Determine the combined moment about O due to the weight of the mailbox and the cross member AB. The mailbox weighs 3.2 lb and the uniform cross member weighs 10.3 lb. Both weights act at the geometric centers of the respective items. The moment will be positive if counterclockwise, negative if clockwise.

Answers

Answer 1

Answer:

Attached is the complete question but the weight of the mailbox and cross bar differs from the given values which are : weight of mail box = 3.2 Ib, weight of the uniform cross member = 10.3 Ib

Answer : moment of inertia = 186.7 Ib - in

Explanation:

Given data

weight of the mailbox = 3.2 Ib

weight of the uniform cross member = 10.3 Ib

The origin is of mailbox and cross member is 0

The perpendicular distance from Y axis of centroid of the mailbox

= 4 + (25/2) = 16.5"

The centroid of the bar =( ( 1 + 25 + 4 + 4 ) / 2 ) - 4  = 13"

therefore The moment of Inertia( Mo) = (3.2 * 16.5) + ( 10.3 * 13)

                                     = 52.8 + 133.9 = 186.7 Ib-in

Determine The Combined Moment About O Due To The Weight Of The Mailbox And The Cross Member AB. The Mailbox
Answer 2

The combined moment about O due to the weight of the mailbox and the cross member AB is; M_o = 122.4 lb.in (ccw)

We are given;

Weight of mailbox; W_m = 3.2 lb

Weight of uniform cross member; W_c = 10.3 lb

Now, from the attached diagram, let us calculate the geometric location of the mailbox and uniform cross section from point O.

Geometric location of mailbox from point O; g_m = 3 + (19/2) = 12.5 in

Geometric location of cross member from point O;

g_c = (¹/₂(1 + 19 + 3 + 7)) - 7

g_c = 8 in

Thus. combined moment about point O is;

M_o = (W_m × g_m) + (W_c × g_c)

M_o = (3.2 × 12.5) + (10.3 × 8)

M_o = 122.4 lb.in

Since positive then it is counterclockwise. Thus;

M_o = 122.4 lb.in (ccw)

The image of this question is missing and so i have attached it.

Read more at; https://brainly.com/question/14303536

Determine The Combined Moment About O Due To The Weight Of The Mailbox And The Cross Member AB. The Mailbox

Related Questions

At steady state, a refrigerator whose coefficient of performance is 3 removes energy by heat transfer from a freezer compartment at 0 degrees C at the rate of 6000 kJ/hr and discharges energy by heat transfer to the surroundings, which are at 20 degrees C. a) Determine the power input to the refrigerator and compare with the power input required by a reversible refrigeration cycle operating between reservoirs at these two temperatures. b) If electricity costs 8 cents per kW-hr, determine the actual and minimum theoretical operating costs, each in $/day

Answers

Answer:

(A)0.122 kW (B) Actual cost = 1.056 $/day, Theoretical cost =  0.234 $/day

Explanation:

Solution

Given that:

The coefficient of performance is =3

Heat transfer = 6000kJ/hr

Temperature = 20°C

Cost of electricity = 8 cents per kW-hr

Now

The next step is to find the power input to the refrigerator and compare with the power input considered by a reversed refrigeration cycle operating between reservoirs at the two temperatures.

Thus

(A)The coefficient of performance is given below:

COP = Heat transfer from freezer/Power input

3 =6000/P

P =6000/3

P= 2000

P =  2000 kJ/hr = 2000/(60*60) kW

= 2000 (3600)kW

= 0.55 kW

Thus

The ideal coefficient of performance = T_low/(T_high - T_low)

= (0+273)/(20-0)

= 13.65

So,

P ideal = 6000/13.65 = 439.6 kJ/hr

= 439.6/(60*60) kW

= 0.122 kW

(B)For the actual cost we have the following:

Actual cost = 0.55 kW* 0.08 $/kW-hr = $ 0.044 per hour

= 0.044*24 $/day

= 1.056 $/day

For the theoretical cost we have the following:

Theoretical cost = 0.122 kW* 0.08 $/kW-hr = $ 0.00976 per hour

= 0.00976*24 $/day

= 0.234 $/day

A gold vault has 3 locks with a key for each lock. Key A is owned by the

manager whilst Key B and C are in the custody of the senior bank teller

and the trainee bank teller respectively. In order to open the vault door at

least two people must insert their keys into the assigned locks at the same

time. The trainee bank teller can only open the vault when the bank

manager is present in the opening.

i) Determine the truth table for such a digital locking system (4 marks)

ii) Derive and minimize the SOP expression for the digital locking system

Answers

Answer:

i) Truth Table:

A      |     B     |     C     |     O

0      |     0     |     0     |      0

0      |     0     |     1      |      0

0      |     1      |     0     |      0

0      |     1      |     1      |      0    (condition 2 not satisfied)

1       |     0     |     0     |      0

1       |     0     |     1      |      1    (both conditions satisfied)

1       |     1      |     0     |      1    (both conditions satisfied)

1       |     1      |     1      |      1    (both conditions satisfied)

ii) The minimized sum of products (SOP) expression is

O = AC + AB

Explanation:

We have three inputs A, B and C

Let O is the output.

We are given two conditions to open the vault door:

1. At  least two people must insert their keys into the assigned locks at the same  time.

2. The trainee bank teller (C) can only open the vault when the bank  manager (A) is present in the opening.

i) Construct the Truth Table

A      |     B     |     C     |     O

0      |     0     |     0     |      0

0      |     0     |     1      |      0

0      |     1      |     0     |      0

0      |     1      |     1      |      0    (condition 2 not satisfied)

1       |     0     |     0     |      0

1       |     0     |     1      |      1    (both conditions satisfied)

1       |     1      |     0     |      1    (both conditions satisfied)

1       |     1      |     1      |      1    (both conditions satisfied)

ii) SOP Expression using Karnaugh-Map:

A 3 variable Karnaugh-map is attached.

The minimized sum of products (SOP) expression is

O = AC + AB

The orange pair corresponds to "AC" and the purple pair corresponds to "AB"

Bonus:

The above expression may be realized by using two AND gates and one OR gate.  

Please refer to the attached logic circuit diagram.

A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16% of the cylinder volume at bottom dead center and the crankshaft rotates at 2400 RPM. The processes within each cylinder are modeled as an air-standard Otto cycle with a pressure of 14.5 lbf/in.2 and a temperature of 60F at the beginning of compression. The maximum temperature in the cycle is 5200R. Based on this model, calculate the net work per cycle, in Btu, and the power developed by the engine, in horsepower.

Answers

Answer:

the net work per cycle [tex]\mathbf{W_{net} = 0.777593696}[/tex]  Btu per cycle

the power developed by the engine, W = 88.0144746 hp

Explanation:

the information given includes;

diameter of the four-cylinder bore = 3.7 in

length of the stroke = 3.4 in

The clearance volume = 16% = 0.16

The cylindrical volume [tex]V_2 = 0.16 V_1[/tex]

the crankshaft N rotates at a speed of  2400 RPM.

