z-score of 0.674. Using this z-score, we can calculate the distance of the jump by multiplying it by the standard deviation and adding it to the mean:

Distance = (z-score * standard deviation) + mean

Distance = (0.674 * 14) + 263

Distance ≈ 9.436 + 263

Distance ≈ 272.436

Know more about z-scoreshere:

https://brainly.com/question/31871890

#SPJ11

AB is a chord of the radius 5cm. The major arc AYB subtends an angle of 240degree at the center. Find the length of the chord AB

Answers

Refer to the attachment! v

the height of a right triangle is 3 times the length of the base. if the area of the triangle is 96 cm2, what is the height, in centimeters?

Answers

The height of the right triangle is 24 centimeters. This is determined by solving the equation for the area of the triangle, which is given as 96 cm², and considering that the height is 3 times the length of the base. By substituting the values and solving the equation, we find that the height is indeed 24 centimeters.

To determine the height of the right triangle, we can use the formula for the area of a triangle, which is given by the formula A = (1/2) * base * height. In this case, the area is known to be [tex]96 cm^2[/tex].

Let's denote the length of the base as x. According to the problem statement, the height is 3 times the length of the base, so the height can be expressed as 3x.

Substituting these values into the area formula, we get:

[tex]96 = (1/2) * x * 3x[/tex]

Simplifying the equation:

[tex]96 = (3/2) * x^2[/tex]

To solve for x, we can divide both sides of the equation by (3/2):

[tex]64 = x^2[/tex]

Taking the square root of both sides, we find:

x = 8

Since the height is 3 times the length of the base, the height is:

3 * 8 = 24 centimeters.

Therefore, the height of the right triangle is 24 centimeters.

To learn more about Right triangles, visit:

https://brainly.com/question/12111621

#SPJ11



Simplify. (√5-1)(√5+4)

Answers

Any mathematical statement that includes numbers, variables, and an arithmetic operation between them is known as an expression or algebraic expression.  After simplifying the expression the answer is 4.

In the phrase [tex]4m + 5[/tex], for instance, the terms 4m and 5 are separated from the variable m by the arithmetic sign +.

simplify the expression [tex](√5-1)(√5+4)[/tex], you can use the difference of squares formula, which states that [tex](a-b)(a+b)[/tex] is equal to [tex]a^2 - b^2.[/tex]

In this case, a is [tex]√5[/tex] and b is 1.

Applying the formula, we get [tex](√5)^2 - (1)^2[/tex], which simplifies to 5 - 1. Therefore, the answer is 4.

Know more about expression  here:

https://brainly.com/question/1859113

#SPJ11

Any mathematical statement that includes numbers, variables, and an arithmetic operation between them is known as an expression or algebraic expression.   The simplified form of (√5-1)(√5+4) is 4.

To simplify the expression (√5-1)(√5+4), we can use the difference of squares formula, which states that [tex]a^2 - b^2[/tex] can be factored as (a+b)(a-b).

First, let's simplify the expression inside the parentheses:
√5 - 1 can be written as (√5 - 1)(√5 + 1) because (√5 + 1) is the conjugate of (√5 - 1).

Now, let's apply the difference of squares formula:
[tex](√5 - 1)(√5 + 1) = (√5)^2 - (1)^2 = 5 - 1 = 4[/tex]

Next, we can simplify the expression (√5 + 4):
There are no like terms to combine, so (√5 + 4) cannot be further simplified.

Therefore, the simplified form of (√5-1)(√5+4) is 4.

In conclusion, the expression (√5-1)(√5+4) simplifies to 4.

Learn more about expression :

brainly.com/question/1859113

#SPJ11

Suma los primeros 10 terminos de la sucesion de fibonacci, y multiplica por el septimo termino de la suseccion. compara los resultados, que observas?

Answers

The sum of the first 10 Fibonacci terms is 143. Multiplying this sum by the seventh term (13) gives 1859. The product is larger than the sum, indicating the influence of the seventh term.

To solve this problem, we first need to calculate the first 10 terms of the Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55

Next, we calculate the sum of these 10 terms:

1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 = 143

Now, we find the seventh term of the Fibonacci sequence, which is 13.

Finally, we multiply the sum of the first 10 terms (143) by the seventh term (13):

143 × 13 = 1859

Therefore, the product of the sum of the first 10 terms of the Fibonacci sequence and the seventh term is 1859.

Observation: The product of the sum and the seventh term is a larger number compared to the sum itself.

To know more about Fibonacci sequence:

https://brainly.com/question/29764204

#SPJ4

1. If det ⎣


a
p
x

b
q
y

c
r
z




=−1 then Compute det ⎣


−x
3p+a
2p

−y
3q+b
2q

−z
3r+c
2r




(2 marks) 2. Compute the determinant of the following matrix by using a cofactor expansion down the second column. ∣


5
1
−3

−2
0
2

2
−3
−8




(4 marks) 3. Let u=[ a
b

] and v=[ 0
c

] where a,b,c are positive. a) Compute the area of the parallelogram determined by 0,u,v, and u+v. (2 marks)

Answers

Thus, the area of the parallelogram is given by:Area of the parallelogram = |u x v| = |ac| = ac.

