Answer:
I found "As nouns the difference between resultant and equilibrium is that resultant is anything that results from something else; an outcome while equilibrium is the condition of a system in which competing influences are balanced, resulting in no net change. is following as a result or consequence of something."
Explanation:
true or false the melting of ice cubes is a exothermic reaction
[tex]\huge\boxed{False}[/tex]
_____________________________________ENDOTHERMIC REACTIONS:Endothermic Reaction are those reactions in which the reactants absorb the energy from their surrounding and forms the product.
_____________________________________How to know endothermic reaction?Those changes in which a substance goes from More-ordered state to less-oredered state are endothermic. Where they change from less ordered to more ordered is exothermic.
More ordered means that the movement of vibration of the particles of the substance is less and the are more close to each other. More to less ordered state is given as,
Solid>Liquid>Gas.
_____________________________________Question:In the question it asks about the melting of the ice cube. Ice cube is a solid, and when it will melt, it will change into the liquid water. As we know that, Solid is more ordered and Liquid is less ordered, and The change from more-ordered to less-ordered is endothermic thus the answer is ENDOTHERMIC.
_____________________________________Best Regards,'Borz'A large pizza is cut into 8 even slices. A person orders 4 large pizzas from a restaurant. How many total slices of pizza did the person order?
Answer:
32 slicesExplanation:
Step one:
given data
we are told that 1 large pizza can be cut into 8 even slices
Required
we want to find how many slices are there in 4 large pizzas
Step two:
so if 1 pizza has 8 slices
4 pizza will have x
cross multiply we have
x= 8*4
x=32 slices
9)A skier starts from rest from the top of a 40 m high slope which makes 40 degrees with the ground. Coefficient of friction is 0.1 What is the velocity of the skier at the bottom of the ramp?
Answer:
The velocity of the skier at the bottom of the ramp is approximately 26.288 meters per second.
Explanation:
We can determine the final velocity of the skier at the bottom of the ramp by Principle of Energy Conservation and Work-Energy Theorem, whose model is:
[tex]U_{g,1}+K_{1} = U_{g,2}+K_{2}+W_{disp}[/tex] (1)
Where:
[tex]U_{g,1}[/tex], [tex]U_{g,2}[/tex] - Initial and final gravitational potential energy, measured in joules.
[tex]K_{1}[/tex], [tex]K_{2}[/tex] - Initial and final translational kinetic energy, measured in joules.
[tex]W_{disp}[/tex] - Work dissipated by friction, measured in joules.
By definitions of gravitational potential and translational kinetic energy and work, we expand and simplify the model:
[tex]m\cdot g \cdot (z_{1}-z_{2})+\frac{1}{2}\cdot m \cdot (v_{1}^{2}-v_{2}^{2}) =\mu_{k}\cdot N\cdot \Delta s[/tex] (2)
Where:
[tex]m[/tex] - Mass, measured in kilograms.
[tex]g[/tex] - Gravitational acceleration, measured in meters per square second.
[tex]z_{1}[/tex], [tex]z_{2}[/tex] - Initial and final heights of the skier, measured in meters.
[tex]N[/tex] - Normal force from the incline on the skier, measured in newtons.
[tex]\Delta s[/tex] - Distance covered by the skier, measured in meters.
[tex]\mu_{k}[/tex] - Kinetic coefficient of friction, dimensionless.
The normal force exerted on the skier and the covered distance are, respectively:
[tex]N = m\cdot g\cdot \cos \theta[/tex] (3)
[tex]\Delta s = \frac{z_{1}-z_{2}}{\sin \theta}[/tex] (4)
Where [tex]\theta[/tex] is the angle of the incline above the horizontal, measured in sexagesimal degrees.