At the beginning of the compression , temperature [tex]T_1[/tex] = 60 F = 519.67 R    

and;

Otto cycle with a pressure =  14.5 lbf/in² = (14.5 × 144 ) lb/ft²

= 2088 lb/ft²

The maximum temperature in the cycle is 5200 R

From the given information; the change in volume is:

[tex]V_1-V_2 = \dfrac{\pi}{4}D^2L[/tex]

[tex]V_1-0.16V_1= \dfrac{\pi}{4}(3.7)^2(3.4)[/tex]

[tex]V_1-0.16V_1= 36.55714291[/tex]

[tex]0.84 V_1 =36.55714291[/tex]

[tex]V_1 =\dfrac{36.55714291}{0.84 }[/tex]

[tex]V_1 =43.52040823 \ in^3 \\ \\ V_1 = 43.52 \ in^3[/tex]

[tex]V_1 = 0.02518 \ ft^3[/tex]

the mass in air ( lb) can be determined by using the formula:

[tex]m = \dfrac{P_1V_1}{RT}[/tex]

where;

R = 53.3533 ft.lbf/lb.R°

[tex]m = \dfrac{2088 \ lb/ft^2 \times 0.02518 \ ft^3}{53.3533 \ ft .lbf/lb.^0R \times 519 .67 ^0 R}[/tex]

m = 0.0018962 lb

From the tables  of ideal gas properties at Temperature 519.67 R

[tex]v_{r1} =158.58[/tex]

[tex]u_1 = 88.62 Btu/lb[/tex]

At state of volume 2; the relative volume can be determined as:

[tex]v_{r2} = v_{r1} \times \dfrac{V_2}{V_1}[/tex]

[tex]v_{r2} = 158.58 \times 0.16[/tex]

[tex]v_{r2} = 25.3728[/tex]

The specific energy [tex]u_2[/tex] at [tex]v_{r2} = 25.3728[/tex] is 184.7 Btu/lb

From the tables of ideal gas properties at maximum Temperature T = 5200 R

[tex]v_{r3} = 0.1828[/tex]

[tex]u_3 = 1098 \ Btu/lb[/tex]

To determine the relative volume at state 4; we have:

[tex]v_{r4} = v_{r3} \times \dfrac{V_1}{V_2}[/tex]

[tex]v_{r4} =0.1828 \times \dfrac{1}{0.16}[/tex]

[tex]v_{r4} =1.1425[/tex]

The specific energy [tex]u_4[/tex] at [tex]v_{r4} =1.1425[/tex] is 591.84 Btu/lb

Now; the net work per cycle can now be calculated as by using the following formula:

[tex]W_{net} = Heat \ supplied - Heat \ rejected[/tex]

[tex]W_{net} = m(u_3-u_2)-m(u_4 - u_1)[/tex]

[tex]W_{net} = m(u_3-u_2- u_4 + u_1)[/tex]

[tex]W_{net} = m(1098-184.7- 591.84 + 88.62)[/tex]

[tex]W_{net} = 0.0018962 \times (1098-184.7- 591.84 + 88.62)[/tex]

[tex]W_{net} = 0.0018962 \times (410.08)[/tex]

[tex]\mathbf{W_{net} = 0.777593696}[/tex]  Btu per cycle

the power developed by the engine, in horsepower. can be calculated as follows;

In the  four-cylinder, four-stroke internal combustion engine; the power developed by the engine can be calculated by using the expression:

[tex]W = 4 \times N' \times W_{net[/tex]

where ;

[tex]N' = \dfrac{2400}{2}[/tex]

N' = 1200 cycles/min

N' = 1200 cycles/60 seconds

N' = 20 cycles/sec

W = 4 × 20 cycles/sec ×  0.777593696

W = 62.20749568 Btu/s

W = 88.0144746 hp

The net work per cycle and the power developed by this combustion engine are 0.7792 Btu and 88.20 hp.

Given the following data:

Diameter of bore = 3.7 inStroke length = 3.4 inClearance volume = 16% = 0.16Speed of  2400 RPM.Initial temperature = 60 F to R = 519.67 R.  Initial pressure =  14.5 [tex]lbf/in^2[/tex] to [tex]lbf/ft^2[/tex] = 2088 [tex]lbf/ft^2[/tex] Maximum temperature = 5200 R.

Note: The cylindrical volume is equal to [tex]0.16V_1[/tex]

How to calculate the net work per cycle.

First of all, we would determine the volume, mass and specific energy as follows:

[tex]V_1-V_2=\frac{\pi D^2L}{4} \\\\V_1-0.16V_1=\frac{3.142 \times 3.7^2 \times 3.4}{4}\\\\0.84V_1=36.56\\\\V_1=\frac{36.56}{0.84} \\\\V_1=43.52\;in^3 \;to \;ft^3 = 0.0252\;ft^3[/tex]

For the mass:

[tex]M=\frac{PV}{RT} \\\\M=\frac{2088 \times 0.0252}{53.3533 \times 519.67} \\\\M=\frac{52.6176}{27726.109411}[/tex]

M = 0.0019 lb.

At a temperature of 519.67 R, the relative volume and specific energy are:

[tex]v_{r1}=158.58\\\\u_1 = 88.62\;Btu/lb[/tex]

For the relative volume at the second state, we have:

[tex]v_{r2}=v_{r1}\times \frac{V_2}{V_1} \\\\v_{r2}=158.58\times 0.16\\\\v_{r2}=25.3728[/tex]

Note: At 25.3728, specific energy ([tex]u_2[/tex]) is 184.7 Btu/lb.

At a maximum temperature of 519.67 R, the relative volume and specific energy are:

[tex]v_{r3}=0.1828\\\\u_3 = 1098\;Btu/lb[/tex]

For the relative volume at state 4, we have:

[tex]v_{r4}=v_{r3}\times \frac{V_1}{V_3} \\\\v_{r4}=0.1828\times \frac{1}{0.16}\\\\v_{r4}=1.1425[/tex]

Note: At 1.1425, specific energy ([tex]u_4[/tex]) is 591.84 Btu/lb.

Now, we can calculate the net work per cycle by using this following formula:

[tex]W=Heat\;supplied -Heat\rejected\\\\W=m(u_3-u_2)-m(u_4-u_1)\\\\W=0.0019(1098-184.7)-0.0019(591.84-88.62)\\\\W=1.73527-0.956118[/tex]

W = 0.7792 Btu.

How to calculate the power developed.

In a four-cylinder, four-stroke internal combustion engine, power is given by this formula:

[tex]W=4N'W_{net}[/tex]

But;

[tex]N'=\frac{N}{2 \times 60} \\\\N'=\frac{2400}{120} \\\\N'=20\;cycle/sec[/tex]

Substituting the given parameters into the formula, we have;

[tex]W=4 \times 20 \times 0.7792[/tex]

W = 62.336 Btu/sec.

In horsepower:

W = 88.20 hp.

Read more on net work here: https://brainly.com/question/10119215

A two-dimensional flow field described by
V = (2x^2y + x)1 + (2xy^2 + y + 1 )j
where the velocity is in m/s when x and y are in meters. Determine the angular rotation of a fluid element located at x 0.5 m, y 1.0 m.

Answers

Answer:

the answer is

Explanation:

 We now focus on purely two-dimensional flows, in which the velocity takes the form u(x, y, t) = u(x, y, t)i + v(x, y, t)j. (2.1) With the velocity given by (2.1), the vorticity takes the form ω = ∇ × u = ∂v ∂x − ∂u ∂y k. (2.2) We assume throughout that the flow is irrotational, i.e. that ∇ × u ≡ 0 and hence ∂v ∂x − ∂u ∂y = 0. (2.3) We have already shown in Section 1 that this condition implies the existence of a velocity potential φ such that u ≡ ∇φ, that is u = ∂φ ∂x, v = ∂φ ∂y . (2.4) We also recall the definition of φ as φ(x, y, t) = φ0(t) + Z x 0 u · dx = φ0(t) + Z x 0 (u dx + v dy), (2.5) where the scalar function φ0(t) is arbitrary, and the value of φ(x, y, t) is independent of the integration path chosen to join the origin 0 to the point x = (x, y). This fact is even easier to establish when we restrict our attention to two dimensions. If we consider two alternative paths, whose union forms a simple closed contour C in the (x, y)-plane, Green’s Theorem implies that  

Question 44
What should you do if you encounter a fishing boat while out in your vessel?
A
Make a large wake nearby.
B
Avoid making a large wake.
с
Pass on the side with the fishing lines.
D
Pass by close to the anglers.
Submit Answer

Answers

Answer:

The answer is B. Avoid making a large wake.