1. The determinant of the matrix A is -1. To compute the determinant of matrix B, let det(B) = D.

We have:|B| = |3pq + ax - 2py|   |3pq + ax - 2py|   |3pq + ax - 2py||3qr + by - 2pz| + |-3pr - cy + 2qx| + |-2px + 3ry + cz||3qr + by - 2pz|   |3qr + by - 2pz|   |3qr + by - 2pz||-2px + 3ry + cz|D

= (3pq + ax - 2py)(3qr + by - 2pz)(-2px + 3ry + cz) - (3pq + ax - 2py)(-3pr - cy + 2qx)(-2px + 3ry + cz)|B|

 D = (3pq + ax - 2py)[(3r + b)y - 2pz] - (3pq + ax - 2py)[-3pc + 2qx + (2p - a)z]

= (3pq + ax - 2py)[3ry - 2pz + 3pc - 2qx - 2pz + 2az]

= (3pq + ax - 2py)[3r(y - p) - 2q(z - p) + 2a(z - p)] = (3pq + ax - 2py)[3r(y - p) - 2q(z - p) + 2a(z - p)]

= (3pq + ax - 2py)[3r(y - p) - 2q(z - p) + 2a(z - p)]

= (3pq + ax - 2py)[3r(y - p) - 2q(z - p) + 2a(z - p)]

= (3pq + ax - 2py)[3r(y - p) - 2q(z - p) + 2a(z - p)]

= (3pq + ax - 2py)[3r(y - p) - 2q(z - p) + 2a(z - p)]  D

= (3pq + ax - 2py)[3r(y - p) - 2q(z - p) + 2a(z - p)]

Thus, det(B) = D

= (3pq + ax - 2py)[3r(y - p) - 2q(z - p) + 2a(z - p)]2.

To compute the determinant of the matrix A, use the following formula:|A| = -5[(0)(-8) - (2)(-3)] - 1[(2)(2) - (0)(-3)] + (-3)[(2)(0) - (5)(-3)]

= -8 - (-6) - 45

= -47 Thus, the determinant of the matrix A is -47.3.

The area of a parallelogram is given by the cross product of the two vectors that form the parallelogram.

Here, the two vectors are u and v.

Thus, the area of the parallelogram is given by:Area of the parallelogram = |u x v| = |ac| = ac.

To know more about cross product, visit:

https://brainly.in/question/246465

#SPJ11

The area of the parallelogram determined by `0`, `u`, `v`, and `u + v` is `ac`.

1. To compute `det [-x 3p+a 2p; -y 3q+b 2q; -z 3r+c 2r]`,

we should use the formula of the determinant of a matrix that has the form of `[a b c; d e f; g h i]`.

The formula is `a(ei − fh) − b(di − fg) + c(dh − eg)`.Let `M = [-x 3p+a 2p; -y 3q+b 2q; -z 3r+c 2r]`.

Applying the formula, we obtain:

det(M) = `-x(2q)(3r + c) - (3q + b)(2r)(-x) + (-y)(2p)(3r + c) + (3p + a)(2r)(-y) - (-z)(2p)(3q + b) - (3p + a)(2q)(-z)

= -2(3r + c)(px - qy) - 2(3q + b)(-px + rz) - 2(3p + a)(qz - ry)

= -2(3r + c)(px - qy + rz - qz) - 2(3q + b)(-px + rz + qz - py) - 2(3p + a)(qz - ry - py + qx)

= -2(3r + c)(p(x + z - q) - q(y + z - r)) - 2(3q + b)(-p(x - y + r - z) + q(z - y + p)) - 2(3p + a)(q(z - r + y - p) - r(x + y - q + p))

= -2[3r + c + 2(3q + b) + 3p + a](p(x + z - q) - q(y + z - r)) - 2[3q + b + 2(3p + a) + 3r + c](-p(x - y + r - z) + q(z - y + p))`.

But `det(A) = -1`,

so we have:`

-1 = det(A) = det(M) = -2[3r + c + 2(3q + b) + 3p + a](p(x + z - q) - q(y + z - r)) - 2[3q + b + 2(3p + a) + 3r + c](-p(x - y + r - z) + q(z - y + p))`.

Therefore:

`1 = 2[3r + c + 2(3q + b) + 3p + a](p(x + z - q) - q(y + z - r)) + 2[3q + b + 2(3p + a) + 3r + c](-p(x - y + r - z) + q(z - y + p))`.

2. Using the cofactor expansion down the second column,

we obtain:`det(A) = -2⋅(1)⋅(2)⋅(-3) + (−2)⋅(−3)⋅(2) + (5)⋅(2)⋅(2) = 12`.

Therefore, `det(A) = 12`.3.

We need to use the formula for the area of a parallelogram that is determined by two vectors.

The formula is: `area = |u x v|`, where `u x v` is the cross product of vectors `u` and `v`.

In our case, `u = [a; b]` and `v = [0; c]`. We have: `u x v = [0; 0; ac]`.

Therefore, `area = |u x v| = ac`.

Thus, the area of the parallelogram determined by `0`, `u`, `v`, and `u + v` is `ac`.

To know more about parallelogram, visit:

https://brainly.com/question/28854514

#SPJ11

Find the area enclosed by the curve whose equation is given below: r=1+0.7sinθ

Answers

The area enclosed by the curve r = 1 + 0.7sinθ is approximately 1.245π + 0.7 square units.