By applying (3) and (4) in (2), we get that:
[tex]m\cdot g \cdot (z_{1}-z_{2})+\frac{1}{2}\cdot m\cdot (v_{1}^{2}-v_{2}^{2}) = \mu_{k}\cdot m\cdot g \cdot \cos \theta \cdot \left(\frac{z_{1}-z_{2}}{\sin \theta} \right)[/tex]
[tex]g\cdot (z_{1}-z_{2}) +\frac{1}{2}\cdot (v_{1}^{2}-v_{2}^{2})= \mu_{k}\cdot g \cdot \left(\frac{z_{1}-z_{2}}{\tan \theta} \right)[/tex] (5)
Then, we clear the velocity of the skier at the bottom of the ramp is: ([tex]v_{1} = 0\,\frac{m}{s}[/tex], [tex]\mu_{k} = 0.1[/tex], [tex]\theta = 40^{\circ}[/tex], [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], [tex]z_{1}-z_{2} = 40\,m[/tex])
[tex]\left[\frac{\mu_{k}}{\tan \theta}-1 \right]\cdot g\cdot (z_{1}-z_{2}) = \frac{1}{2}\cdot (v_{1}^{2}-v_{2}^{2})[/tex]
[tex]2\cdot \left[\frac{\mu_{k}}{\tan \theta}-1 \right]\cdot g\cdot (z_{1}-z_{2}) = v_{1}^{2}-v_{2}^{2}[/tex]
[tex]v_{2} = \sqrt{v_{1}^{2}-2\cdot \left[\frac{\mu_{k}}{\tan \theta}-1 \right]\cdot g\cdot (z_{1}-z_{2})}[/tex] (6)
[tex]v_{2} = \sqrt{\left(0\,\frac{m}{s} \right)^{2}-2\cdot \left(\frac{0.1}{\tan 40^{\circ}} -1\right)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (40\,m)}[/tex]
[tex]v_{2} \approx 26.288\,\frac{m}{s}[/tex]
The velocity of the skier at the bottom of the ramp is approximately 26.288 meters per second.
Which statement is true about two isotopes of the same element?
Answer:
atoms that have the same # of protons but a DIFFERENT # of NEUTRONS
Explanation:
Answer:
D-They have different number of neutrons
Explanation:
brainliest? Plz
You are standing on a circular track that is 332 m long. You begin jogging at the start line and keep jogging until you complete a full lap and stop at the same point you
started at.
ard
• What is your final displacement?
Answer:
Zero.
Explanation:
By definition, the displacement is the difference between the final position and the initial position, so independent from the distance traveled (in this case a full lap), since the initial and final position are the same, the net displacement is just Zero.What is the relationship between resistance and current in a circuit with no change in voltage?
A. Current and resistance must be equal in a circuit.
B. A circuit that has more resistance will have smaller current.
C. Current does not depend on resistance in a circuit.
D. A circuit that has more resistance will have a greater current.
Answer:
A
Explanation:
At what speed do a bicycle and its rider, with a combined mass of 100 kg, have the same momentum as a 1500 kg car traveling at 1.0 m/s?
Answer:
15m/sExplanation:
Step one:
given data
mass of bicycle m=100kg
the velocity of bicyle v=?
mass of car M=1500kg
the velocity of car V=1.0m/s
Step two:
we know that the momentum is expressed as
P=mv
since the momentum of the bicycle must be equal to car then
mv=MV---------1
100*v=1500*1
divide both sides by 100
v=1500/100
v=15m/s
The velocity of the bicycle should be 15m/s
A rock dropped from a 5 m height accelerates at 10 m/s and strikes the ground 1 s later. If the rock is dropped
from a height of 2,5 m, its acceleration of fall is
Answer:
10 m/s²
Explanation:
The above question simply indicates motion under gravity.
The acceleration due to gravity (i.e acceleration of free fall) has a constant value of 10 m/s².
Whether the rock is dropped from a height of 5 m or 2.5 m, it will accelerate at 10 m/s² before striking the ground. The only thing that will be different is the time taken for the rock to strike the ground when released from both 5 m and 2.5 m.
Thus, the rock will have a constant acceleration of 10 m/s² irrespective of the height to which it was released.
Since acceleration due to gravity is a constant, the acceleration of the rock dropped from the 5 m height is the same as that dropped from the 2.5 m height and is equal to 10 m/s²
What is the acceleration due to gravity?Acceleration due to gravity is the acceleration a body falling freely from a height above the earth surface which a body experiences due to the gravitational force of attraction of the earth on the body.
Acceleration due to gravity has a constant value which is equal to 10 m/s².
Therefore, the acceleration of the rock dropped from the 5 m height is the same as that dropped from the 2.5 m height and is equal to 10 m/s².
Learn more about acceleration due to gravity at: https://brainly.com/question/11873969
what happens to the strength of an electromagnet when the voltage in the coils of the solenoid is decreased
Answer:
Make sure you look at the wording!