Explanation:

When passing a fishing boat it is important to maintain a minimal wake due to the dangers a large wake could pose to the fishing boat you are passing, it is part of maintaining safety on the water.

You can not pass on the sides with the fishing lines also, and you are supposed to communicate to the fishing boat before taking the appropriate action.

An air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2. At the beginning of the compression process, air is at 95 kPa and 27 degree Celsius.
(a) Determine the temperature after the heat-addition process.
(b) Determine the thermal efficiency.
(c) Determine the mean effective pressure. Solve the problem in the constant heat supposition.

Answers

Answer:

a) T₃ = 1818.8 K

b) η = 0.614 = 61.4%

c) MEP = 660.4 kPa

Explanation:

a) According to Table A-2 of The ideal gas specific heat of gases, the properties of air are as following:

At 300K

The specific heat capacity at constant pressure = [tex]c_{p}[/tex] = 1.005 kJ/kg.K,

The specific heat capacity at constant volume = [tex]c_{v}[/tex] = 0.718 kJ/kg.K

Gas constant R for air = 0.2870 kJ/kg·K

Ratio of specific heat  k = 1.4

Isentropic Compression :

[tex]T_{2}[/tex] =  [tex]T_{1}[/tex]  [tex](v1/v2)^{k-1}[/tex]

   = 300K ([tex]16^{0.4}[/tex])

[tex]T_{2}[/tex]    = 909.4K

P = Constant heat Addition:

[tex]P_{3}v_{3} / T_{3} = P_{2} v_{2} /T_{2}[/tex]

[tex]T_{3}=v_{3}/v_{2}T_{2}[/tex]

2[tex]T_{2}[/tex] = 2(909.4K)

      = 1818.8 K

b) [tex]q_{in}[/tex] = [tex]h_{3}-h_{2}[/tex]

         =  [tex]c_{p}[/tex] ([tex]T_{3}[/tex] - [tex]T_{2}[/tex])

         = (1.005 kJ/kg.K)(1818.8 - 909.4)K

         = 913.9 kJ/kg

Isentropic Expansion:

[tex]T_{4}[/tex] =  [tex]T_{3}[/tex]  [tex](v3/v4)^{k-1}[/tex]

    =  [tex]T_{3}[/tex] [tex](2v_{2} /v_{4} )^{k-1}[/tex]

    = 1818.8 K (2 / 16[tex])^{0.4}[/tex]

    = 791.7K

v = Constant heat rejection

[tex]q_{out}[/tex] = μ₄ - μ₁

      = [tex]c_{v} ( T_{4} - T_{1} )[/tex]

      = 0.718 kJ/kg.K (791.7 - 300)K

      = 353 kJ/kg

 η[tex]_{th}[/tex] = 1 - [tex]q_{out}[/tex] / [tex]q_{in}[/tex]

       = 1 - 353 kJ/kg / 913.9 kJ/kg

       = 1 - 0.38625670

       = 0.6137

       = 0.614

      = 61.4%

c) [tex]w_{net}._{out}[/tex] = [tex]q_{in}[/tex] - [tex]q_{out}[/tex]

                = 913.9 kJ/kg - 353 kJ/kg

                = 560.9 kJ/kg

[tex]v_{1} = RT_{1} /P_{1}[/tex]

   = (0.287 kPa.m³/kg/K)*(300 K) / 95 kPa

   =  86.1 / 95

   = 0.9063 m³/kg = v[tex]_{max}[/tex]

[tex]v_{min} =v_{2} = v_{max} /r[/tex]

Mean Effective Pressure = MEP =   [tex]w_{net,out}/v_{1} -v_{2}[/tex]

                                                    = [tex]w_{net,out}/v_{1}(1-1)/r[/tex]

                                                    = 560.9 kJ/kg / (0.9063 m³/kg)*(1-1)/16

                                                    = (560.9 kJ / 0.8493m³) (kPa.m³/kJ)

                                                    = 660.426 kPa

Mean Effective Pressure = MEP = 660.4 kPa

The temperature after the addition process is 1724.8k, the thermal efficiency of the engine is 56.3% and the mean effective pressure is 65.87kPa

Assumptions made:

The air standard assumptions are madeThe kinetic and potential energy changes are negligibleThe air in the system is an ideal gas with variable or different specific heat capacity.

a) The temperature after the addition process:

Considering the process 1-2, Isentropic expansion

at

[tex]T_1=300k\\u_1=214.07kJ/kg\\v_o_1=621.3\\v_o_2=\frac{v_2}{v_1} *v_o_1[C.R=16]=v_2/v_1\\v_o_2=(v_2/v_1)v_o_1=1/16*621.2=38.825[/tex]

From using this value, v[tex]_o_2[/tex]=38.825, solve for state point 2;

[tex]T_2=862.4k\\h_2=890.9kJ/kg[/tex]

Considering the process 2-3 (state of constant heat addition)

[tex]\frac{p_3v_3}{t_3}=\frac{p_2v_2}{t_2} \\\\T_3=\frac{P_3V_3T_2}{V_2} \\T_3=(\frac{V_3}{V_2}) T_2\\\frac{v_3}{v_2}=2\\T_3=2(862.4)=1724.8k\\[/tex]

NB: p[tex]_3[/tex]≈p[tex]_2[/tex]

b) The thermal efficiency of the engine is

Q[tex]_i_n[/tex]=h[tex]_3-h_2[/tex] = 1910.6-890.9=1019.7kJ/kg

Considering process 3-4,

[tex]v_o_4=\frac{v_A}{v_2}\\ v_o_3 =\frac{V_a}{V_2}*\frac{v_2}{v_3}\\v_o_3=\frac{16}{2}*4.546\\v_o_3=36.37;v_4=659.7kJ/kg[/tex]

Q[tex]_o_u_t=v_4-u_1=659.7-214.07=445.3kJ/kg[/tex]

nth = [tex]1-\frac{Q_o_u_t}{Q_i_n}=1-\frac{445.63}{1019.7}=0.5629*100=56.3%[/tex]%

The thermal efficiency is 56.3%

W[tex]_n_e_t[/tex]=[tex]Q_i_n-Q_o_u_t=574.07kJ/kg[/tex]

[tex]v_1=\frac{RT_1}{p_1}=\frac{0.287*300}{95}=0.906m^3/kg\\v_2=v_1/16=0.05662m^3/kg\\[/tex]

Therefore, the mean effective pressure of the system engine is

[tex]\frac{W_n_e_t}{v_1-v_2}=675.87kPa[/tex]

The mean effective pressure is 65.87kPa as calculated above

Learn more about mean effective pressure

https://brainly.com/question/19309495

A steel alloy is known to contain 93.8 wt% Fe, 6.0 wt% Ni, and 0.2 wt% C. Assume that there are no alterations in the positions of other phase boundaries with the addition of Ni. (a) What is the approximate eutectoid temperature of this alloy

Answers

Answer:

650°C  or 1,200°F

Explanation:

Data provided in the question

Steel alloy contains 93.8 wt% Fe, 6.0 wt% Ni, and 0.2 wt% C

Plus we also assume that there are no changes in the boundaries of postions who have other phases but there is an addition of Ni.

