Answer:
21564 ÷ 2 = 10782
40565 ÷ 5 = 8113
6365 ÷ 8 = 795.625
1436 ÷ 7 = 205.142857143
What are the side of triangle PWR
Answer:
PR, PW, RW
Step-by-step explanation:
The sides of a triangle are named by naming the vertices at either end.
Triangle PWR has vertices P, W, R. The sides connecting these are named ...
PW, WR, RP
Any name can have the letters reversed. That is, PR names the same segment that RP does.
Hello, can someone help me with this problem?
Answer:
Area of Rectangle A
[tex]Area = 4x^2[/tex]
Area of Rectangle B
[tex]Area = 2x^2[/tex]
Fraction
[tex]Fraction =\frac{2}{3}[/tex]
Step-by-step explanation:
From the attached, we understand that:
The dimension of rectangle A is 2x by 2x
The dimension of rectangle B is x by 2x
Area of rectangle is calculated as thus;
[tex]Area = Length * Breadth[/tex]
Area of Rectangle A
[tex]Area = 2x * 2x[/tex]
[tex]Area = 4x^2[/tex]
Area of Rectangle B
[tex]Area = x * 2x[/tex]
[tex]Area = 2x^2[/tex]
Area of Big Rectangle
The largest rectangle is formed by merging the two rectangles together;
The dimension are 3x by 2x
The Area is as follows
[tex]Area = 2x * 3x[/tex]
[tex]Area = 6x^2[/tex]
The fraction of rectangle A in relation to the largest rectangle is calculated by dividing area of rectangle A by area of the largest rectangle;
[tex]Fraction = \frac{Rectangle\ A}{Biggest}[/tex]
[tex]Fraction =\frac{4x^2}{6x^2}[/tex]
Simplify
[tex]Fraction =\frac{2x^2 * 2}{2x^2 * 3}[/tex]
[tex]Fraction =\frac{2}{3}[/tex]
Find the value of x. Then find the measure of each labeled angle. x = 37.5; the labeled angles are 77.5º and 102.5º. x = 37.5; the labeled angles are 37.5º and 142.5º. x = 15; both labeled angles are 55º. x = 25; both labeled angles are 65º.
Answer:
x = 25; both labeled angles are 65º
Step-by-step explanation:
To find the value of x, recall that the angles formed by two parallel lines on the same line are equal if they correspond to each other.
In the figure given above, we have two parallel line given. The angle formed by each parallel line is corresponding to the other. Therefore, both angles formed are equal.
Thus,
(3x - 10)° = (x + 40)°
Solve for x
3x - 10 = x + 40
Subtract x from both sides
3x - 10 - x = x + 40 - x
3x - x - 10 = x - x + 40
2x - 10 = 40
Add 10 to both sides
2x - 10 + 10 = 40 + 10
2x = 50
Divide both sides by 2
2x/2 = 50/2
x = 25
*Plug in the value of x to find the measure of each labelled angles:
(3x - 10)° = 3(25) - 10 = 75 - 10 = 65°
(x + 40)° = 25 + 40 = 65°
What is the volume of this aquarium?
Answer:
9,000 inches^3
Step-by-step explanation:
The first part is 20 x 20 x 20, which equals 8,000
The second part is 10 x 10 x 10, which is 1,000
1,000 + 8,000 = 9,000
Answer in POINT-SLOPE FORM:
Complete the point-slope equation of the line through (1,3) and (5,1) Use exact numbers!
Answer:
y - 3 = (1/2)(x - 1)
Step-by-step explanation:
As we go from (1, 3) to (5, 1), we see that x (the run) increases by 4 and y (the rise) decreases by 2. Hence, the slope is m = rise / run = 2/4, or m = 1/2.
Then the desired point slope equation is y - 3 = (1/2)(x - 1).
A 12 sided die is rolled the set of equally likely outcomes is 123 456-789-10 11 and 12 find the probability of rolling a number greater than three
Answer:
6
Step-by-step explanation:
nerd physics
NEED UGANT HELP pls help me
An event that is impossible has a probability of 0
An event that is certain to happen has a probability of 1
The probability scales from 0 to 1, referring from no chance to will happen.
9. A line passes through (2, –1) and (8, 4). a. Write an equation for the line in point-slope form. b. Rewrite the equation in standard form using integers.