Explanation:
if the last word is increased, the answer is increased
if the last word is decreased, the answer is it decreases!
Jared walks 120 m east, 150 m south, and then 40 m west. Find the total
distance traveled by Jared
Answer:
310 m
Explanation:
120+150+40=310
An electron and a proton have charges of an equal magnitude but opposite sign of 1.60 x 10^-19 C. If the electron and proton in a hydrogen atom are separated by a distance of 4.20 x10^-11 m, what are the magnitude and direction of the electrostatic force exerted on the electron by the proton?
Answer:
i. F = 1.3 x [tex]10^{-7}[/tex] N
ii. The direction of the force of attraction exerted by the proton on the electron is towards the itself (i.e a pull).
Explanation:
Since the given charges are opposite, then the force of attraction is experienced. The force of attraction between the two charges can be determined by:
F = [tex]\frac{kq_{1} q_{2} }{d^{2} }[/tex]
where F is the force, k is the constant, [tex]q_{1}[/tex] is the charge of the electron, [tex]q_{2}[/tex] is the charge on the proton, and d is the distance between them.
So that; k = 9.0 x [tex]10^{9}[/tex] N[tex]m^{2}[/tex][tex]C^{-2}[/tex] , [tex]q_{1}[/tex] = 1.6 x [tex]10^{-19}[/tex] C, [tex]q_{2}[/tex] = 1.6 x
Thus,
F = [tex]\frac{9.0*10^{9}*1.6*10^{-19}*1.6*10^{-19} }{(4.2*10^{-11}) ^{2} }[/tex]
= [tex]\frac{2.304*10^{-28} }{1.764*10^{-21} }[/tex]
= 1.3061 x [tex]10^{-7}[/tex]
F = 1.3 x [tex]10^{-7}[/tex] N
The force between the charges is 1.3 x [tex]10^{-7}[/tex] N.
ii. The direction of the force of attraction exerted by the proton on the electron is towards the itself.
Glycerin at 30°C has a density of 1,260 kg/m3 and a viscosity of 0.630 Pa s. In a laboratory experiment, some glycerin is forced through a horizontal tube that is 10.0 cm long and 1.00 cm in diameter. The high-pressure end of the tube is held at a gauge pressure of 618 Pa, while the other end is open to the atmosphere. What is the flow rate of the glycerin through the tube?
Answer:
Explanation:
Rate of flow of liquid through a tube can be expressed by the following expression
V = π P r⁴ / 8ηl
P is pressure difference between end of tube = 618 Pa
r , radius of tube = .5 x 10⁻²
η is viscosity of liquid flowing = .63
l is length of tube = .10 m
V = 3.14 x 618 x ( .5 x 10⁻² )⁴ / (8 x .63 x .10 )
= 240.64 x 10⁻⁸ m³ /s
mass = 240.64 x 1260 x 10⁻⁸ kg / s
= 3.03 x 10⁻³ kg /s
= 3.03 gram /s .
2. Which bicyclist was traveling the fastest at the end of the race?
Answer:
This question is incomplete
Explanation:
This question is incomplete. However, to determine the bicyclist that traveled the fastest at the end of the race, the speed of the bicyclists at the end of the race will determine this (not the bicyclist that came first nor there overall speed). The speed of the bicyclist at the end of the race can be determined by using the formula below
s = d ÷ t
Where s is the speed of each bicyclist at the end of the race
d is the specific distance covered by the bicyclist at the end of the race
t is the time taken for the bicyclist to complete that distance
It should be noted that to get an accurate result, the distance covered at the end of the race must be the same for all the bicyclists.
A spinning ice skater will slow down if she extends her arms away from her body. Which of the following statements explain this phenomenon
A) circular motion is always uniform
B) A centripetal force always points outward
C) Angular momentum is always conserved
D) Centripetal acceleration cannot change
Marking brainliest
Answer:
B, which is why ice skaters often keep their arms close to their body when doing spins and jumps to minimize resistance.
If force remains the same, and the mass of an object increases, what happens to the acceleration?
Answer:
Decreases
Explanation:
Force= mass * acceleration
If the mass increases but force stays the same then the acceleration would have to decrease to maintain the same force
A repeated back and forth or up and down motion is called a
Answer:
A vibration is a repeated back-and-forth or up-and-down motion.