To find the area enclosed by the curve r = 1 + 0.7sinθ, we can evaluate the integral:

A = (1/2)∫[0 to 2π] [(1 + 0.7sinθ)^2]dθ

Expanding the square and simplifying, we have:

A = (1/2)∫[0 to 2π] [1 + 1.4sinθ + 0.49sin^2θ]dθ

Now, we can integrate term by term:

A = (1/2) [θ - 1.4cosθ + 0.245(θ - (1/2)sin(2θ))] evaluated from 0 to 2π

Evaluating at the upper limit (2π) and subtracting the evaluation at the lower limit (0), we get:

A = (1/2) [(2π - 1.4cos(2π) + 0.245(2π - (1/2)sin(2(2π)))) - (0 - 1.4cos(0) + 0.245(0 - (1/2)sin(2(0))))]

Simplifying further:

A = (1/2) [(2π - 1.4cos(2π) + 0.245(2π)) - (0 - 1.4cos(0))]

Since cos(2π) = cos(0) = 1, and sin(0) = sin(2π) = 0, we can simplify the expression:

A = (1/2) [(2π - 1.4 + 0.245(2π)) - (0 - 1.4)]

A = (1/2) [2π - 1.4 + 0.49π - (-1.4)]

A = (1/2) [2π + 0.49π + 1.4]

A = (1/2) (2.49π + 1.4)

A = 1.245π + 0.7

Therefore, the area enclosed by the curve r = 1 + 0.7sinθ is approximately 1.245π + 0.7 square units.

Learn more about Area from the link given below.

https://brainly.com/question/1631786

#SPJ4

The continuous-time LTI system has an input signal x(t) and impulse response h(t) given as x() = −() + ( − 4) and ℎ() = −(+1)( + 1).
i. Sketch the signals x(t) and h(t).
ii. Using convolution integral, determine and sketch the output signal y(t).

Answers

(i)The impulse response h(t) is a quadratic function that opens downward and has roots at t = -1. (ii)Therefore, by evaluating the convolution integral with the given input signal x(t) and impulse response h(t), we can determine the output signal y(t) and sketch its graph based on the obtained expression.

i. To sketch the signals x(t) and h(t), we can analyze their mathematical expressions. The input signal x(t) is a linear function with negative slope from t = 0 to t = 4, and it is zero for t > 4. The impulse response h(t) is a quadratic function that opens downward and has roots at t = -1. We can plot the graphs of x(t) and h(t) based on these characteristics.

ii. To determine the output signal y(t), we can use the convolution integral, which is given by the expression:

y(t) = ∫[x(τ)h(t-τ)] dτ

In this case, we substitute the expressions for x(t) and h(t) into the convolution integral. By performing the convolution integral calculation, we obtain the expression for y(t) as a function of t.

To sketch the output signal y(t), we can plot the graph of y(t) based on the obtained expression. The shape of the output signal will depend on the specific values of t and the coefficients in the expressions for x(t) and h(t).

Therefore, by evaluating the convolution integral with the given input signal x(t) and impulse response h(t), we can determine the output signal y(t) and sketch its graph based on the obtained expression.

Learn more about coefficients here:

https://brainly.com/question/1594145

#SPJ11

explain how a set of parametric equations generates a curve in the xy-plane.

Answers

A set of parametric equations forms a xy-plane curve by specifying the coordinates of the curve's points as functions of an independent variable, generally represented as t. The x and y coordinates of each point on the curve are expressed as distinct functions of t in the parametric equations.

Let's consider a set of parametric equations:

x = f(t)

y = g(t)

These equations describe how the x and y coordinates of points on the curve change when the parameter t changes. As t varies, so do the x and y values, mapping out a route in the xy-plane.

We may see the curve by solving the parametric equations for different amounts of t and plotting the resulting points (x, y) on the xy-plane. We can see the form and behavior of the curve by connecting these points.

The parameter t is frequently used to indicate time or another independent variable that influences the motion or advancement of the curve. We can investigate different segments or regions of the curve by varying the magnitude of t.

Parametric equations allow for the mathematical representation of a wide range of curves, including lines, circles, ellipses, and more complicated curves. They enable us to describe curves that are difficult to explain explicitly in terms of x and y.

Overall, parametric equations provide a convenient way to represent and analyze curves by expressing the coordinates of points on the curve as functions of an independent parameter.

Learn more about parametric equations:

https://brainly.com/question/30451972

#SPJ11

Find the truth value of the statement or operator indicated by
the question mark. ~C v D F ? ? =

Answers

The truth value of the statement or operator indicated by the question mark is FALSE.

~C v D F ? ? =

To find: The truth value of the statement or operator indicated by the question mark.

We know that, ~C v D is a valid statement because the truth value of the disjunction (~C v D) is true when either ~C is true or D is true or both are true.

Hence, we can use this to find the truth value of the statement or operator indicated by the question mark. The truth table for the given expression is as follows:

Let's fill the given table.

As we can see in the table that there is no combination of F and ? that can make the whole statement true. Hence, the truth value of the statement or operator indicated by the question mark is FALSE.

The truth value of the statement or operator indicated by the question mark is FALSE.

To know more about truth value, visit:

https://brainly.com/question/29137731

#SPJ11

Find the real solutions of the following equation \[ x^{4}-10 x^{2}+9=0 \] Write the given equation in quadratic form using the correct substitution (Type an equation using \( u \) as the variable. Do

Answers

Convert the equation into a quadratic equation in u, which can be easily solved for the real solutions. Therefore, The real solutions of the given equation [tex]x^{4}-10x^{2} +9=0[/tex]  are x=-3,-1, 1,3 .

Let's substitute [tex]u=x^{2}[/tex]  into the given equation. Then we have [tex]u^{2} - 10u +9 =0[/tex] which is a quadratic equation in u.

We can now solve this quadratic equation using factoring, completing the square, or the quadratic formula.

By factoring, we can rewrite the equation as  (u−9)(u−1)=0. Setting each factor equal to zero gives us two possible values for u: u=9 and u=1.