Answer:
Step-by-step explanation:
(4+1)/(8-2)= 5/6
y + 1 = 5/6(x - 2)
y + 1 = 5/6x - 5/3
y + 3/3 = 5/6x - 5/3
y = 5/6x - 8/3
6(y = 5/6x - 8/3)
6y = 5x - 16
-5x + 6y = -16
16. How much money will I need to have at retirement so I can withdraw $60,000 a year for 20 years from an account earning 8% compounded annually? a. How much do you need in your account at the beginning b. How much total money will you pull out of the account? c. How much of that money is interest?
Answer:
starting balance: $636,215.95total withdrawals: $1,200,000interest withdrawn: $563,784.05Step-by-step explanation:
a) If we assume the annual withdrawals are at the beginning of the year, we can use the formula for an annuity due to compute the necessary savings.
The principal P that must be invested at rate r for n annual withdrawals of amount A is ...
P = A(1+r)(1 -(1 +r)^-n)/r
P = $60,000(1.08)(1 -1.08^-20)/0.08 = $636,215.95
__
b) 20 withdrawals of $60,000 each total ...
20×$60,000 = $1,200,000
__
c) The excess over the amount deposited is interest:
$1,200,000 -636,215.95 = $563,784.05
The first card selected from a standard 52-card deck was a king. If it is returned to the deck, what is the probability that a king will be drawn on the second selection
Answer:
[tex]\frac{1}{13}[/tex]
Step-by-step explanation:
The probability P(A) that an event A will occur is given by;
P(A) = [tex]\frac{number-of-possible-outcomes-of-event-A}{total-number-of-sample-space}[/tex]
From the question,
=>The event A is selecting a king the second time from a 52-card deck.
=> In the card deck, there are 4 king cards. After the first selection which was a king, the king was returned. This makes the number of king cards return back to 4. Therefore,
number-of-possible-outcomes-of-event-A = 4
=> Since there are 52 cards in total,
total-number-of-sample-space = 52
Substitute these values into equation above;
P(Selecting a king the second time) = [tex]\frac{4}{52}[/tex] = [tex]\frac{1}{13}[/tex]
Find the pattern and fill in the missing numbers: 1, 1, 2, 3, 5, 8, __, __, 34, 55
Answer:
13, 21
Step-by-step explanation:
Fibonacci sequence-
Each number is added to the number before it.
1+1=2
2+1=3
3+2=5
5+3=8
Answer:
The missing numbers are 13, and 21.
The pattern given is the Fibonacci Sequence, where each number is the sum of the two numbers before it, starting with 0 and 1. (i.e. 5 is 2+3)
In a certain online dating service, participants are given a 4-statement survey to determine their compatibility with other participants. Based on the questionnaire, each participant is notified if they are compatible with another participant. Each question is multiple choice with the possible responses of "Agree" or "Disagree," and these are assigned the numbers 1 or −1, respectively. Participant’s responses to the survey are encoded as a vector in R4, where coordinates correspond to their answers to each question. Here are the questions:
The question is incomplete. Here is the complete question.
In a certain online dating service, participants are given a 4-statement survey to determine their compatibility with other participants. Based on the questionnaire, each particpant is notified if they are compatible with another participant. Each question is multiple choice with the possible responses of "Agree" or "Disagree", and these are assigned the numbers 1 or -1, respectively. pArticipnat's responses to the survey are encoded as a vector in R4, where coordinates coreespond to their answers to each question. Here are the questions:
Question #1: I prefer outdoor activities, rather than indoor activities.
Question #2: I prefer going out to eat in restaurants, rahter than cooking at home.
Question #3: I prefer texting, rather than talking on the phone.
Question #4: I prefer living in a small town, rather than in a big city.
Here are the results for the questionaire, with a group of 5 participants:
Question1 Question2 Question3 Question4
participant A 1 1 -1 -1
participant B -1 1 1 1
participant C -1 -1 1 1
participant D 1 -1 -1 -1
participant E 1 -1 1 1
Two participants are considered to be "compatible" with each other if the angle between their compatibility vectors is 60° or less. Participants are considered to be "incompatible" if the angle between their compatibility vectors is 120° or larger. For angles between 60° or 120°, pairs of participants are warned that they "may or may not be compatible".