Based on the above information, the approximate eutectoid temperature of this alloy for 6.1 wt% is 650°C  or 1,200°F

A ball bearing has been selected with the bore size specified in the catalog as 35.000 mm to 35.020 mm. Specify appropriate minimum and maximum shaft diameters to provide a locational interference fit.

Answers

Answer:

A ball bearing has been selected with the bore size specified in the catalog as 35.000 mm to 35.020 mm. Specify.... ... has been selected with the bore size specified in the catalog as 35.000 mm to 35.020 mm. Specify appropriate minimum and maximum shaft diameters to provide a locational interference fit.

Explanation:

A student proposes a complex design for a steam power plant with a high efficiency. The power plant has several turbines, pumps, and feedwater heaters. Steam enters the first turbine at T1 (the highest temperature of the cycle) and saturated liquid exits the condenser at T7 (the lowest temperature of the cycle). The rate of heat transfer to the boiler (the only energy input to the system)is Qb. Determine the maximum possible efficiency and power output for this complex steam power plant design.

Answers

Answer:

Hello your question lacks some values here are the values

T1 = 500⁰c,  T7 = 70⁰c, Qb = 240000 kj/s

answer : A)  56%

               B) 134400 kw ≈  134.4 Mw

Explanation:

Given values

T1 (tmax) = 500⁰c = 773 k

T7(tmin) = 70⁰c = 343 k

Qb = 240000 kj/s

A) Determine the maximum possible efficiency

[tex]n_{max}[/tex] = 1 - [tex]\frac{tmin}{tmax}[/tex] * 100

       = 1 - ( 343 / 773 )

       = 1 - 0.44 = 0.5562 * 100 ≈ 56%

B) Determine the power output for this complex steam power plant design

[tex]p_{out}[/tex] = Qb * max efficiency

      = 240000 kj/s * 56%

      = 240000 * 0.56 = 134400 kw ≈  134.4 Mw

Air enters a compressor operating at steady state at 176.4 lbf/in.^2, 260°F with a volumetric flow rate of 424 ft^3/min and exits at 15.4 lbf/in.^2, 80°F. Heat transfer occurs at a rate of 6800 Btu/h from the compressor to its surroundings. Assuming the ideal gas model for air and neglecting kinetic and potential energy effects, determine the power input, in hp

Answers

Answer:

[tex]W_s =[/tex] 283.181 hp

Explanation:

Given that:

Air enters a compressor operating at steady state at a pressure [tex]P_1[/tex] =  176.4 lbf/in.^2  and Temperature [tex]T_1[/tex] at 260°F

Volumetric flow rate V = 424 ft^3/min

Air exits at a pressure [tex]P_2[/tex]  = 15.4 lbf/in.^2 and Temperature [tex]T_2[/tex] at 80°F.

Heat transfer occurs at a rate of 6800 Btu/h from the compressor to its surroundings; since heat is released to the surrounding; then:

[tex]Q_{cv}[/tex] = -6800 Btu/h  = - 1.9924 kW

Using the steady  state  energy in the process;

[tex]h_2 - h_1 + g(z_2-z_1)+ \dfrac{1}{2}(v^2_2-v_1^2) = \dfrac{Q_{cv}}{m}- \dfrac{W_s}{m}[/tex]

where;

[tex]g(z_2-z_1) =0[/tex]  and  [tex]\dfrac{1}{2}(v^2_2-v_1^2) = 0[/tex]

Then; we have :

[tex]h_2 - h_1 = \dfrac{Q_{cv}}{m}- \dfrac{W_s}{m}[/tex]

[tex]h_2 - h_1 = \dfrac{Q_{cv} - W_s}{m}[/tex]

[tex]{m}(h_2 - h_1) ={Q_{cv} - W_s}[/tex]

[tex]W_s ={Q_{cv} + {m}(h_2 - h_1)[/tex] ----- (1)

Using the relation of Ideal gas equation;

P₁V₁ = mRT₁

Pressure [tex]P_1[/tex] =  176.4 lbf/in.^2   = ( 176.4 ×  6894.76 ) N/m² = 1216235.664 N/m²

Volumetric flow rate V = 424 ft^3/min = (424 ×  0.0004719) m³  /sec

= 0.2000856 m³  /sec

Temperature = 260°F = (260°F − 32) × 5/9 + 273.15 = 399.817 K

Gas constant R=287 J/kg K

Then;

1216235.664 N/m² × 0.2000856 m³  /sec = m × 287 J/kg K × 399.817 K

[tex]m = \dfrac { 1216235.664 N/m^2 \times 0.2000856 m^3 /sec } {287 J/kg K \times 399.817 K }[/tex]

m = 2.121 kg/sec

The change in enthalpy:

[tex]m(h_1-h_2) = m * C_p * \Delta T= m* C_p * ( T_1 -T_2)[/tex]

[tex]= 2.121* 1.005* ( 399.817 -299.817)[/tex]

= 213.1605 kW

From (1)

[tex]W_s ={Q_{cv} + {m}(h_2 - h_1)[/tex]

[tex]W_s =[/tex]  - 1.9924 kW + 213.1605 kW

[tex]W_s =[/tex] 211.1681  kW

[tex]W_s =[/tex] 283.181 hp

The power input is [tex]W_s =[/tex] 283.181 hp

Water vapor at 10bar, 360°C enters a turbine operatingat steady state with a volumetric flow rate of 0.8m3/s and expandsadiabatically to an exit state of 1 bar, 160°C. Kinetic and potentialenergy effects are negligible. Determine for the turbine (a) the powerdeveloped, in kW, (b) the rate of entropy production, in kW/K, and (c)the isentropic turbine efficiency

Answers

Answer:

A) W' = 178.568 KW

B) ΔS = 2.6367 KW/k

C) η = 0.3

Explanation:

We are given;

Temperature at state 1;T1 = 360 °C

Temperature at state 2;T2 = 160 °C

Pressure at state 1;P1 = 10 bar

Pressure at State 2;P2 = 1 bar

Volumetric flow rate;V' = 0.8 m³/s

A) From table A-6 attached and by interpolation at temperature of 360°C and Pressure of 10 bar, we have;

Specific volume;v1 = 0.287322 m³/kg

Mass flow rate of water vapour at turbine is defined by the formula;

m' = V'/v1

So; m' = 0.8/0.287322

m' = 2.784 kg/s

Now, From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific enthalpy;h1 = 3179.46 KJ/kg

Now, From table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific enthalpy;h2 = 3115.32 KJ/kg

Now, since stray heat transfer is neglected at turbine, we have;

-W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2 - h1)

Plugging in relevant values, the work of the turbine is;

W' = -2.784(3115.32 - 3179.46)

W' = 178.568 KW

B) Still From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific entropy: s1 = 7.3357 KJ/Kg.k

Still from table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific entropy; s2 = 8.2828 KJ/kg.k

The amount of entropy produced is defined by;

ΔS = m'(s2 - s1)

ΔS = 2.784(8.2828 - 7.3357)

ΔS = 2.6367 KW/k

C) Still from table A-6 attached and by interpolation at state 2 with s2 = s2s = 8.2828 KJ/kg.k and Pressure of 1 bar, we have;

h2s = 2966.14 KJ/Kg

Energy equation for turbine at ideal process is defined as;

Q' - W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Again, Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2s - h1)

W' = -2.784(2966.14 - 3179.46)

W' = 593.88 KW

the isentropic turbine efficiency is defined as;

η = W_actual/W_ideal

η = 178.568/593.88 = 0.3

The shaft is made of A992 steel. It has a diameter of 1 in. and is supported by bearings at A and D, which allows free rotation. For A992 steel, G = 11 × 103 ksi. (1) Determine the angle of twist of B with respect to D.(2) Determine the angle of twist of C with respect to D.Answer unit: degree or radians, two decimal places

Answers

Answer:

the angle of twist of B with respect to D is -1.15°

the angle of twist of C with respect to D is 1.15°

Explanation:

The missing diagram that is supposed to be added to this image is attached in the file below.