Substituting back [tex]u=x^{2}[/tex]  into these values, we obtain [tex]x^{2} =9[/tex] and [tex]x^{2} =1[/tex].

Taking the square root of both sides, we find two solutions for each equation:

x=+3,-3 and x=+1,-1.

Hence, the real solutions of the given equation [tex]x^{4}-10x^{2} +9=0[/tex] are x=-3,-1, 1,3 .

Learn more about quadratic equation here:

https://brainly.com/question/30098550

#SPJ11

(1 point) If lna=2,lnb=3, and lnc=5, evaluate the following: (a) ln( b 1
c 4
a 3

)= (b) ln b −3
c 2
a 4

= (c) ln(bc) −4
ln(a 2
b −3
)

= (d) (lnc 4
)(ln b 3
a

) −1
=

Answers

Using properties of logarithms,

(a) [tex]$ \ln\left(\frac{a^{-1}}{b^3 \cdot c^2}\right) = -35 $[/tex]

(b) [tex]$ \ln\left(\sqrt{b^{-1}c^4a^{-4}}\right) = 4.5 $[/tex]

(c) [tex]$ \frac{\ln(a^{-2} b^{-3})}{\ln(bc)} = \frac{-13}{8} $[/tex]

(d) [tex]$ \ln(c^{-1})\left(\ln\left(\frac{a}{b^{-2}}\right)\right)^2 = -5\left(\ln\left(\frac{a}{b^{-2}}\right)\right)^2 $[/tex]

To evaluate the expressions, we can use the properties of logarithms:

(a) [tex]$ \ln\left(\frac{{a^{-1}}}{{b^3 \cdot c^2}}\right)[/tex]

[tex]= \ln(a^{-1}) - \ln(b^3 \cdot c^2)[/tex]

[tex]= -\ln(a) - \ln(b^3 \cdot c^2)[/tex]

[tex]= -\ln(a) - (\ln(b) + 3\ln(c^2))[/tex]

[tex]= -\ln(a) - (\ln(b) + 6\ln(c))[/tex]

[tex]= -2 - (3 + 6(5))[/tex]

[tex]= \boxed{-35} $[/tex]

(b) [tex]$ \ln\left(\sqrt{{b^{-1}c^4a^{-4}}}\right)[/tex]

[tex]= \frac{1}{2} \ln(b^{-1}c^4a^{-4})[/tex]

[tex]= \frac{1}{2} (-\ln(b) + 4\ln(c) - 4\ln(a))[/tex]

[tex]= \frac{1}{2} (-\ln(b) + 4\ln(c) - 4(2\ln(a)))[/tex]

[tex]= \frac{1}{2} (-3 + 4(5) - 4(2))[/tex]

[tex]= \frac{1}{2} (9)[/tex]

[tex]= \boxed{4.5} $[/tex]

(c) [tex]$ \frac{{\ln(a^{-2} b^{-3})}}{{\ln(bc)}}[/tex]

[tex]= \frac{{-2\ln(a) - 3\ln(b)}}{{\ln(b) + \ln(c)}}[/tex]

[tex]= \frac{{-2\ln(a) - 3\ln(b)}}{{\ln(b) + \ln(c)}}[/tex]

[tex]= \frac{{-2(2) - 3(3)}}{{3 + 5}}[/tex]

[tex]= \frac{{-4 - 9}}{{8}}[/tex]

[tex]= \boxed{-\frac{{13}}{{8}}} $[/tex]

(d) [tex]$ \ln(c^{-1}) \left(\ln\left(\frac{{a}}{{b^{-2}}}\right)\right)^2[/tex]

[tex]= -\ln(c) \left(\ln\left(\frac{{a}}{{b^{-2}}}\right)\right)^2[/tex]

[tex]= -5 \left(\ln\left(\frac{{a}}{{b^{-2}}}\right)\right)^2[/tex]

[tex]= \boxed{-5 \left(\ln\left(\frac{{a}}{{b^{-2}}}\right)\right)^2}[/tex]

To know more about logarithms, refer here:

https://brainly.com/question/29106904

#SPJ4

Complete Question:

If ln a=2, ln b=3, and ln c=5, evaluate the following:

(a) [tex]$ \ln\left(\frac{a^{-1}}{b^3 \cdot c^2}\right) $[/tex]

(b) [tex]$ \ln\left(\sqrt{b^{-1}c^4a^{-4}}\right)$[/tex]

(c) [tex]$ \frac{\ln(a^{-2} b^{-3})}{\ln(bc)} $[/tex]

(d) [tex]$ \ln(c^{-1})\left(\ln\left(\frac{a}{b^{-2}}\right)\right)^2 $[/tex]

My account was charged 7.50 but i didn't sign up for an account. my kids did a trial months ago but we didn't continue the subscription

Answers

To resolve a trial charge, contact the service provider, review terms and conditions, gather evidence, and dispute with your bank or credit card provider. Stay calm, professional, and respectful in your communication.

To address this issue, you can follow these steps:

1. Contact the company: Reach out to the company or service provider that charged your account. Explain the situation and provide any relevant details, such as the date of the trial and when you canceled the subscription. Ask for a refund and clarification on why you were charged.

2. Review terms and conditions: Check the terms and conditions of the trial your kids participated in. Look for any information regarding automatic subscription renewal or charges after the trial period ends. This will help you understand if there were any misunderstandings or if the company is in the wrong.

3. Gather evidence: Collect any evidence that supports your claim, such as cancellation emails or screenshots of the trial period. This will strengthen your case when communicating with the company.

