Answer:
U are finding the slope. so the vertical line is ur rise(x value) and the horizontal line is ur y value. Hopefully that helped
Kyra is using rectangular tiles of two types for a floor design. They Tyler each type is shown below:
Answer: b) the tiles are not similar because both SP:SR is 5:4 and MJ:ML is 5:2
Step-by-step explanation:
We are given that the tiles are rectangular which implies that they both have a 90° angle.
In order to prove similarity, We need to show that the lengths and widths are proportional.
P Q R S
J K L M
a) PQ : QR JK : LM
w=4 L=5 w=2 w=2
↓
We need Length (not width)
b) SP : SR MJ : ML
L=5 w=4 L=5 w=2
5 : 4 5 : 2
When comparing length to width they do not have the same ratio so the rectangles are not similar.
c) PQ : QR JK : KL
w=4 L=5 w=2 L=5
4 : 5 2 : 5
When comparing width to length they do not have the same ratio so the rectangles are not similar.
d) SR : ML PQ : JK
w=4 w=2 w=4 w=2
↓ ↓
We need Length (not width)
A 2011 survey, by the Bureau of Labor Statistics, reported that 91% of Americans have paid leave. In January 2012, a random survey of 1000 workers showed that 89% had paid leave. The resulting p-value is .0271; thus, the null hypothesis is rejected. It is concluded that there has been a decrease in the proportion of people, who have paid leave from 2011 to January 2012. What type of error is possible in this situation?
Answer:
Is possible to make a Type I error, where we reject a true null hypothesis.
Step-by-step explanation:
We have a hypothesis test of a proportion. The claim is that the proportion of paid leave has significantly decrease from 2011 to january 2012. The P-value for this test is 0.0271 and the nunll hypothesis is rejected.
As the conclusion is to reject the null hypothesis, the only error that we may have comitted is rejecting a true null hypothesis.
The null hypothesis would have stated that there is no significant decrease in the proportion of paid leave.
This is a Type I error, where we reject a true null hypothesis.
A publisher reports that 65% of their readers own a laptop. A marketing executive wants to test the claim that the percentage is actually different from the reported percentage. A random sample of 340 found that 60% of the readers owned a laptop. State the null and alternative hypotheses. Answer
Answer:
[tex]z=\frac{0.60 -0.65}{\sqrt{\frac{0.65(1-0.65)}{340}}}=-1.933[/tex]
The p value for this case can be calculated with this probability:
[tex]p_v =2*P(z<-1.933)=0.0532[/tex]
For this case is we use a significance level of 5% we have enough evidence to FAIL to reject the null hypothesis and we can't conclude that the true proportion is different from 0.65 or 65%. We need to be careful since if we use a value higher than 65 for the significance the result would change
Step-by-step explanation:
Information given
n=340 represent the random sample taken
[tex]\hat p=0.60[/tex] estimated proportion of readers owned a laptop
[tex]p_o=0.65[/tex] is the value that we want to test
z would represent the statistic
[tex]p_v{/tex} represent the p value
Hypothesis to test
We want to check if the true proportion of readers owned a laptop if different from 0.65
Null hypothesis:[tex]p=0.65[/tex]
Alternative hypothesis:[tex]p \neq 0.65[/tex]
The statistic is given by:
[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)
Replacing we got:
[tex]z=\frac{0.60 -0.65}{\sqrt{\frac{0.65(1-0.65)}{340}}}=-1.933[/tex]
The p value for this case can be calculated with this probability:
[tex]p_v =2*P(z<-1.933)=0.0532[/tex]
For this case is we use a significance level of 5% we have enough evidence to FAIL to reject the null hypothesis and we can't conclude that the true proportion is different from 0.65 or 65%. We need to be careful since if we use a value higher than 65 for the significance the result would change
what is the solution to the equation y=2/3x+3 X=-2
Answer: The solution is [tex](-2,\frac{5}{3} )[/tex]
Step-by-step explanation:
it already gives you the solution for x so just plot it into the equation to solve for y.
y= [tex]\frac{2}{3} *\frac{-2}{1}+3[/tex]
y= [tex]\frac{-4}{3}+\frac{3}{1}[/tex]
y= [tex]\frac{5}{3}[/tex]
Answer: -2 5/3
Step-by-step explanation:
y= 2/3*-2/1+3
y= -4+3/1
-2 5/3
Can someone please help me??