(a) Which pairs of paricipants are compatible?
(b) Which pairs of participants are incompatible?
(c) How would this method of testing compatibility change if the questionnaire also allowed the answer "Neutral", which would correspond to the number zero in a participant's vector? Would this be better than only
allowing "Agree" or "Disagree"? Could anything go wrong if we allowed "Neutral" as an answer?
Answer: (a) Participants A and D; B and C; C and E.
(b) Participants A and B; A and C; A and E; B and D; C and D;
Step-by-step explanation: Vectors in R4 are vectors in a 4 dimensional space and are determined by 4 numbers.
Vectors form angles between themselves and can be found by the following formula:
cos α = [tex]\frac{A.B}{||A||.||B||}[/tex]
which means that the cosine of the angle between two vectors is equal the dot product of these vectors divided by the product of their magnitude.
For the compatibility test, find the angle between vectors:
1) The vectors magnitude:
Magnitude of a vector is given by:
||x|| = [tex]\sqrt{x_{i}^{2} + x_{j}^{2}}[/tex]
Since all the vectors have value 1, they have the same magnitude:
||A|| = [tex]\sqrt{1^{2} + 1^{2} + (-1)^{2} + (-1)^{2}}[/tex] = 2
||A|| = ||B|| = ||C|| = ||D|| = ||E|| = 2
2) The dot product of vectors:
A·B = 1(-1) + 1(1) + (-1)1 + (-1)1 = -2
cos [tex]\alpha_{1}[/tex] = [tex]\frac{-2}{4}[/tex] = [tex]\frac{-1}{2}[/tex]
The angle that has cosine equal -1/2 is 120°, so incompatible
A·C = 1(-1) + 1(-1) + (-1)1 + (-1)1 = -4
cos [tex]\alpha _{2}[/tex] = -1
Angle = 180° --------> incompatible
A·D = 1(1) + 1(-1) + (-1)(-1) + (-1)(-1) = 2
cos [tex]\alpha _{3}[/tex] = 1/2
Angle = 60° ---------> COMPATIBLE
A·E = 1.1 + 1(-1) + (-1)1 + (-1)1 = -2
cos [tex]\alpha_{4}[/tex] = -1/2
Angle = 120° --------> incompatible
B·C = (-1)(-1) + 1(-1) + 1.1 + 1.1 = 2
cos [tex]\alpha _{5}[/tex] = 1/2
Angle = 60° -------------> COMPATIBLE
B·D = (-1)1 + 1(-1) + 1(-1) + 1(-1) = -4
cos[tex]\alpha_{6}[/tex] = -1
Angle = 180° -----------> incompatible
B·E = (-1)1 + 1(-1) + 1.1 + 1.1 = 0
cos[tex]\alpha _{7}[/tex] = 0
Angle = 90° -------------> may or may not
C·D = (-1)1 + (-1)(-1) + 1(-1) + 1(-1) = -2
cos[tex]\alpha_{8} =[/tex] -1/2
Angle = 120° ---------------> Incompatible
C·E = (-1)1 + (-1)(-1) + 1.1 + 1.1 = 2
cos [tex]\alpha_{9}[/tex] = 1/2
Angle = 60° ---------------> COMPATIBLE
D·E = 1.1 + (-1)(-1) + (-1)1 + (-1)1 = 0
cos [tex]\alpha_{10}[/tex] = 0
Angle = 90° -----------------> may or may not
(c) Adding zero (0) as a component of the vectors would have to change the method of compatibility because, to determine the angle, it is necessary to calculate the magnitude of a vector and if it is a zero vector, the magnitude is zero and there is no division by zero. So, unless the service change the method, adding zero is not a good option.
What is the measure of
Answer:
C. 35
55 degrees + 35 degrees= 90 degrees
Crane Company reports the following for the month of June.
Date
Explanation
Units
Unit Cost
Total Cost
June 1 Inventory 150 $4 $600
12 Purchase 450 5 2,250
23 Purchase 400 6 2,400
30 Inventory 80
Assume a sale of 500 units occurred on June 15 for a selling price of $7 and a sale of 420 units on June 27 for $8.
Calculate cost of goods available for sale.