4. Dispute the charge with your bank: If you don't receive a satisfactory response from the company, you can contact your bank or credit card provider to dispute the charge. Provide them with all the relevant information and evidence you've gathered. They can guide you through the process of disputing the charge and potentially reversing it.

Remember to stay calm and professional when communicating with the company or your bank. It's important to resolve the issue in a respectful manner.

To know more about trial charge Visit:

https://brainly.com/question/31868339

#SPJ11

A box contains 3 shiny pennies and 4 dull pennies. One by one, pennies are drawn at random from the box and not replaced. Find the probability that it will take more than four draws until the third shiny penny appears.

Answers

The probability that it will take more than four draws until the third shiny penny appears is 2/5. Let A denote the event that it will take more than four draws until the third shiny penny appears.

Let X denote the number of dull pennies that are drawn before the third shiny penny appears.

Then, X follows a negative hypergeometric distribution with parameters N = 7 (total number of pennies), M = 3 (number of shiny pennies), and n = 3 (number of shiny pennies needed to be drawn).

The probability mass function of X is given by:

P(X = k) =[tex]{{k+2} \choose {k}} / {{6} \choose {3}}[/tex]  for k = 0, 1, 2.

Note that k + 3 is the number of draws needed until the third shiny penny appears.

Thus, we have:

P(A) = P(X > 1) = P(X = 2) + P(X = 3)

=[tex]{{4} \choose {2}} / {{6} \choose {3}} + {{5} \choose {3}} / {{6} \choose {3}}[/tex]

= 6/20 + 10/20= 8/20= 2/5

Hence, the probability that it will take more than four draws until the third shiny penny appears is 2/5.

Learn more about event

https://brainly.com/question/32572594

#SPJ11

The probability that it will take more than four draws until the third shiny penny appears is 0.057, or 5.7%.

To find the probability that it will take more than four draws until the third shiny penny appears, we can use the concept of combinations and probability.

First, let's determine the total number of ways to draw 3 shiny pennies and 4 dull pennies in any order. This can be calculated using the formula for combinations:

[tex]\[C(n, r) = \frac{{n!}}{{r!(n-r)!}}\][/tex]

In this case, we have a total of 7 pennies (3 shiny and 4 dull), and we want to choose 3 shiny pennies. So, we can calculate C(7, 3) as follows:


[tex]\[C(7, 3) = \frac{{7!}}{{3!(7-3)!}} = \frac{{7!}}{{3!4!}} = \frac{{7 \cdot 6 \cdot 5}}{{3 \cdot 2 \cdot 1}} = 35\][/tex]

So, there are 35 different ways to draw 3 shiny pennies from the box.

Now, let's consider the different scenarios in which it will take more than four draws until the third shiny penny appears. We can break this down into three cases:

Case 1: The third shiny penny appears on the 5th draw.
In this case, we have 4 dull pennies and 2 shiny pennies to choose from for the first 4 draws. The third shiny penny must appear on the 5th draw. So, the probability for this case is:


[tex]P(case 1) = (4/7) \times (3/6) \times (2/5) \times (1/4) \times (2/3) = 0.019[/tex]

Case 2: The third shiny penny appears on the 6th draw.
In this case, we have 4 dull pennies and 2 shiny pennies to choose from for the first 5 draws. The third shiny penny must appear on the 6th draw. So, the probability for this case is:

[tex]P(case 2) = (4/7) \times (3/6) \times (2/5) \times (1/4) \times (2/3) \times (1/2) = 0.019[/tex]

Case 3: The third shiny penny appears on the 7th draw.
In this case, we have 4 dull pennies and 2 shiny pennies to choose from for the first 6 draws. The third shiny penny must appear on the 7th draw. So, the probability for this case is:
[tex]P(case 3) = (4/7) \times (3/6) \times (2/5) \times (1/4) \times (2/3) \times (1/2) \times (1/1) = 0.019[/tex]

Finally, to find the probability that it will take more than four draws until the third shiny penny appears, we sum up the probabilities of all three cases:
P(more than four draws until third shiny penny appears) = [tex]P(case 1) + P(case 2) + P(case 3) = 0.019 + 0.019 + 0.019 = 0.057[/tex]

Therefore, the probability that it will take more than four draws until the third shiny penny appears is 0.057, or 5.7%.

Learn more about probability

https://brainly.com/question/32117953

#SPJ11

Imagine we are given a sample of n observations y = (y1, . . . , yn). write down the joint probability of this sample of data

Answers

This can be written as P(y1) * P(y2) * ... * P(yn).The joint probability of a sample of n observations, y = (y1, . . . , yn), can be written as the product of the probabilities of each individual observation.


To find the joint probability, you need to calculate the probability of each individual observation.

This can be done by either using a probability distribution function or by estimating the probabilities based on the given data.

Once you have the probabilities for each observation, simply multiply them together to get the joint probability.

The joint probability of a sample of n observations, y = (y1, . . . , yn), can be written as the product of the probabilities of each individual observation.

This can be expressed as P(y) = P(y1) * P(y2) * ... * P(yn), where P(y1) represents the probability of the first observation, P(y2) represents the probability of the second observation, and so on.

To calculate the probabilities of each observation, you can use a probability distribution function if the distribution of the data is known. For example, if the data follows a normal distribution, you can use the probability density function of the normal distribution to calculate the probabilities.

If the distribution is not known, you can estimate the probabilities based on the given data. One way to do this is by counting the frequency of each observation and dividing it by the total number of observations. This gives you an empirical estimate of the probability.