Explanation:
Waves carry energy through empty space or through a medium without transporting matter.
Please answer my question
Answer:
Answer is (b) Mercury, venus and Mars.
Explanation:
i think b is correct!!
;-) :-) :-) :-)
Consider a person standing in an elevator that is moving at a constant velocity down. The upward normal force N exerted by the elevator floor on the person is Select one: a. smaller than the downward force of gravity on the person. b. identical to the downward force of gravity on the person. c. larger than the downward force of gravity on the person.
Answer:
b. identical to the downward force of gravity on the person.
Explanation:
For an object in an elevator,
F = mg - ma (g > a)
But since the velocity is uniform, a = 0.
Then,
F = mg - 0
F = mg
This is the actual weight of the object.
The object does not feel weightless, so that its actual weight can be measured during the downward motion of the elevator with uniform velocity.
Thus, the upward normal force, N, exerted by the elevator floor on the person is identical to the downward force of gravity on the person.
What is the answer to this question
Answer:
0.11 m/s
Explanation:
From the question given above, the following data were obtained:
Initial displacement (d1) = 1.09 m
Final displacement (d2) = 2.55 m
Time (t) = 12.8 s
Average velocity =?
Next, we shall determine the total displacement (i.e change in displacement). This can be obtained as follow:
Initial displacement (d1) = 1.09 m
Final displacement (d2) = 2.55 m
Total displacement = d2 – d1
Total displacement = 2.55 – 1.09
Total displacement = 1.46 m
Finally, we shall determine the average velocity of the beetle. This can be obtained as follow:
Total Displacement = 1.46 m
Total time (t) = 12.8 s
Average velocity =?
Average velocity = Total Displacement / Total time
Average velocity = 1.46/12.8
Average velocity = 0.11 m/s
Thus, the average velocity of the beetle is 0.11 m/s
HELP THIS IS DUE IN 5 MINUTES!!!!!!!!!!!! WILL GIVE BRAINLIEST
what is the definition of total velocity?
Answer:
Image result for total velocity definition
The average speed of an object is defined as the distance traveled divided by the time elapsed.
Explanation:
A solid spherical ball and a hollow spherical ball made out of the same material are released from rest at the top of a ramp. They roll down the ramp without slipping to the bottom. On what quantities does the speed of each ball at the bottom of the ramp depend?A. Radius of the ball.B. Distribution of mass within the ball.C. Mass of the ball.D. Height of the ramp.
Answer:
D. Height of the ramp.
Explanation:
The solid spherical ball is expected to have more mass than that of the hollow spherical ball. And the speed of both balls would be influenced by the gravitational force as they roll down the ramp. Thus, the masses would move at different speed.
At the bottom of the ramp, the speed of the balls can be varied by varying the height of the ramp. So that the speed of both balls depend on the height of the ramp. As the height of the ramp increases, consequently, the speed of the balls increases. And if the height of the ramp decreases, the speed of the balls decreases consequently.
If the velocity of a car changes from 0 meters per second (m/s) to 100 m/s in 10 seconds, what is the acceleration over that 10 second period?
Answer:
10m/s²
Explanation:
Given parameters:
Initial velocity = 0m/s
Final velocity = 100m/s
Time taken = 10s
Unknown:
Acceleration = ?
Solution:
Acceleration is the rate of change of velocity with time.
A = [tex]\frac{v - u}{t}[/tex]
v = final velocity
u = initial velocity
t = time taken
So, insert the parameters and solve;
A = [tex]\frac{100 - 0}{10}[/tex] = 10m/s²
A 50kg boy stands on rough horizontal ground. The coefficient
of static friction, us, is 0.68. The maximum static friction
between the boy and the ground is __N.
Given :
A 50 kg boy stands on rough horizontal ground. The coefficient of static friction, us, is 0.68.
To Find :
The maximum static friction between the boy and the ground is _ N.
Solution :
We know maximum static friction is given by :
[tex]F = \mu mg \\\\F= 0.68\times 50\times 9.8\\\\F = 333.2\ N[/tex]
Therefore, maximum static friction is 333.2 N.
Hence, this is the required solution.
A cable that weighs 4 lb/ft is used to lift 1000 lb of coal up a mine shaft 700 ft deep. Find the work done.