Calculate Moving-Average unit cost for June 1, 12, 15, 23 & 27. (Round answers to 3 decimal places, e.g. 2.525.)
Answer:
Crane CompanyJune Financial Reports
a) Cost of goods available for sale = $5,250
b) Moving-Average unit cost for:
i) June 1: = $5
ii) 12: = $4.75
iii) 15: = $4.75
iv) 23: = $5.75
v) 27: = $5.25
Step-by-step explanation:
a) Calculations:
Date Explanation Units Unit Cost Total Cost Moving Average Cost
June 1 Inventory 150 $4 $600 $4.000
12 Purchase 450 5 2,250 4.750
15 Sale 500 7 3,500 4.750
23 Purchase 400 6 2,400 5.750
27 Sale 420 8 3,360 5.250
30 Inventory 80
Cost of goods available for sale = Cost of Beginning Inventory + Cost of Purchases = $5,250 + ($600 + 2,250 + 2,400)
b) Moving-Average unit cost for:
i) June 1: Cost of goods available/Units of goods available = $5 ($600/150)
ii) 12: Cost of goods available/Units of goods available = $4.75 ($600 + 2,250/600)
iii) 15: Cost of goods available/Units of goods available = $4.75 ($475/100)
iv) 23: Cost of goods available/Units of goods available = $5.75 ($475 + 2,400)/500
v) 27: Cost of goods available/Units of goods available = $5.25 ($420/80)
of the following fractions which is 50% greater than 3/7
Answer:
9/14
Step-by-step explanation:
3/7 + 50%×3/7 =
= 3/7 + 1/2×3/7
= 3/7 + 3/14
= 6/14 + 3/14
= 9/14
The required fraction which 50% grater than 3/7 is 9/14.
Fraction to determine that 50% grater than 3/7.
Fraction of the values is number represent in form of Numerator and denominator.
Here, fraction = 50% grater than 3/7
= 1.5 x 3/7
= 4.5/7
= 45/70
= 9/14
Thus, The required fraction which 50% grater than 3/7 is 9/14.
Learn more about fraction here:
https://brainly.com/question/10354322
#SPJ5
11.Which word or words best complete the sentence? Two lines that lie in parallel planes _____ intersect. Sometimes Always Never
Answer:
never intersect
Step-by-step explanation
parallel lines do not intersect and neither do parallel planes
A normally distributed data set with a mean of 35 and a standard deviation of 5 is represented by the normal curve. What is the z–score corresponding to 45?
Answer:
The z–score corresponding to 45 is z=2.
Step-by-step explanation:
We have a random variable X represented by a normal distribution, with mean 35 and standard deviation 5.
The z-score represents the value X relative to the standard normal distribution. This allows us to calculate probabilities for any given normal distribution with the same table.
The z-score for X=45 can be calculated as:
[tex]z=\dfrac{X-\mu}{\sigma}=\dfrac{45-35}{5}=\dfrac{10}{5}=2[/tex]
The z–score corresponding to 45 is z=2.
Find the lateral surface area, base area of a cylinder with radius 5 cm and height 16 cm
Answer:
Lateral surface area is
≈
502.65cm²
Base area is
=
πr^2
We are standing on the top of a 320 foot tall building and launch a small object upward. The object's vertical altitude, measured in feet, after t seconds is h ( t ) = − 16 t 2 + 128 t + 320 . What is the highest altitude that the object reaches?
Answer:
The highest altitude that the object reaches is 576 feet.
Step-by-step explanation:
The maximum altitude reached by the object can be found by using the first and second derivatives of the given function. (First and Second Derivative Tests). Let be [tex]h(t) = -16\cdot t^{2} + 128\cdot t + 320[/tex], the first and second derivatives are, respectively:
First Derivative
[tex]h'(t) = -32\cdot t +128[/tex]
Second Derivative
[tex]h''(t) = -32[/tex]
Then, the First and Second Derivative Test can be performed as follows. Let equalize the first derivative to zero and solve the resultant expression:
[tex]-32\cdot t +128 = 0[/tex]
[tex]t = \frac{128}{32}\,s[/tex]
[tex]t = 4\,s[/tex] (Critical value)
The second derivative of the second-order polynomial presented above is a constant function and a negative number, which means that critical values leads to an absolute maximum, that is, the highest altitude reached by the object. Then, let is evaluate the function at the critical value:
[tex]h(4\,s) = -16\cdot (4\,s)^{2}+128\cdot (4\,s) +320[/tex]
[tex]h(4\,s) = 576\,ft[/tex]
The highest altitude that the object reaches is 576 feet.