Once you have the probabilities for each observation, you simply multiply them together to obtain the joint probability. This joint probability represents the likelihood of observing the entire sample of data.

To learn more about probability

https://brainly.com/question/31828911

#SPJ11

Evaluate In(1+x/1-y )

Answers

In(1+x/1-y) is undefined for x = 2 and y = 3 because the natural logarithm of a negative number is not defined for real numbers.

To evaluate ln(1+x/1-y), we can use the properties of logarithms:

ln(1+x/1-y) = ln((1+x)/(1-y))

Now, we can simplify further by applying the properties of logarithms:

ln(1+x/1-y) = ln(1+x) - ln(1-y)

Let's assume x = 2 and y = 3. Plugging these values into the expression, we get:

ln(1+2/1-3) = ln(1+2) - ln(1-3)
= ln(3) - ln(-2)

Learn more about Logarithm click here :brainly.com/question/30085872

#SPJ11




Let (X,Y) be the coordinates of points distributed uniformly over B = {(x, y) : x, y > 0, x² + y² ≤ 1}. (a) Compute the densities of X and Y. (b) Compute the expected value of the area of the rectangle with corners (0,0) and (X, Y). (c) Compute the covariance between X and Y.

Answers

(a) The density function of X can be computed by considering the cumulative distribution function (CDF) of X. Since X is uniformly distributed over the interval (0, 1), the CDF of X is given by F_X(x) = x for 0 ≤ x ≤ 1. To find the density function f_X(x), we differentiate the CDF with respect to x, resulting in f_X(x) = d/dx(F_X(x)) = 1 for 0 ≤ x ≤ 1. Therefore, X is uniformly distributed with density 1 over the interval (0, 1).

Similarly, the density function of Y can be obtained by considering the CDF of Y. Since Y is also uniformly distributed over the interval (0, 1), the CDF of Y is given by F_Y(y) = y for 0 ≤ y ≤ 1. Differentiating the CDF with respect to y, we find that the density function f_Y(y) = d/dy(F_Y(y)) = 1 for 0 ≤ y ≤ 1. Hence, Y is uniformly distributed with density 1 over the interval (0, 1).

(b) To compute the expected value of the area of the rectangle with corners (0, 0) and (X, Y), we can consider the product of X and Y, denoted by Z = XY. The expected value of Z can be calculated as E[Z] = E[XY]. Since X and Y are independent random variables, the expected value of their product is equal to the product of their individual expected values. Therefore, E[Z] = E[X]E[Y].

From part (a), we know that X and Y are uniformly distributed over the interval (0, 1) with density 1. Hence, the expected value of X is given by E[X] = ∫(0 to 1) x · 1 dx = [x²/2] evaluated from 0 to 1 = 1/2. Similarly, the expected value of Y is E[Y] = 1/2. Therefore, E[Z] = E[X]E[Y] = (1/2) · (1/2) = 1/4.

Thus, the expected value of the area of the rectangle with corners (0, 0) and (X, Y) is 1/4.

(c) The covariance between X and Y can be computed using the formula Cov(X, Y) = E[XY] - E[X]E[Y]. Since we have already calculated E[XY] as 1/4 in part (b), and E[X] = E[Y] = 1/2 from part (a), we can substitute these values into the formula to obtain Cov(X, Y) = 1/4 - (1/2) · (1/2) = 1/4 - 1/4 = 0.

Therefore, the covariance between X and Y is 0, indicating that X and Y are uncorrelated.

In conclusion, the density of X is 1 over the interval (0, 1), the density of Y is also 1 over the interval (0, 1), the expected value of the area of the rectangle with corners (0, 0) and (X, Y) is 1/4, and the covariance between X and Y is 0.

To know more about  function follow the link:

https://brainly.com/question/28278699

#SPJ11

If q(x) is a linear function, where q(−4)=−2, and q(2)=5, determine the slope-intercept equation for q(x), then find q(−7). The equation of the line is:.................................. q(−7)= ..........................If k(x) is a linear function, where k(−3)=−3, and k(5)=3, determine the slope-intercept equation for k(x), then find k(1). The equation of the line is: ............................................k(1)=..........................
.

Answers

The equation for k(x) in slope-intercept form is:

k(x) = (3/4)x - 3

k(1) = -9/4

For the function q(x), we can use the two given points to find the slope and y-intercept, and then write the equation in slope-intercept form:

Slope, m = (q(2) - q(-4)) / (2 - (-4)) = (5 - (-2)) / (2 + 4) = 7/6

y-intercept, b = q(-4) = -2

So, the equation for q(x) in slope-intercept form is:

q(x) = (7/6)x - 2

To find q(-7), we substitute x = -7 into the equation:

q(-7) = (7/6)(-7) - 2 = -49/6 - 12/6 = -61/6

Therefore, q(-7) = -61/6.

For the function k(x), we can use the two given points to find the slope and y-intercept, and then write the equation in slope-intercept form:

Slope, m = (k(5) - k(-3)) / (5 - (-3)) = (3 - (-3)) / (5 + 3) = 6/8 = 3/4

y-intercept, b = k(-3) = -3

So, the equation for k(x) in slope-intercept form is:

k(x) = (3/4)x - 3

To find k(1), we substitute x = 1 into the equation:

k(1) = (3/4)(1) - 3 = -9/4

Therefore, k(1) = -9/4.

