Answer:
m∠3 = 115°
Step-by-step explanation:
Since measure of angle 6 = (2x - 5)°
And measure of angle 8 = (x + 5)°
Since ∠6 and ∠8 are the supplementary angles,
m∠6 + m∠8 = 180°
(2x - 5)° + (x + 5)° = 180°
3x = 180°
x = 60°
Therefore, m∠6 = (2x - 5) = (120 - 5) = 115°
and m∠8 = (x + 5) = 65°
Since angle 6 and angle 3 are interior alternate angles,
Therefore, m∠6 = m∠3 = 115° will be the answer.
if you’re good with permutations in math 30 help out with this easy question
In how many ways can five boys and three girls sit in a row such that all boys sit together?
a) 4800
b) 5760
c) 2880
d) 1440
Answer:
2880
Step-by-step explanation:
Consider the 5 boys to be 1 group. The boys and 3 girls can be arranged in 4! ways.
Within the group, the boys can be arranged 5! ways.
The total number of permutations is therefore:
4! × 5! = 2880
a kangaroo and a wallaby are in a race. They have to get to a flagbole that is 100 meters away and back. For every 2 hops the kangaroo does, the wallaby does three but the kangaroo's jumps are 3 meters while the wallaby's are 2. Who gets there and back first (hint: it isnt a draw)
Answer:
im going to say a wallaby because they are smaller and lighter and if you think of the weight then less power is needed for a wallaby
idk lol XD
Step-by-step explanation:
What is the length of the diagonal of the square shown below?
Answer:
It’s E
Step-by-step explanation:
The length of the diagonal of the figure considered is given by: Option E: 5√2
What is Pythagoras Theorem?If ABC is a triangle with AC as the hypotenuse and angle B with 90 degrees then we have:
[tex]|AC|^2 = |AB|^2 + |BC|^2[/tex]
where |AB| = length of line segment AB. (AB and BC are rest of the two sides of that triangle ABC, AC being the hypotenuse).
Consider the figure attached below.
The triangle ABC is a right angled triangle as one of its angle is of 90 degrees.
Thus, we can use Pythagoras theorem here to find the length of the diagonal line AC.
Since it is given that:
|AB| = 5 units = |BC|, thus, we get:
[tex]|AC|^2 = |AB|^2 + |BC|^2\\\\|AC| = \sqrt{5^2 + 5^2} = \sqrt{2 \times 5^2} = \sqrt{5^2} \times \sqrt{2} = 5\sqrt{2} \: \rm units[/tex]
We didn't took negative of root as length cannot be negative.
Thus, the length of the diagonal of the figure considered is given by: Option E: 5√2
Learn more about Pythagoras theorem here:
https://brainly.com/question/12105522
Complete the paragraph proof. Given: and are right angles Line segment A B is-congruent-to line segment B C Line segment B C is-congruent-to line segment A C Prove: Line A R bisects Angle B A C Triangles A B R and R C A share side R A. A line is drawn from point B to point C and intersects side A R at point P. It is given that and are right angles, and . Since they contain right angles, ΔABR and ΔACR are right triangles. The right triangles share hypotenuse , and reflexive property justifies that . Since and , the transitive property justifies . Now, the hypotenuse and leg of right ΔABR is congruent to the hypotenuse and the leg of right ΔACR, so by the HL congruence postulate. Therefore, ________ by CPCTC, and bisects by the definition of bisector.
Answer:
<BAR ≅<CAR
Step-by-step explanation:
Just took the test
Answer:
A edg 2020
Step-by-step explanation:
For a super soaker water gun, a pump handle is moved back and forth to build up pressure in the water reservoir. The water is released by pulling a trigger and shooting the water a significant distance. Assuming that you can create an absolute pressure of 8 atm in the reservoir:
a) What is the velocity at which the water leaves the gun?
b) If the water exits the gun through a hole with a radius of 1-mm, what is the volume rate of flow in m3/s?
c) If the water gun is fired horizontally and held 1.2 meters above the ground, where does the water hit the ground? Pressure 8 cm water
Answer:
a) The velocity at which the water leaves the gun = 37.66 m/s
b) The volume rate of flow = (1.183 × 10⁻⁴) m³/s
c) The water hits the ground 18.64 m from the point where the water gun was shot.