Answer : The value of x is 4.1 cm.
Step-by-step explanation :
As we know that the perpendicular dropped from the center divides the chord into two equal parts.
That means,
AB = CB = [tex]\frac{15.6cm}{2}=7.8cm[/tex]
Now we have o calculate the value of x by using Pythagoras theorem.
Using Pythagoras theorem in ΔOBA :
[tex](Hypotenuse)^2=(Perpendicular)^2+(Base)^2[/tex]
[tex](OA)^2=(OB)^2+(BA)^2[/tex]
Now put all the values in the above expression, we get the value of side OB.
[tex](8.8)^2=(x)^2+(7.8)^2[/tex]
[tex]x=\sqrt{(8.8)^2-(7.8)^2}[/tex]
[tex]x=\sqrt{77.44-60.84}[/tex]
[tex]x=\sqrt{16.6}[/tex]
[tex]x=4.074\approx 4.1[/tex]
Therefore, the value of x is 4.1 cm.
Pls Help!
Given the polynomial function below, find F(3).
F(x) = 2x3 - 7x + 1
A. 34
B. -8
C. 26
D. -2
Answer:
34
Step-by-step explanation:
F(x) = 2x^3 - 7x + 1
Let x= 3
F(3) = 2* 3^3 - 7*3 + 1
= 2 * 27 -21+1
= 54 -21 + 1
= 34
Answer: 34
Step-by-step explanation:
Luke and skylar work at furniture store. Luke is paid $180 per week plus 5% of his total sales in dollars ,x,which can be represented by g(x)=180+0.05x. Skylar is paid $104 per week plus 7% of her total sales in dollars which can be represented by f(x)=104+0.07x. Determine the value of x in dollars that will make their weekly pay the same
Answer:
The total sales in dollars to make their pay equal is: $ 3800
Step-by-step explanation:
Since we need to find the number of sales that make both function equal in value, we equal both expressions, and solve for 'x":
[tex]180+0.05 \,x=104+0.07 \,x\\180-104=0.07\,x-0.05\,x\\76=0.02x\\x=\frac{76}{0.02} \\x=3800[/tex]
How can you use an equilateral triangle to find the lengths of the sides in a 30-60-90 triangle?
Answer:
Step-by-step explanation:
1) divide equilateral tri from the middle you will get two 30-60-90 triangles
2) by using pythagorean law & trigimintory, you will get two unknowns (height and side length) and two functions
5/a - 4/b as a single fraction
Answer:
I'm not completely sure what you mean by a, "single fraction," but I'm pretty sure the answer you are looking for is [tex]\frac{5-4}{a-b}[/tex]
Step-by-step explanation:
Show that every triangle formed by the coordinate axes and a tangent line to y = 1/x ( for x > 0)
always has an area of 2 square units.
Hint: Find the equation of the tangent line at x = a. (It will contain a’s as well as x and y.) Then find the
x-and y-intercepts for that line to find the lengths of sides of the right triangle.
Answer:
Step-by-step explanation:
given a point [tex](x_0,y_0)[/tex] the equation of a line with slope m that passes through the given point is
[tex]y-y_0 = m(x-x_0)[/tex] or equivalently
[tex] y = mx+(y_0-mx_0)[/tex].
Recall that a line of the form [tex]y=mx+b [/tex], the y intercept is b and the x intercept is [tex]\frac{-b}{m}[/tex].
So, in our case, the y intercept is [tex](y_0-mx_0)[/tex] and the x intercept is [tex]\frac{mx_0-y_0}{m}[/tex].