Learn more about " slope-intercept" : https://brainly.com/question/1884491

#SPJ11

When the null hypothesis is true and n is greater than or equal to 5 per group, the test statistic for the Friedman test is associated with ______ degrees of freedom.A) no
B) n - 1
C) k - 1
D) .05
D) the value of the test statistic is less than or equal to .05

Answers

The test statistic for the Friedman test is associated with k - 1 degrees of freedom.

The Friedman test is a non-parametric test used to determine if there are differences among multiple related groups. When the null hypothesis is true and the sample size (n) is greater than or equal to 5 per group, the test statistic for the Friedman test follows a chi-square distribution with degrees of freedom equal to the number of groups (k) minus 1.

Therefore, the correct answer is C) k - 1.

To learn more about Friedman test: https://brainly.com/question/32942125

#SPJ11

Find the compound interest and find the amount of 15000naira for 2yrs at 5% per annum

Answers

To find the compound interest and the amount of 15,000 Naira for 2 years at 5% per annum, we can use the formula for compound interest:

A = P(1 + r/n)^(nt)

Where:
A = the amount after time t
P = the principal amount (initial investment)
r = the annual interest rate (in decimal form)
n = the number of times that interest is compounded per year
t = the number of years

In this case, the principal amount is 15,000 Naira, the annual interest rate is 5% (or 0.05 in decimal form), and the time is 2 years.

Now, let's calculate the compound interest and the amount:

1. Calculate the compound interest:
CI = A - P

2. Calculate the amount after 2 years:
[tex]A = 15,000 * (1 + 0.05/1)^(1*2)   = 15,000 * (1 + 0.05)^2   = 15,000 * (1.05)^2   = 15,000 * 1.1025   = 16,537.50 Naira[/tex]

3. Calculate the compound interest:
CI = 16,537.50 - 15,000

  = 1,537.50 Naira

Therefore, the compound interest is 1,537.50 Naira and the amount of 15,000 Naira after 2 years at 5% per annum is 16,537.50 Naira.

To know more about annual visit:

https://brainly.com/question/25842992

#SPJ11

The compound interest for 15000 nairas for 2 years at a 5% per annum interest rate is approximately 1537.50 naira.

To find the compound interest and the amount of 15000 nairas for 2 years at a 5% annual interest rate, we can use the formula:

[tex]A = P(1 + r/n)^{(nt)[/tex]

Where:
A is the final amount
P is the principal amount (initial investment)
r is the annual interest rate (in decimal form)
n is the number of times interest is compounded per year
t is the number of years

In this case, P = 15000, r = 0.05, n = 1, and t = 2.

Plugging these values into the formula, we have:

[tex]A = 15000(1 + 0.05/1)^{(1*2)[/tex]
Simplifying the equation, we get:

[tex]A = 15000(1.05)^2[/tex]
A = 15000(1.1025)

A ≈ 16537.50

Therefore, the amount of 15000 nairas after 2 years at a 5% per annum interest rate will be approximately 16537.50 naira.

To find the compound interest, we subtract the principal amount from the final amount:

Compound interest = A - P
Compound interest = 16537.50 - 15000
Compound interest ≈ 1537.50

In summary, the amount will be approximately 16537.50 nairas after 2 years, and the compound interest earned will be around 1537.50 nairas.

Learn more about  compound interest

https://brainly.com/question/14295570

#SPJ11

on average, students study 11 hours a week. the standard deviation is 3.5 hours and the number of hours studying follows a bell-shaped distribution. what percentage of students study between 11 and 14.5 hours per week? integer only without the % mark.

Answers

The percentage of students who study between 11 and 14.5 hours per week is approximately 34%.

Given that the average number of hours students study per week is 11, the standard deviation is 3.5 hours, and the distribution is bell-shaped. We need to find out the percentage of students who study between 11 and 14.5 hours per week.

To solve this problem, we need to find the z-scores for both the values 11 and 14.5.

Once we have the z-scores, we can use a standard normal distribution table to find the percentage of values that lie between these two z-scores.

Using the formula for z-score, we can calculate the z-score for the value 11 as follows:

z = (x - μ) / σ

z = (11 - 11) / 3.5

z = 0

Similarly, the z-score for the value 14.5 is:

z = (x - μ) / σ

z = (14.5 - 11) / 3.5

z = 1

Using a standard normal distribution table, we can find that the area between z = 0 and z = 1 is approximately 0.3413 or 34.13%.

Therefore, approximately 34% of students study between 11 and 14.5 hours per week.

Therefore, the percentage of students who study between 11 and 14.5 hours per week is approximately 34%.

To know more about z-score visit:

brainly.com/question/31871890

#SPJ11

Use the Quotient Rule to differentiate the function f(t)=sin(t)/t^2+2 i

Answers

The derivative of f(t) = sin(t)/(t^2 + 2i) using the Quotient Rule is f'(t) = [cos(t)*(t^2 + 2i) - 2tsin(t)] / (t^2 + 2i)^2.

To differentiate the function f(t) = sin(t)/(t^2 + 2i) using the Quotient Rule, we first need to identify the numerator and denominator functions. In this case, the numerator is sin(t) and the denominator is t^2 + 2i.

Next, we apply the Quotient Rule, which states that the derivative of a quotient of two functions is equal to (the derivative of the numerator times the denominator minus the numerator times the derivative of the denominator) divided by (the denominator squared).

Using this rule, we can find the derivative of f(t) as follows:

f'(t) = [(cos(t)*(t^2 + 2i)) - (sin(t)*2t)] / (t^2 + 2i)^2

Simplifying this expression, we get:

f'(t) = [cos(t)*(t^2 + 2i) - 2tsin(t)] / (t^2 + 2i)^2

Therefore, the differentiated function of f(t)=sin(t)/t^2+2 i is f'(t) = [cos(t)*(t^2 + 2i) - 2tsin(t)] / (t^2 + 2i)^2.