From the given information:

The shaft is made of A992 steel. It has a diameter of 1 in and is supported by bearing at A and D.

For the Modulus of Rigidity  G = 11 × 10³ Ksi =  11 × 10⁶ lb/in²

The objective are :

1) To determine the angle of twist of B with respect to D

Considering the Polar moment of Inertia at the shaft [tex]J\tau[/tex]

shaft [tex]J\tau[/tex] = [tex]\dfrac{\pi}{2}r^4[/tex]

where ;

r = 1 in /2

r = 0.5 in

shaft [tex]J \tau[/tex] = [tex]\dfrac{\pi}{2} \times 0.5^4[/tex]

shaft [tex]J\tau[/tex] = 0.098218

Now; the angle of twist at  B with respect to D  is calculated by using the expression

[tex]\phi_{B/D} = \sum \dfrac{TL}{JG}[/tex]

[tex]\phi_{B/D} = \dfrac{T_{CD}L_{CD}}{JG}+\dfrac{T_{BC}L_{BC}}{JG}[/tex]

where;

[tex]T_{CD} \ \ and \ \ L_{CD}[/tex] are the torques at segments CD and length at segments CD

[tex]{T_{BC} \ \ and \ \ L_{BC}}[/tex] are the torques at segments BC and length at segments BC

Also ; from the diagram; the following values where obtained:

[tex]L_{BC}}[/tex] = 2.5  in

[tex]J\tau[/tex] = 0.098218

G =  11 × 10⁶ lb/in²

[tex]T_{BC[/tex] = -60 lb.ft

[tex]T_{CD[/tex] = 0 lb.ft

[tex]L_{CD[/tex] = 5.5 in

[tex]\phi_{B/D} = 0+ \dfrac{[(-60 \times 12 )] (2.5 \times 12 )}{ (0.9818)(11 \times 10^6)}[/tex]

[tex]\phi_{B/D} = \dfrac{[(-720 )] (30 )}{1079980}[/tex]

[tex]\phi_{B/D} = \dfrac{-21600}{1079980}[/tex]

[tex]\phi_{B/D} =[/tex] − 0.02 rad

To degree; we have

[tex]\phi_{B/D} = -0.02 \times \dfrac{180}{\pi}[/tex]

[tex]\mathbf{\phi_{B/D} = -1.15^0}[/tex]

Since we have a negative sign; that typically illustrates that the angle of twist is in an anti- clockwise direction

Thus; the angle of twist of B with respect to D is 1.15°

(2) Determine the angle of twist of C with respect to D.Answer unit: degree or radians, two decimal places

For  the angle of twist of C with respect to D; we have:

[tex]\phi_{C/D} = \dfrac{T_{CD}L_{CD}}{JG}+\dfrac{T_{BC}L_{BC}}{JG}[/tex]

[tex]\phi_{C/D} = 0+\dfrac{T_{BC}L_{BC}}{JG}[/tex]

[tex]\phi_{B/D} = 0+ \dfrac{[(60 \times 12 )] (2.5 \times 12 )}{ (0.9818)(11 \times 10^6)}[/tex]

[tex]\phi_{C/D} = \dfrac{21600}{1079980}[/tex]

[tex]\phi_{C/D} =[/tex] 0.02 rad

To degree; we have

[tex]\phi_{C/D} = 0.02 \times \dfrac{180}{\pi}[/tex]

[tex]\mathbf{\phi_{C/D} = 1.15^0}[/tex]

If the resistance reading on a DMM'S meter face is to 22.5 ohms in the range selector switch is set to R X 100 range, what is the actual measure resistance of the circuit?

Answers

Answer:

The answer is 2.25 kΩ

Explanation:

Solution

Given that:

The resistance reading on a DMM'S meter face = 22.5 ohms

The range selector switch = R * 100 range,

We now have to find the actual measure resistance of the circuit which is given below:

The actual measured resistance of the circuit is=R * 100

= 22.5 * 100

=2.25 kΩ

Hence the measured resistance of the circuit is 2.25 kΩ

How old are you? answer this question plz lol I will mark someone as brainliest

Answers

Answer:

100000000000000000000000

i am nine hundred years old

If a sky diver decides to jump off a jet in Arkansas
with the intention of floating through Tennessee to
North Carolina, then completing his journey in a
likely manner back to Arkansas by drifting North
from his last point. What state would be the third t
be drifted over and what is the estimated distance
between the zone and then drop point?​

Answers

Answer:

The answer to this question can be defined as follows:

Explanation:

The sky driver began his sky journey from Arkansas, drove across the Tennessee River then landed in North Carolina. He returned to both the north in the very same direction. He began with NC, traveled through Tennessee, eventually lands in Arkansas. But North Carolina has been in the third state on which skydiver was traveling over, and It's also more than 700 miles from Arkansas to the NC.

The liquid-phase reaction A + B → C follows an elementary rate law and is carried out isothermally in a flow system. The concentrations of A and B feed streams are 2 M before mixing. The volumetric flow rate of each stream is 5 dm3 /min and the entering temperature is 300 K. The streams are mixed immediately before entering. Two reactors are available: One is a gray 200.0 dm3 CSTR that can be heated to 77°C or cooled to 0°C, and the other is a white 800.0 dm3 PFR operated at 300 K that cannot be heated or cooled but can be painted red or black. (Note: k = 0.07 dm3 /mol*min at 300 K and E = 20 kcal/mol.) How long would it take to achieve 90% conversion in a 200 dm3 batch reactor with CA ° = CB ° = 1 ???? after mixing at a temperature of 70°C?

Answers

Answer:

1.887 minutes

Explanation:

We are given k = 0.07 dm3 /mol*min at 300 K and E = 20 kcal/mol = 20000 cal/mol

To solve this, first of all let's calculate the rate constant(k);

For this question, The formula is;

K(t) = k(300K) × exp[(E/R)((1/300) - (1/T2))]

R is gas constant = 1.987 cal/mol.K

For temperature of 70°C which is = 70 + 273K = 343K, we have;

K(343) = 0.07 × exp[(20000/1.987)((1/300) - (1/343))]

K(343) = 4.7 dm³/mol.min

The design equation is;

dX/dt = -(rA/C_Ao) = K•(C_Ao)²•(1 - X)²/(C_Ao) = (KC_Ao)(1 - X)²

Since there is no change in volume by cause of the state at which the reaction is carried out, that is liquid. Thus, integrating and solving for time for a 90% conversion we obtain;

(0.9,0)∫dX/(1 - X)².dX = (KC_Ao)((t, 0)∫dt

So, we'll get;

0.9/(1 - 0.9) = 4.77 × 1 × t

t = 9/4.77

t = 1.887 minutes

In the fully developed region of flow in a circular pipe, does the velocity profile change in the flow direction?