In our case, we know that the line is tangent to the graph of 1/x. So consider a point over the graph [tex](x_0,\frac{1}{x_0})[/tex]. Which means that [tex]y_0=\frac{1}{x_0}[/tex]
The slope of the tangent line is given by the derivative of the function evaluated at [tex]x_0[/tex]. Using the properties of derivatives, we get
[tex]y' = \frac{-1}{x^2}[/tex]. So evaluated at [tex]x_0[/tex] we get [tex] m = \frac{-1}{x_0^2}[/tex]
Replacing the values in our previous findings we get that the y intercept is
[tex](y_0-mx_0) = (\frac{1}{x_0}-(\frac{-1}{x_0^2}x_0)) = \frac{2}{x_0}[/tex]
The x intercept is
[tex] \frac{mx_0-y_0}{m} = \frac{\frac{-1}{x_0^2}x_0-\frac{1}{x_0}}{\frac{-1}{x_0^2}} = 2x_0[/tex]
The triangle in consideration has height [tex]\frac{2}{x_0}[/tex] and base [tex]2x_0[/tex]. So the area is
[tex] \frac{1}{2}\frac{2}{x_0}\cdot 2x_0=2[/tex]
So regardless of the point we take on the graph, the area of the triangle is always 2.
segment AB is dilated from the origin to create segment A prime B prime at A' (0, 6) and B' (6, 9). What scale factor was segment AB dilated by?
1/2
2
3
4
Answer:
the answer is 3
Step-by-step explanation:
i took the test
LA=
Round your answer to the nearest hundredth.
A
5
B
3
Answer:
You didn't state it but you need to find Angle A.
From the Pythagorean Theorem, we calculate side ac
side ac^2 = 5^2 - 3^2 =25 -9 = 16 Side AC = 4
arc tangent angle A = 3 / 4 = .75
angle A = 36.87 Degrees
Step-by-step explanation:
Find the equation of the line.
Use exact numbers.
Answer:
y = 2/3x + 4
Step-by-step explanation:
Step 1: Find slope
m = (4-0)/(0+6)
m = 2/3
Step 2: Write in y-int (0, 4)
y = 2/3x + 4
The figure shows a square floor plan with a smaller square area that will accommodate a combination fountain and pool.The floor with the fountain pool area removed has an area of 33 Square meters and a perimeter of 36 meters. Find the dimensions of the floor and the dimensions of the square that will accommodate the fountain and pool.
Answer:
(x, y) = (7, 4) meters
Step-by-step explanation:
The area of the floor without the removal is x^2, so with the smaller square removed, it is x^2 -y^2.
The perimeter of the floor is the sum of all side lengths, so is 4x +2y.
The given dimensions tell us ...
x^2 -y^2 = 33
4x +2y = 36
From the latter equation, we can write an expression for y:
y = 18 -2x
Substituting this into the first equation gives ...
x^2 -(18 -2x)^2 = 33
x^2 -(324 -72x +4x^2) = 33
3x^2 -72x + 357 = 0 . . . . write in standard form
3(x -7)(x -17) = 0 . . . . . factor
Solutions to this equation are x=7 and x=17. However, for y > 0, we must have x < 9.
y = 18 -2(7) = 4
The floor dimension x is 7 meters; the inset dimension y is 4 meters.
Marie plants 12 packages of vegetable seeds in a community garden. Each package costs $1.97. What is the total cost of the seeds?
Answer:
$23.64
Step-by-step explanation:
12 * $1.97 = $23.64
Terry has a number cube that is numbered from 1 to 6. She rolls the cube 50 times. Which equation can be used to predict the number of times that she will roll a number that is greater than 4? P (number greater than 4) = StartFraction 1 over 6 EndFraction (50) P (number greater than 4) = StartFraction 2 over 6 EndFraction (50) P (number greater than 4) = StartFraction 3 over 6 EndFraction (50) P (number greater than 4) = StartFraction 4 over 6 EndFraction (50)
Answer:
Step-by-step explanation:
Answer:
B
Step-by-step explanation:
what is the length of the line?
Answer:
root 61
Step-by-step explanation:
You can use the distance formula or draw a triangle with sides 5 and 6
Consider the set of sequences of seven letters chosen from W and L. We may think of these sequences as representing the outcomes of a match of seven games, where W means the first team wins the game and L means the second team wins the game. The match is won by the first team to win four games (thus, some games may never get played, but we need to include their hypothetical outcomes in the points in order that we have a probability space of equally likely points).A. What is the probability that a team will win the match, given that it has won the first game?B. What is the probability that a team will win the match, given that it has won the first two games? C. What is the probability that a team will win the match, given that it has won two out of the first three games?