Answer:
980000ft-lbsExplanation:
Step one:
given data
mass of cable= 4lb/ft
mass of coal= 1000lb
dept of mine= 700ft
Step two:
Required
the work-done to lift the coal and the rope combined
Work-done to lift coal
Wc=1000*700= 700,000 lb-ft
Work-done to lift rope
[tex]Wr=\int\limits^{700} _0 {4(700-y)} \, dx \\\\Wr=4(700y-\frac{1}{2}y^2 )\limits^{700}_0[/tex]
substitute y=700 we have, since y=0 will result to 0
[tex]Wr=4(700*700-\frac{1}{2}*700^2 )\\\\Wr=4(490000-245000)\\\\Wr=4(245000)\\\\Wr=980000ft-lbs[/tex]
A car weighing 1,356 N is speeding down a highway with a velocity of 83 km/h. What is the momentum of this car
Answer:
The momentum of the car is 3190.74 kgm/s
Explanation:
Given;
weight of the car, w = 1,356 N
velocity of the car, v = 83 km/h = 23.06 m/s
The mass of the car is given by;
m = w/g
where;
g is acceleration due to gravity = 9.8 m/s²
m = 1356 / 9.8
m = 138.367 kg
The momentum of this car is given by;
P = mv
P = (138.367 x 23.06)
P = 3190.74 kgm/s
Therefore, the momentum of the car is 3190.74 kgm/s
a car traveling in a constant speed of 55km/h on a circular track what is the acceleration explain
Answer:
See the explanation below
Explanation:
We must solve this problem by defining that when we have a constant velocity, the acceleration is equal to zero. That is, when there is no speed change, there is no acceleration. We can understand it very easily by means of the following equation of kinematics.
[tex]v_{f}=v_{o}+a*t[/tex]
where:
Vf = final velocity = 55 [km/h]
Vo = initial velocity = 55 [km/h]
a = acceleration [m/s²]
t = time [s]
As we can see there is no change in speed, and the difference between the two is equal to zero.
[tex]0 = 0 +a*t\\a = (0-0)/t\\a= 0[/tex]
PLEASEEE HELPPPPP does anyone know these answers?
Answer:
oof ok
Explanation:
Thank you :)
Climate is the day-to day condition of an area including temperature, pressure, and precipitation. Weather is the usual pattern of temperature, pressure, and precipitation pf an area over time. True or False
Answer:
False
Explanation:
Weather is the day-to day condition of an area including temperature, pressure, and precipitation. Climate is the usual pattern of temperature, pressure, and precipitation pf an area over time.
It is true that the climate is the day-to day condition of an area including temperature, pressure, and precipitation. Weather is the usual pattern of temperature, pressure, and precipitation pf an area over time.
What is the relation between climate and weather?The weather is the current state of the atmosphere for a particular place and at a definite or short period of time. The atmospheric conditions which are considered are temperature, cloudiness, dryness, humidity, rain, sunshine and wind.
The climate is the atmospheric conditions of a particular place over a long time period.
It is the condition of the Earth and the atmosphere which tells us about the extent at either it is hot or cold, wet or dry, or it can be calm or stormy type. Basically the weather changes and happened at the least level of the atmosphere and the layer is known to be the troposphere that is found just below the stratosphere. Troposphere is the layer present in the most lower level forming the Earth's atmosphere. In this layer of has 75% mass out of atmospheric mass and 99% of the total mass of water vapor.
So, the given statement is true.
To know more about weather and climate,
https://brainly.com/question/11265560
#SPJ6
A Long Jumber leaves the ground at on
a bouche horizontal al speed ilms.
How far does he jume in the horizontal direction ?
Answer:
horizontal velocity vh = 6*cos(30°) = 6*(√3)/2 = 3√3 m/s
initial vertical velocity vv = 6*sin(30°) = 6/2 = 3m/s
Using s = ut + at2/2 for change in vertical distance in time t, with acceleration a (-9.8m/s2) and initial velocity u (vv = 3m/s) we have
0 = 3*t - 9.8*t2/2 or t = 6/9.8 s (ignoring the t = 0 solution, which just represents staying still!).
The horizontal distance in time t is vh*t or 3√3*6/9.8 m
Explanation:
In contact forces, _____.
A.) objects do not touch each other
B.) objects must touch each other
C.) more work is done than in other forces
Answer:
B is the best answer for this