Answers

Answer:

No, the velocity profile does not change in the flow direction.

Explanation:

In a fluid flow in a circular pipe, the boundary layer thickness increases in the direction of flow, until it reaches the center of the pipe, and fill the whole pipe. If the density, and other properties of the fluid does not change either by heating or cooling of the pipe, then the velocity profile downstream becomes fully developed, and constant, and does not change in the direction of flow.

A piston cylinder device contains 5 kg of Refrigerant 134a at 600 kPa and 80 C. The refrigerant is now cooled at constant pressure until it reaches a liquid-vapor mixture state with a quality of 0.3. How much heat was extracted in the process?

Answers

Answer:

The answer is 920 kJ

Explanation:

Solution

Given that:

Mass = 5kg

Pressure = 600 kPa

Temperature = 80° C

Liquid vapor mixture state (quality) = 0.3

Now we find out the amount of heat extracted in the process

Thus

Properties of  RI34a at:

P₁ = 600 kPa

T₁ = 80° C

h₁ = 320 kJ/kg

So,

P₁ = P₂ = 600 kPa

X₂ =0.3

h₂ = 136 kJ/kg

Now

The heat removed Q = m(h₁ -h₂)

Q = 5 (320 - 136)

Q= 5 (184)

Q = 920 kJ

Therefore the amount of heat extracted in the process is 920 kJ

Air flows along a horizontal, curved streamline with a 20 foot radius with a speed of 100 ft/s. Determine the pressure gradient normal to the streamline.

Answers

Answer:

- 1.19 lb/ft^3

Explanation:

You are given the following information;

Radius r = 20 ft

Speed V = 100 ft/s

You should use Bernoulli equation pertaining to streamline. That is, normal to streamline.

The pressure gradient = dp/dn

Where air density rho = 0.00238 slugs per cubic foot.

Please find the attached files for the solution and diagram.

For laminar flow over a hot flat plate, the local heat transfer coefficient decreases with distance because (select all that are correct

Answers

Answer:

hello the answer options are missing here are the options

A)The thickness of the heated region near the plate is increasing

B)The velocities near the plates are increasing

C)The fluid temperature near the plate are increasing

ANSWER : all of the above

Explanation:

Laminar flow  is the flow of a type of fluid across the surface of an object following regular paths and it is unlike a turbulent flow which flows in irregular paths (encountering fluctuations)

For laminar flow over a hot flat plate, the local heat transfer coefficient decreases with distance because :

The thickness of the heated region near the plate is increasingThe velocities near the plates are increasingThe fluid temperature near the plate are increasing

Suppose a student carrying a flu virus returns to an isolated college campus of 9000 students. Determine a differential equation governing the number of students x(t) who have contracted the flu if the rate at which the disease spreads is proportional to the number of interactions between students with the flu and students who have not yet contracted it. (Usek > 0for the constant of proportionality and x forx(t).)

Answers

Answer:

dx/dt = kx(9000-x) where k > 0

Explanation:

Number of students in the campus, n = 9000

Number of students who have contracted the flu = x(t) = x

Number of students who have bot yet contracted the flu = 9000 - x

Number of Interactions between those that have contracted the flu and those that are yet to contract it = x(9000 - x)

The rate of spread of the disease = dx/dt

Note: the rate at which the disease spread is proportional to the number of interactions between those that have contracted the flu and those that have not contracted it.

[tex]\frac{dx}{dt} \alpha [x(9000 -x)]\\[/tex]

Introducing a constant of proportionality, k:

dx/dt = kx(9000-x) where k > 0

13- Convert the following numbers to the indicated bases. List all intermediate steps.
a- (36459080)10 to octal
b- (20960032010 to hexadecimal
c- (2423233303003040)s to base
25 36459080/8= 4557385 0/8 209600320/16=13100020 + 0/16 (2423233303003040)5 (36459080)10 =( 18 (209600320)10=( 1)16 (2423233303003040)5=( )125

Answers

Answer:

Following are the conversion to this question:

Explanation:

In point (a):

[tex]\to \frac{36459080}{8} = 4557385 + \ \ \ \ \ \ \ \ \ \frac{0}{8}\\\\\to \frac{4557385}{8} = 569673 + \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\\to \frac{569673}{8} = 71209+ \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\\to \frac{71209}{8}=8901+\ \ \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\\to \frac{8901}{8}=1112+ \ \ \ \ \ \ \ \ \ \ \ \ \frac{5}{8}\\\\\to \frac{1112}{8}=139+ \ \ \ \ \ \ \ \ \ \ \frac{0}{8}\\\\\to \frac{139}{8}=17+ \ \ \ \ \ \ \ \ \ \ \frac{3}{8}\\\\\to \frac{17}{8}=2+ \ \ \ \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\[/tex]

[tex]\to \frac{2}{8}=0+ \ \ \ \ \ \ \ \ \ \frac{2}{8}\\\\ \bold{(36459080)_{10}=(213051110)_8}[/tex]

In point (b):

[tex]\to \frac{20960032010}{16} = 13100020+ \ \ \ \ \ \ \ \ \ \frac{0}{16}\\\\\to \frac{13100020}{16} = 818751+ \ \ \ \ \ \ \ \ \ \frac{4}{16}\\\\\to \frac{818751}{16} = 51171+ \ \ \ \ \ \ \ \ \ \frac{15}{16}\\\\\to \frac{51171}{16}=3198+\ \ \ \ \ \ \ \ \ \ \ \frac{3}{16}\\\\\to \frac{3198}{16}=199+ \ \ \ \ \ \ \ \ \ \ \ \ \frac{14}{1}\\\\\to \frac{199}{16}=12+ \ \ \ \ \ \ \ \ \ \ \frac{7}{16}\\\\\to \frac{12}{16}=0+ \ \ \ \ \ \ \ \ \ \ \frac{12}{16}\\\\ \bold{(20960032010)_{10}=(C7E3F40)_{16}}[/tex]

In point (c):

[tex]\to (2423233303003040)_s=(88757078520)_{10}\\\\\to \frac{88757078520}{25}= 3550283140+ \ \ \ \ \ \ \ \ \ \frac{20}{25}\\\\ \to \frac{3550283140}{25}= 142011325+ \ \ \ \ \ \ \ \ \ \frac{15}{25}\\\\\to \frac{142011325}{25}= 5680453+ \ \ \ \ \ \ \ \ \ \frac{0}{25}\\\\\to \frac{5680453}{25}= 227218+ \ \ \ \ \ \ \ \ \ \frac{3}{25}\\\\\to \frac{227218}{25}= 9088+ \ \ \ \ \ \ \ \ \ \frac{18}{25}\\\\\to \frac{9088}{25}= 363+ \ \ \ \ \ \ \ \ \ \frac{13}{25}\\\\[/tex]

[tex]\to \frac{363}{25}= 14+ \ \ \ \ \ \ \ \ \ \frac{13}{25}\\\\\to \frac{14}{25}= 0+ \ \ \ \ \ \ \ \ \ \frac{14}{25}\\\\\bold{(2423233303003040)_s=(EDDI30FK)_{25}}[/tex]

Symbols of Base 25 are as follows:

[tex]0, 1, 2, 3,4,5,6,7,8,9,A,B,C,D,E,F,G,H,I,J,K,L,M,N, \ and \ O[/tex]

Refrigerant-134a enters the condenser of a residential heat pump at 800 kPa and 50°C at a rate of 0.02 kg/s and leaves at 750 kPa subcooled by 3°C. The refrigerant enters the compressor at 200 kPa superheated by 4°C. Determine the isentropic efficiency of the compressor, the rate of heat supplied to the room, COP of the Heat Pump and the rate of heat supplied to this room if the heat pump operated on an ideal vapor compression cycle between pressure limits of 200 and 800 kpa

Answers

Explanation:

The value of enthalpy and entropy at state 1 will be determined according to the given pressure and temperature as follows using interpolation from A-13 is as follows.