Answer:
a) Probability that a team will win the match given that it has won the first game = 0.66
b) Probability that a team will win the match given that it has won the first two games= 0.81
c) Probability that a team will win the match, given that it has won two out of the first three games = 0.69
Step-by-step explanation:
There are a total of seven games to be played. Therefore, W and L consists of 2⁷ equi-probable sample points
a) Since one game has already been won by the team, there are 2⁶ = 64 sample points left. If the team wins three or more matches, it has won.
Number of ways of winning the three or more matches left = [tex]6C3 + 6C4 + 6C5 + 6C6[/tex]
= 20 + 15 + 6 + 1 = 42
P( a team will win the match given that it has won the first game) = 42/64 = 0.66
b) Since two games have already been won by the team, there are 2⁵ = 32 sample points left. If the team wins two or more matches, it has won.
Number of ways of winning the three or more matches left = [tex]5C2 + 5C3 + 5C4 + 5C5[/tex] = 10 + 10 + 5 +1 = 26
P( a team will win the match given that it has won the first two games) = 26/32 = 0.81
c) Probability that a team will win the match, given that it has won two out of the first three games
They have played 3 games out of 7, this means that there are 4 more games to play. The sample points remain 2⁴ = 16
They have won 2 games already, it means they have two or more games to win.
Number of ways of winning the three or more matches left = [tex]4C2 + 4C3 + 4C4[/tex] = 6 + 4 + 1 = 11
Probability that a team will win the match, given that it has won two out of the first three games = 11/16
Probability that a team will win the match, given that it has won two out of the first three games = 0.69
Identify the Type II error if the null hypothesis, H0, is: The capacity of Anna's car gas tank is 10 gallons. And, the alternative hypothesis, Ha, is: Anna believes the capacity of her car's gas tank is not 10 gallons.
Answer:
20gallons
Step-by-step explanation:
Each of the following is a confidence interval for μ = true average (i.e., population mean) resonance frequency (Hz) for all tennis rackets of a certain type:(111.6, 112.4) (111.4, 112.6)(a) What is the value of the sample mean resonance frequency?
Answer:
The value of the sample mean resonance frequency is 112Hz
Step-by-step explanation:
A confidence interval has two bounds, a lower bound and an upper bound.
A confidence interval is symmetric, which means that the point estimate used is the mid point between these two bounds, that is, the mean of the two bounds.
In this problem, we have that:
Lower bound: 111.6
Upper bound: 112.4
Sample mean: (111.6 + 112.4)/2 = 112Hz
The value of the sample mean resonance frequency is 112Hz
The value of the sample mean resonance frequency is 112 Hz.
What is the value of the sample mean resonance frequency?The value of the sample mean resonance frequency is equivalent to the average of the upper limit and the lower limit.
The sample mean resonance frequency = (lower limit + upper limit) / 2
(111.6 +112.4) / 2
= 224 / 2
= 112 Hz
To learn more about confidence interval, please check: https://brainly.com/question/15905477
Which of the following is the solution to 9|x-1|=-45
Answer:
No solutions.
Step-by-step explanation:
9|x-1|=-45
Divide 9 into both sides.
|x-1| = -45/9
|x-1| = -5
Absolute value cannot be less than 0.
Answer:
No solution
Step-by-step explanation:
=> 9|x-1| = -45
Dividing both sides by 9
=> |x-1| = -5
Since, this is less than zero, hence the equation has no solutions
State whether the data described below are discrete or continuous, and explain why.
The exact lengths (in kilometers) of the ocean coastlines of different countries.
a. The data are continuous because the data can only take on specific values.
b. The data are discrete because the data can only take on specific values.
c. The data are continuous because the data can take on any value in an interval.
d. The data are discrete because the data can take on any value in an interval.
Answer:
c. The data are continuous because the data can take on any value in an interval.
Step-by-step explanation:
A variable is said to be continuous if it can take on any value in an interval. Examples are lengths, temperature, etc
A discrete variable, on the other hand, can only take on specific values. Examples of discrete variables are the number of students and age.
The exact lengths (in kilometers) of the ocean coastlines of different countries is a continuous variable because it can take on any value in an interval.
A stated earlier, Lengths are in general, continuous variables.
Please answer this correctly I want genius expert or ace people to answer this correctly as soon as possible as my work is due today
Answer:
25%
Step-by-step explanation:
The last percentile always contains 25% of the observations.