SNOG PLEASE HELP! (x-1)(y+8)
Answer:
xy + 8x - y - 8
Step-by-step explanation:
We can use the FOIL method to expand these two binomials. FOIL stands for First, Outer, Inner, Last.
F: The First means that we multiply the first terms of each binomial together. In this case, that would be x · y = xy.
O: The Outer means that we multiply the outer terms, or the first term of the first binomial and the second term of the last binomial, together. In this case, that would be x · 8 = 8x.
I: The Inner means that we multiply the inner terms, or the second term of the first binomial and the first term of the second binomial, together. In this case, that would be (-1) · y = -y.
L: The Last means that we multiply the last terms of each binomial together. In this case, that would be (-1) · 8 = -8.
Adding all of these together, we get xy + 8x - y - 8 as our final answer.
Hope this helps!
Answer:
[tex]xy+8x-y-8[/tex]
Step-by-step explanation:
=> (x-1)(y+8)
Using FOIL
=> [tex]xy+8x-y-8[/tex]
The volume of a cantaloupe is approximated by Upper V equals four thirds pi font size decreased by 5 r cubed . The radius is growing at the rate of 0.5 cm divided by week, at a time when the radius is 6.4 cm. How fast is the volume changing at that moment?
Answer:
308.67 cm ^ 3 / week
Step-by-step explanation:
A cantaloupe is approximately a sphere, therefore its approximate volume would be:
V = (4/3) * pi * (r ^ 3)
They tell us that dr / dt 0.5 cm / week and the radius is 6.4 cm
if we derive the formula from the volume we are left with:
dV / dt = (4/3) * pi * d / dr [(r ^ 3)]
dV / dt = (4/3) * pi * 3 * (r ^ 2) * dr / dt
dV / dt = 4 * pi * (r ^ 2) * dr / dt
we replace all the values and we are left with:
dV / dt = 4 * 3.14 * (6.4 ^ 2) * 0.6
dV / dt = 308.67
Therefore the volume is changing at a rate of 308.67 cm ^ 3 / week
If AB= X and x=4, then the transitive property states
Answer:
AB=4
Step-by-step explanation:
The transitive property states if A=B and B+C than A+C Next substitute
AB=x and x=4 so AB=4
Hope this helps, if it did, please give me brainliest, it helps me a lot. :)
Have a good day!
which of the following statements is false?
Answer:
A.
Step-by-step explanation:
It's the first one. The angles are supplementary not complementary.
Answer:
I would have to say A
Step-by-step explanation:
(06.01 MC) What is the value of the expression shown below? 8 + (7 + 1) 2 ÷ 4 ⋅ (5 points) Select one: a. 7 b. 9 c. 21
Answer:
b. 9
Just use PEMDAS
If x is a binomial random variable with n trials and success probability p , then as n gets smaller, the distribution of x becomes
Answer:
If the value of n gests smaller then the distribution of X would be more skewed, that's a property of the binomial distribution
Step-by-step explanation:
For this problem we are assumeing that the random variable X is :
[tex] X \sim Bin(n,p)[/tex]
If the value of n gests smaller then the distribution of X would be more skewed, that's a property of the binomial distribution and if we don't satisfy this two conditions:
[tex] n p>10[/tex]
[tex]n(1-p) >10[/tex]
Then we can't use the normal approximation
The diagram shows the first four patterns of a sequence. Find an expression for the numbers of squares in the nth pattern of the sequence.
Answer:
n^2+3
Step-by-step explanation:
As we can see in the diagram
1st pattern consists from 1 square 1x1 +3 squares 1x1 each
2nd pattern consists from 1 square 2x2 +3 squares 1x1 each
3-rd pattern consists from 1 square 3x3 +3 squares 1x1 each
4-th pattern consists from 1 square 4x4 + 3 squares 1x1 each
We can to continue :
5-th pattern consists from 1 square 5x5+3 squares 1x1 each
So the nth pattern consists from 1 square nxn+3 squares 1x1 each
Or total amount of 1x1 squares in nth pattern N= n^2+3
The expression for the numbers of squares in the nth pattern of the sequence is [tex]n^{2} +3[/tex].