[tex]h_{1}[/tex] = 247.88 kJ/kg,    [tex]S_{1}[/tex] = 0.9579 kJ/kg K

At state 2, isentropic enthalpy will be determined from the condition [tex]S_{2} = S_{1}[/tex] and given pressure at 2 with data from A-13 using interpolation is:

    [tex]h_{2s}[/tex] = 279.45 kJ/kg

We will calculate actual enthalpy at state 2 using given pressure and temperature from A-13 as follows.

        [tex]h_{2}[/tex] = 286.71 kJ/kg

Hence, isentropic compressor efficiency will be calculated using standard relation as:

      [tex]\eta_{c} = \frac{h_{2s} - h_{1}}{h_{2} - h_{1}}[/tex]  

                 = [tex]\frac{279.45 - 247.88}{286.71 - 247.88}[/tex]

                 = 0.813

Now, at state 3 enthaply is determined by temperature at state 3, that is, [tex]26^{o}C[/tex] for given pressure as per saturated liquid approximation and data from A-11.

   [tex]h_{3}[/tex] = 87.83 kJ/Kg

Using energy balance in 2-3, the rate of heat supplied to the heated room is as follows.

      [tex]Q_{H} = m(h_{2} - h_{3})[/tex]

                 = 0.022 (286.71 - 87.83) kW

                 = 4.38 kW

Now, COP will be calculated using power that is expressed through energy balance in 1-2 as follows.

     COP = [tex]\frac{Q_{H}}{W}[/tex]

              = [tex]\frac{Q_{H}}{m(h_{2} - h_{1})}[/tex]

              = [tex]\frac{4.38}{0.022 (286.71 - 246.88)}[/tex]

              = 5.13

In an ideal vapour-compression cycle, the enthalpy and entropy at state 1 will be obtained from given pressure and state with data from A-12:

  [tex]h_{1}[/tex] = 244.5 kJ/kg

  [tex]S_{1}[/tex] = 0.93788 kJ/kg K

  [tex]h_{2}[/tex] = 273.71 kJ/kg

At state 3, enthalpy will be determined from given pressure and state with data from A-12 as follows.

  [tex]h_{3}[/tex] = 95.48 kJ/kg

Hence, using energy balance in 2-3 the rate of heat supplied will be calculated as follows.

   [tex]Q_{H} = m(h_{2} - h_{3})[/tex]

              = 0.022 (273.31 - 95.48) kW

              = 3.91 kW

The power input which is expressed through energy balance in 1-2 will be used to determine COP as follows.

    COP = [tex]\frac{Q_{H}}{W}[/tex]

             = [tex]\frac{Q_{H}}{m (h_{2} - h_{1})}[/tex]

             = [tex]\frac{3.91}{0.022(273.31 - 244.5)}[/tex]

             = 6.17

A 30-g bullet is fired with a horizontal velocity of 450 m/s and becomes embedded in block B which has a mass of 3 kg. After the impact, block B slides on a 30-kg carrier C until it impacts the end of the carrier.Knowing the impact between B and C is perfectly plastic determine (a) velocity of the bullet and B after the first impact, (b) the final velocity of the carrier
(Distance between C and B is 0.5 m)

Answers

Answer:

a.) 4.46 m/s

b.) 0.41 m/s

Explanation:

a) Given that the mass M of the bullet = 30g = 30/1000 = 0.03 kg

Velocity V = 450 m/s

From conservative of linear momentum,

Sum of momentum before impact = Sum of momentum after impact

0.03 × 450 = (0.03 + 3 ) × v₂

v₂ = 13.5/3.03 = 4.4554 m/s

Therefore the velocity of the bullet and B after the first impact = 4.46 m/s approximately

(b) To calculate the velocity of the carrier, you will consider the conservation of linear momentum again.

(m₁ + m₂)×v₂  = (m₁ + m₂ + m₃)×v₃

Where:

Mass of the carrier m₃ = 30 kg

Substitute all the parameters into the formula

3.03×4.4554 = (3.03 +30) × v₃

v₃ = 13.5 / 33.03 = 0.40872 m/s

Therefore the velocity of the carrier is 0.41 m/s approximately.

For the following peak or rms values of some important sine waves, calculate the corresponding other value:
(a) 117 V rms, a household-power voltage in North America
(b) 33.9 V peak, a somewhat common peak voltage in rectifier circuits
(c) 220 V rms, a household-power voltage in parts of Europe
(d) 220 kV rms, a high-voltage transmission-line voltage in North America

Answers

Answer:

A) V_peak ≈ 165 V

B) V_rms ≈ 24 V

C) V_peak ≈ 311 V

D) V_peak ≈ 311 KV

Explanation:

Formula for RMS value is given as;

V_rms = V_peak/√2

Formula for peak value is given as;

V_peak = V_rms x √2

A) At RMS value of 117 V, peak value would be;

V_peak = 117 x √2

V_peak = 165.46 V

V_peak ≈ 165 V

B) At peak value of 33.9 V, RMS value would be;

V_rms = 33.9/√2

V_rms = 23.97 V

V_rms ≈ 24 V

C) At RMS value of 220 V, peak value is;

V_peak = 220 × √2

V_peak = 311.13 V

V_peak ≈ 311 V

D) At RMS value of 220 KV, peak value is;

V_peak = 220 × √2

V_peak = 311.13 KV

V_peak ≈ 311 KV

Air at 80 °F is to flow through a 72 ft diameter pipe at an average velocity of 34 ft/s . What diameter pipe should be used to move water at 60 °F and average velocity of 71 ft/s if Reynolds number similarity is enforced? The kinematic viscosity of air at 80 °F is 1.69E-4 ft^2/s and the kinematic viscosity of water at 60 °F is 1.21E-5 ft^2/s. Round your answer (in ft) to TWO decimal places.

Answers

Answer:

2.47  ft

Explanation:

Given that:

The initial temperature of air = 80°F

Diameter of the pipe = 72 ft

average velocity [tex]v_{air}[/tex] of the air flow through the pipe =  34 ft/s

The objective is to determine the diameter of the  pipe to  be used to move water at:

At a temperature = 60°F   &

An average velocity [tex]v_{water}[/tex] of 71 ft/s

Assuming Reynolds number similarity is enforced;

where :

kinematic viscosity (V_air) of air at 80 °F  (V_air)  = 1.69 × 10⁻⁴ ft²/s

kinematic viscosity of water  at 60 °F (V_water) = 1.21 × 10⁻⁵ ft²/s

The diameter of the pipe can be calculated by using the expression:

[tex]D_{water} = \dfrac{V_{water}}{V_{air}}*\dfrac{v_{air}}{v_{water}}* D_{air}[/tex]

[tex]D_{water} = \dfrac{1.21*10^{-5} \ ft^2/s}{1.69*10^{-4} \ ft^2/s}*\dfrac{34 \ ft/s}{71 \ ft/s}* 72 \ ft[/tex]

[tex]D_{water} =[/tex] 2.4686  ft

[tex]D_{water} =[/tex] 2.47 ft   ( to two decimal places)

Thus; diameter pipe to be use to move water at the given temperature and average velocity is 2.47 ft