Solve the system of equations. \begin{aligned} & -5y-10x = 45 \\\\ &-3y+10x=-5 \end{aligned} −5y−10x=45 −3y+10x=−5
Answer:
x = -2
y = -5
Step-by-step explanation:
We can solve this algebraically (substitution or elimination) or graphically. I will be using elimination:
Step 1: Add the 2 equations together
-8y = 40
y = -5
Step 2: Plug y into an original equation to find x
-3(-5) + 10x = -5
15 + 10x = -5
10x = -20
x = -2
And we have our final answers!
Answer:
[tex]\boxed{\sf \ \ \ x=-2 \ \ \ and \ \ \ y=-5 \ \ \ }[/tex]
Step-by-step explanation:
let s solve the following system
(1) -5y-10x=45
(2) -3y+10x=-5
let s do (1) + (2) it comes
-5y-10x-3y+10x=45-5=40
<=>
-8y=40
<=>
y = -40/8=-20/4=-5
so y = -5
let s replace y in (1)
25-10x=45
<=>
10x=25-45=-20
<=>
x = -20/10=-2
so x = -2
If the statement shown is rewritten as a conditional statement in if-then form, which best describes the conclusion?
When a number is divisible by 9, the number is divisible by 3.
then the number is divisible by 3
then the number is divisible by 9
O if a number is divisible by 3
O if a number is divisible by 9
Answer:
Correct statement: "the number is divisible by 3".
Step-by-step explanation:
The statement provided is:
When a number is divisible by 9, the number is divisible by 3.
The general form of a conditional statement in if-then form is:
[tex]p\rightarrow q[/tex]
This implies that if p, then q.
The part after the "if" is known as the hypothesis and the part after the "then" is known as the conclusion.
The if-then form of the provided statement is:
If a number is divisible by 9, then the number is divisible by 3.
So, the conclusion is:
"the number is divisible by 3"
Answer:
a
Step-by-step explanation:
Pleassseee hhheeelllppp
Answer/Step-by-step explanation:
When solving problems like this, remember the following:
1. + × + = +
2. + × - = -
3. - × + = -
4. - × - = +
Let's solve:
a. (-4) + (+10) + (+4) + (-2)
Open the bracket
- 4 + 10 + 4 - 2
= - 4 - 2 + 10 + 4
= - 6 + 14 = 8
b. (+5) + (-8) + (+3) + (-7)
= + 5 - 8 + 3 - 7
= 5 + 3 - 8 - 7
= 8 - 15
= - 7
c. (-19) + (+14) + (+21) + (-23)
= - 19 + 14 + 21 - 23
= - 19 - 23 + 14 + 21
= - 42 + 35
= - 7
d. (+5) - (-10) - (+4)
= + 5 + 10 - 4
= 15 - 4 = 11
e. (-3) - (-3) - (-3)
= - 3 + 3 + 3
= - 3 + 9
= 6
f. (+26) - (-32) - (+15) - (-8)
= 26 + 32 - 15 + 8
= 26 + 32 + 8 - 15
= 66 - 15
= 51
The mean annual tuition and fees for a sample of 15 private colleges was with a standard deviation of . A dotplot shows that it is reasonable to assume that the population is approximately normal. You wish to test whether the mean tuition and fees for private colleges is different from 32,500 a) state the null and alternate hypotheses b) calculate the standard error c) calculate the test statistic d) find the p - value .
Answer:
Step-by-step explanation:
The question is incomplete. The complete question is:
The mean annual tuition and fees for a sample of 15 private colleges was $35,500 with a standard deviation of $6500. A dotplot shows that it is reasonable to assume that the population is approximately normal. You wish to test whether the mean tuition and fees for private colleges is different from $32,500. State the null and alternate hypotheses. A) H0: 4 = 32,500, H:4=35,500 C) H: 4 = 35,500, H7:35,500 B) H: 4 = 32,500, H : 4 # 32,500 D) H0:41 # 32,500, H : 4 = 32,500
Solution
We would set up the hypothesis test. This is a test of a single population mean since we are dealing with mean
For the null hypothesis,
H0: µ = 32500
For the alternative hypothesis,
Ha: µ ≠ 32500
This is a two tailed test.