What is nth term of a sequence?"The nth term of a sequence is a formula that enables us to find any term in the sequence. We can make a sequence using the nth term by substituting different values for the term number(n) into it."
From the given diagram
We can see that every term is made up with a square which side is n and three small square side is 1.
So,
1st term is 1 × 1 + 3 = 4
2nd term is 2 × 2 + 3 = 4
3rd term is 3 × 3 + 3 = 12
4th term is 4 × 4 + 3 = 19
So, nth term is [tex]n^{2} +3[/tex]
Hence, The expression for the numbers of squares in the nth pattern of the sequence is [tex]n^{2} +3[/tex].
Learn more about nth term of a sequence here
https://brainly.com/question/24306119
#SPJ2
if 2 X degree is the exterior angle of triangle and x degree and 45 degree are opposite interior angle find the value of x degree
Answer:
x = 45 degrees
Step-by-step explanation:
The measure of exterior angles is equal to the sum of non-adjacent interior angles
=> 2x = x+45
=> 2x-x = 45
=> x = 45 degrees
Answer:
45 degrees.
Step-by-step explanation:
The exterior angle = sum of the 2 opposite interior angles.
2x = x + 45
2x - x = 45
x = 45.
11. If 4 < x < 14, what is the range for -x - 4?
Answer:
-18 < -x-4 < -8
Step-by-step explanation:
We start with the initial range as:
4 < x < 14
we multiplicate the inequation by -1, as:
-4 > -x > -14
if we multiply by a negative number, we need to change the symbols < to >.
Then, we sum the number -4, as:
-4-4> -x-4 > -14-4
-8 > -x-4 > -18
Finally, the range for -x-4 is:
-18 < -x-4 < -8
Consider the following sample information from Population A and Population B. Sample A Sample B n 24 16 s2 32 38 We want to test the hypothesis that the population variances are equal. The test statistic for this problem equals a. .84. b. .67. c. 1.50. d. 1.19.
Answer:
Always the numerator for the statistic needs to be higher than the denominator. And replacing we got:
[tex]F=\frac{s^2_2}{s^2_1}=\frac{38}{32}=1.19[/tex]
And the best option would be:
d. 1.19.
Step-by-step explanation:
Data given and notation
[tex]n_1 = 24 [/tex] represent the sampe size 1
[tex]n_2 =16[/tex] represent the sample size 2
[tex]s^2_1 = 32[/tex] represent the sample variance for 1
[tex]s^2_2 = 38[/tex] represent the sample variance for 2
The statistic for this case is given by:
[tex]F=\frac{s^2_1}{s^2_2}[/tex]
Hypothesis to verify
We want to test if the true deviations are equal, so the system of hypothesis are:
H0: [tex] \sigma^2_1 = \sigma^2_2[/tex]
H1: [tex] \sigma^2_1 \neq \sigma^2_2[/tex]
Always the numerator for the statistic needs to be higher than the denominator. And replacing we got:
[tex]F=\frac{s^2_2}{s^2_1}=\frac{38}{32}=1.19[/tex]
And the best option would be:
d. 1.19.
I NEED HELP PLEASE, THANKS! :)
Find the angle θ between u = <7, –2> and v = <–1, 2>.
47.5°
42.5°
132.5°
137.5°
Answer:
Step-by-step explanation:
Cos θ = u*v
IuI *IvI
u * v = 7*(-1) + (-2)*2
= -7 - 4
= -11
IuI = [tex]\sqrt{7^{2}+(-2)^{2}}\\[/tex]
= [tex]\sqrt{49+4}\\\\[/tex]
= [tex]\sqrt{53}[/tex]
I vI = [tex]\sqrt{(-1)^{2}+2^{2}}\\[/tex]
= [tex]\sqrt{1+4}\\\\[/tex]
= [tex]\sqrt{5}\\[/tex]
Cos θ = [tex]\frac{-11}{\sqrt{53}*\sqrt{5} } \\\\[/tex]
= [tex]\frac{-11}{16.28}\\\\[/tex]
Cos θ = -0.68
θ = 132.5°