To know more about Quotient Rule refer here:

https://brainly.com/question/29255160#

#SPJ11

Other Questions
(5 points) A model rocket is launched with an initial velocity of 120ft/sec from a height of 80ft. The height of the rocket in feet, t seconds after it has been launched is given by the function s(t)=12t^2+120t+80. Determine the time at which the rocket reaches its maximum height and find the maximum height. A spring-mass system has a natural frequency of 10 Hz. When the spring constant is reduced by 800 N/m, the frequency is altered by 45%. Find the mass and spring constant of the original system. The point \( (8 t, 2 t+7) \) is on the graph of the function \( f(x) \), and the point \( (8 t,-9 t+9) \) is on the graph of the function \( g(x) \). Find the value of \( f \cdot g \) at \( 8 t \). A block of addresses is granted to a small company. One of the addresses is 192.168.1.40/28. Determine: (a) total number of hosts can be assigned in the company using the granted block addresses. (2 marks) (b) Determine the first address in the block. (3 marks) (c) Determine the last address in the block. (4 marks) (d) Determine the Network address. (e) Determine the Broadcast address. (2 marks) (2 marks) A jazz concert brought in $159,709 on the sale of 8,810 tickets. If the tickets are sold for $10 and $20 dollars, how many of the $10 dollar ticket were sold? suppose you have a bond with an annual coupon rate of 5.5%, 13 years to maturity, and a current yield to maturity of 8%. the face value of the bond is $1,000. what is the macaulay duration of the bond? group of answer choices 9.11 8.97 5.72 10.63 What level of total utility is realized from the equilibrium combination of J and K, if the consumer has a money income of $52 and the prices of J and K are $8 and $4, respectively Given the function f(x)= 115x2. First find the Taylor series for f about the centre c=0. Which one of the following is the interval of convergence of the Taylor series of the given function f ? ( 511, 511) [infinity]55( 52, 52) a right not to be interfered with in obtaining something is known as a right. a. civil b. negative c. positive d. constitutional ravi shankar plans to purchase a car for $45,000 and he has $5,700 as a down payment. he will need to borrow the rest and plans to get a loan for 4 years at 5.25%. his monthly payments on the loan will be closest to: 1. In a packet-switched network, messages will be split into smaller packets, and these packets will be transmitted into the network. Consider the source sends a message 5 Mbits long to a destination. Suppose each link in the figure is 10 Mbps. Ignore propagation, queuing, and processing delays. (a) Consider sending the message from source to destination without message segmentation. Find the duration to move the message from the source host to the first packet switch? Keeping in mind that each switch uses store-and-forward packet switching, execute the total time to move the message from source host to destination host? (6 marks) (b) Now, suppose that the message is segmented into 400 packets, each 20 kilobits long. Execute how long it takes to move the first packet from the source host to the first switch. When the first packet is sent from the first switch to the second switch, the second packet is sent from the source host to the first switch. Discover when the second packet will be fully received at the first switch. (6 marks) In the documentary, Creating Synthetic Life, what was the organism that they were able to create using synthetic DNA?A) a bacterium B) a parasite C) a plant cell D) a fungus E) a virus 12. A 10-kVA, 380/110-V, 3-phase transformer is operated with the rated primary voltage and a 3-phase load at the secondary. The primary current is 14.5 A, the secondary voltage is 99 V, and the load power at the secondary is 8.5 kW. The correct statement is ( ). A. The per-unit primary current is 0.9. B. The per-unit secondary voltage is 0.95. C. The voltage regulation is 10%. D. The per-unit load power is 0.8. Mars is just barely in the habitable zone of the Sun. Why is Mars not currently habitable? It is too cold for water to exist as a liquid on its surface. It has too little gravity for water to exist as a liquid on its surface. It is too hot for water to exist as a liquid on its surface. It does not have the necessary energy source life needs. Question 6 1 pts Which of the following was the most important for maintaining the Earth's stable climate over the time it took for large organisms to evolve? plate tectonics the tides the cessation of the heavy bombardment phase underground sea vents if sales were not expected to increase, by how much would jennings have to reduce their variable cost to break even? Consider the function f(x,y)=x 42x 2y+y 2+9 and the point P(2,2). a. Find the unit vectors that give the direction of steepest ascent and steepest descent at P. b. Find a vector that points in a direction of no change in the function at P. a. What is the unit vector in the direction of steepest ascent at P ? (Type exact answers, using radicals as needed.) you should always wash your glasses well and make sure they are free from grease and detergent because why? group of answer choices grease and detergent kill the foam because of their hydrophobic/hydrophilic interactions they cause a haze in the beer their taste is amplified because of the chemical interactions with the alcohol in beer they cause disproportionation between the foam bubbles An economy has 100 consumers of type 1 and 200 consumers of type 2. If the price of the good is less than $10, then each type 1 consumer demands 10 - p units of the good; otherwise each type 1 demands zero. If the price of the good is less than 8, then each type 2 demands 24 - 3p; otherwise each type 2 demands zero. If the price of the good is 6, then the total amount of the good demanded will bea. 1,600 unitsb. 1,800 unitsc. 2,000 unitsd. 420 unitse. 1,200 units some economists argue that monetary union will not work as well in europe as it does in the united states for all of these reasons except: malai has a desktop computer at home that among other apps, is also running an older 32-bit video game. what type of processor does the computer most likely have?