Since the number of samples is small and the population standard deviation is not given, the distribution is a student's t.
Since n = 15,
Degrees of freedom, df = n - 1 = 15 - 1 = 14
t = (x - µ)/(s/√n)
Where
x = sample mean = 35500
µ = population mean = 32500
s = samples standard deviation = 6500
t = (35500 - 32500)/(6500/√15) = 1.79
We would determine the p value using the t test calculator. It becomes
p = 0.095
Assuming alpha = 0.05
Since alpha, 0.05 < than the p value, 0.095, then we would fail to reject the null hypothesis.
Which is the graph |3x-6|=21
Answer:
it should look like this
Need help ASAP!! thank you sorry if u can’t see it good :(
Answer/Step-by-step explanation:
==>Given:
=>Rectangular Pyramid:
L = 5mm
W = 3mm
H = 4mm
=>Rectangular prism:
L = 5mm
W = 3mm
H = 4mm
==>Required:
a. Volume of pyramid:
Formula for calculating volume of a rectangular pyramid us given as L*W*H
V = 5*3*4
V = 60 mm³
b. Volume of prism = ⅓*L*W*H
thus,
Volume of rectangular prism given = ⅓*5*3*4
= ⅓*60
= 20mm³
c. Volume of the prism = ⅓ x volume of the pyramid
Thus, 20 = ⅓ × 60
As we can observe from our calculation of the solid shapes given, the equation written above is true for all rectangular prism and rectangular pyramid of the same length, width and height.
A student carried out an experiment to determine the amount of vitamin C in a tablet sample. He performed 5 trials to produce the following results: 490 mg, 502 mg, 505 mg, 495mg, and 492 mg. The manufacturer claims that the tablet contains 500 mg of vitamin C. Do an appropriate statistical analysis to find out whether the results obtained by the student is consistent with bottle claim.
Answer:
There is not enough evidence to support the claim that the amount of vitamin C in a tablet sample is different from 500 mg.
P-value = 0.166.
Step-by-step explanation:
We start by calculating the mean and standard deviation of the sample:
[tex]M=\dfrac{1}{n}\sum_{i=1}^n\,x_i\\\\\\M=\dfrac{1}{5}(490+502+505+495+492)\\\\\\M=\dfrac{2484}{5}\\\\\\M=496.8\\\\\\s=\sqrt{\dfrac{1}{n-1}\sum_{i=1}^n\,(x_i-M)^2}\\\\\\s=\sqrt{\dfrac{1}{4}((490-496.8)^2+(502-496.8)^2+(505-496.8)^2+(495-496.8)^2+(492-496.8)^2)}\\\\\\s=\sqrt{\dfrac{166.8}{4}}\\\\\\s=\sqrt{41.7}=6.5\\\\\\[/tex]
Then, we can perform the hypothesis t-test for the mean.
The claim is that the amount of vitamin C in a tablet sample is different from 500 mg.
Then, the null and alternative hypothesis are:
[tex]H_0: \mu=500\\\\H_a:\mu< 500[/tex]
The significance level is 0.05.
The sample has a size n=5.
The sample mean is M=496.8.
As the standard deviation of the population is not known, we estimate it with the sample standard deviation, that has a value of s=6.5.
The estimated standard error of the mean is computed using the formula:
[tex]s_M=\dfrac{s}{\sqrt{n}}=\dfrac{6.5}{\sqrt{5}}=2.907[/tex]
Then, we can calculate the t-statistic as:
[tex]t=\dfrac{M-\mu}{s/\sqrt{n}}=\dfrac{496.8-500}{2.907}=\dfrac{-3.2}{2.907}=-1.1[/tex]
The degrees of freedom for this sample size are:
[tex]df=n-1=5-1=4[/tex]
This test is a left-tailed test, with 4 degrees of freedom and t=-1.1, so the P-value for this test is calculated as (using a t-table):
[tex]\text{P-value}=P(t<-1.1)=0.166[/tex]
As the P-value (0.166) is bigger than the significance level (0.05), the effect is not significant.
The null hypothesis failed to be rejected.
There is not enough evidence to support the claim that the amount of vitamin C in a tablet sample is different from 500 mg.