Answer:

2.47  ft

Explanation:

Given that:

The initial temperature of air = 80°F

Diameter of the pipe = 72 ft

average velocity  of the air flow through the pipe =  34 ft/s

The objective is to determine the diameter of the  pipe to  be used to move water at:

At a temperature = 60°F   &

An average velocity  of 71 ft/s

Assuming Reynolds number similarity is enforced;

where :

kinematic viscosity (V_air) of air at 80 °F  (V_air)  = 1.69 × 10⁻⁴ ft²/s

kinematic viscosity of water  at 60 °F (V_water) = 1.21 × 10⁻⁵ ft²/s

The diameter of the pipe can be calculated by using the expression:

2.4686  ft

2.47 ft   ( to two decimal places)

Thus; diameter pipe to be use to move water at the given temperature and average velocity is 2.47 ft

In real world, sampling and quantization is performed in an analog to digital converter (ADC) and reconstruction is performed in a digital to analog converter (DAC). Which of the following statements hold true (fs denotes the sampling frequency)?

a. the reconstruction filter can be found in the DAQ
b. the antialiasing filter removes all frequencies of the continuous-time analog input signal that are above fs/2
c. the DAC needs to know the sampling frequency of the ADC to correctly reconstruct the signal.
d. the reconstructed continuous-time signal only contains frequencies up to fs/2

Answers

Answer:

b

Explanation:

a) ADC is located on DAQ filter but not the reconstruction filter

b) to remove aliasing, the sampling rate must be greater than or equal ot twice the highest frequency component in the input signal. In other words, all frequencies in input sgnal are less than fs/2. Therefore, frequencies greater than fs/2 are removed by anti-aliasing filter

c) the DAC can have different sampling rate from ADC

A 3-phase, 50 Hz, 110 KV overhead line has conductors placed in a horizontal plane 3 m apart. Conductor diameter is 2.5 cm. If the line length is 220 km, determine the charging current per phase assuming complete transposition. (6 Marks)

Answers

Answer:

A 3-phase, 50 Hz, 110 KV overhead line has conductors

Explanation:

hope it will helps you

Many HVACR industry publications are published by

Answers

Answer:

HVACR Industry Trade Groups

Explanation:

what is the difference between erratic error and zero error​

Answers

The negative mark is balanced by a positive mark on the set key scale while the jaws are closed.

It is common practice to shut the jaws or faces of the system before taking some reading to guarantee a zero reading. If not, please take care of the read. This read is referred to as "zero defect."

There are two forms of zero error:

zero-mistake positive; and

Non-null mistake.

----------------------------

Hope this helps!

Brainliest would be great!

----------------------------

With all care,

07x12!

Other Questions
The _______________________ of an integer is the ________________that number is from _____________ on a number line. (# of steps from zero) Evaluate this statement made by a hypothetical historian: "The 20th century represented a consistent trend toward improving the political, social, and economic fortunes for all people of the world." Write a well-developed essay that supports or opposes this statement. Use at least three issues or events discussed in the course to support your argument. Humans and their close relatives (hominins) have been around for roughly 5 million years. What percentage of geologic time is represented by the history of this group? If a carton contains 6 eggs, how many eggs are there in 13 cartons? would it be 6x13?? which is equal to 78 I'm not sure. ....................... A difference between Martin Luther King Jr. and Malcolm X was that Martin Luther King Jr. believed in What is the purpose of thestatement that appearsbelow the article's title?Please help I need to graduate the book is called hill reveals its secrets PLEASE HELP!!(PIC INCLUDED)Which of the following steps were applied to ABCD to obtain A'B'C'D?A. shifted 3 units right and 2 units downB. shifted 4 units right and 2 units downC. shifted 2 units right and 3 units downD. shifted 3 units right and 1 unit down chandler Communications'CFO has provided the following information: The company's capital budget is expected to be $5,000,000. The company's target capital structure is 70 percent debt and 30 percent equity. The company's net income is $4,500,000. If the company follows a residual dividend policy, what portion of its net income should it pay out as dividends this year Describe the formation of an aqueous libr solution when solid libr dissolves in waterFill in the blanks with words given below.K and I atoms K and IF ions dissociation atoms KI molecules polar dilution hydration molecules ions nonpolarAt the_______ surface of the solid _____________are pulled into solution by___________ the water molecules, where the______________ process surrounds separate with water molecules. Which statement below can NOT be usedwhen describing volume?A. Volume is the amount of space that an object occupies.B. The volume of an object is the same as the weight of thatobject.C. Volume can be measured in cubic centimeters.D. Volume is calculated using a formula: V = 1xwxh. Khala plots point A at (Negative 1, Negative 3 and one-half). Which graph shows the location of point A? On a coordinate plane, point A is 1.5 units to the left and 3.5 units down. On a coordinate plane, point A 1 unit to the left and 3.5 units down. On a coordinate plane, point A is 1 unit to the right and 3.5 units up. On a coordinate plane, point A is 1 unit to the right and 3.5 units down. Read the paragraph. I have been a nurse for twenty years. In that time, I have seen a great number of patients suffer because they did not have health insurance. One of the worst cases was a young mother of two who was diagnosed with early stage skin cancer. Because she could not afford treatment, the cancer spread from her skin to other parts of her body. By the time I saw her for the first time, the cancer had reached her brain and she could no longer be helped. This sort of thing should not happen to anyone. A strong universal health care system could prevent instances like this from occurring. What makes this appeal from the paragraph convincing? I have been a nurse for twenty years. It uses proven data as evidence. It appeals to the readers emotions. It shows the writers credibility. It reveals important statistics. Write down the oxygen requirements of the microorganisms growing in thioglycolate tube. Solve the following equation for x: -7 + 4x + 10 = 15 - 2x * Thomas Paine was an English American __________ who wrote pamphlets that influenced many people and were instrumental in starting the American Revolution. He skillfully communicated the ideas of the Revolution to everyone, from farmers to intellectuals. If the purpose of this paragraph is to inform, which word best fits in the blank? writer person activist man At the equator, near the surface of the Earth, the magnetic field is approximately 50.0 T northward, and the electric field is about 100 N/C downward in fair weather. Find the gravitational, electric, and magnetic forces on an electron in this environment, assuming that the electron has an instantaneous velocity of 8.50 106 m/s directed to the east. PLS HELP 60 POINTS!!!!!! 4. Write a paragraph interpreting the meaning of the passage taken from Martin Luther King Jr.s Letter from a Birmingham Jail: (Your response should be at least 100 words in length please.) In any nonviolent campaign there are four basic steps: collection of the facts to determine whether injustices exist; negotiation; self-purification; and direct action. We have gone through all these steps in Birmingham. There can be no gainsaying the fact that racial injustice engulfs this community. Birmingham is probably the most thoroughly segregated city in the United States. Its ugly record of brutality is widely known. Negroes have experienced grossly unjust treatment in the courts. There have been more unsolved bombings of Negro homes and churches in Birmingham than in any other city in the nation. These are the hard, brutal facts of the case. On the basis of these conditions, Negro leaders sought to negotiate with the city fathers. But the latter consistently refused to engage in good faith negotiation (King, 1963, para. 6). For each of these relations on the set {21,22,23,24},decide whether it is re- flexive, whether it is symmetric, whether it is antisymmetric, and whether it is transitive.1. {(22, 22), (22, 23), (22, 24), (23, 22), (23, 23), (23, 24)} 2. {(21,21),(21,22),(22,21),(22,22),(23,23),(24,24)} Help me with this somebody.