Step-by-step explanation:
a) Using Bernoulli's equation, an equation that is based on the conservation of energy.
P₁ + ½ρv₁² + ρgh₁ = P₂ + ½ρv₂² + ρgh₂
The two levels we are considering is just inside the water reservoir and just outside it.
ρgh is an extension of potential energy and since the two levels are at the same height,
ρgh₁ = ρgh₂
Bernoulli's equation becomes
P₁ + ½ρv₁² = P₂ + ½ρv₂²
P₁ = Pressure inside the water reservoir = 8 atm = 8 × 101325 = 810,600 Pa
ρ = density of water = 1000 kg/m³
v₁ = velocity iof f water in the reservoir = 0 m/s
P₂ = Pressure outside the water reservoir = atmospheric pressure = 1 atm = 1 × 101325 = 101,325 Pa
v₂ = velocity outside the reservoir = ?
810,600 + 0 = 101,325 + 0.5×1000×v₂²
500v₂² = 810,600 - 101,325 = 709,275
v₂² = (709,275/500) = 1,418.55
v₂ = √(1418.55) = 37.66 m/s
b) Volumetric flowrate is given as
Q = Av
A = Cross sectional Area of the channel of flow = πr² = π×(0.001)² = 0.0000031416 m²
v = velocity = 37.66 m/s
Q = 0.0000031416 × 37.66 = 0.0001183123 m³/s = (1.183 × 10⁻⁴) m³/s
c) If the height of gun above the ground is 1.2 m. Where does the water hit the ground?
The range of trajectory motion is given as
R = vT
v = horizontal component of the velocity = 37.66 m/s
T = time of flight = ?
But time of flight is given as
T = √(2H/g) (Since the initial vertical component of the velocity = 0 m/s
H = 1.2 m
g = acceleration due to gravity = 9.8 m/s²
T = √(2×1.2/9.8) = 0.495 s
Range = vT = 37.66 × 0.495 = 18.64 m
Hope this Helps!!!
In a random sample of high school seniors, the proportion who use text messaging was 0.88. In a random sample of high school freshmen, this proportion was 0.68. Researchers found the difference in proportions to be statistically significant and obtained one of the following numbers for the p-value. Which is it?
a. 1.5
b. 0.02
c. 0.78
d. 0.30
Answer:
b. 0.02
Step-by-step explanation:
The smaller the p-value, the stronger the evidence that you should reject the null hypothesis. In this case, this will mean rejecting that the proportions are not significantly different.
Usually, a p-value is considered to be statistically significant when p ≤ 0.05.
From the answer options provided, alternative b. 0.02 is the only one that represents the difference in proportions to be statistically significant (there is only a 2% chance that the proportions are not significantly different).
Therefore, the answer is b. 0.02
In general, the probability that a blood donor has Type A blood is 0.40.Consider 8 randomly chosen blood donors, what is the probability that more than half of them have Type A blood?
The probability that more than half of the 8 randomly chosen blood donors have Type A blood is approximately 0.2533 or 25.33%.
To calculate the probability that more than half of the 8 randomly chosen blood donors have Type A blood, we can use the binomial probability formula:
[tex]\mathrm{P(X > n/2) = \sum [ P(X = k) ]}[/tex]
where the sum is taken from k = (n/2 + 1) to k = n
In this case, n represents the number of trials (8 blood donors) and p is the probability that a single blood donor has Type A blood (0.40).
P(X = k) is the probability of getting exactly k donors with Type A blood, and it is given by the binomial probability formula:
[tex]\mathrm {P(X = k) = (n, k) \times p^k \times (1 - p)^{(n - k)}}[/tex]
where (n choose k) represents the number of combinations of n items taken k at a time, and it is given by:
[tex]\mathrm {(n, k) = \frac{n!}{(k! \times (n - k)!)}}[/tex]
Now, let's calculate the probability that more than half (i.e., 5 or more) of the donors have Type A blood:
[tex]\mathrm{P(X > 4) = P(X = 5) + P(X = 6) + P(X = 7) + P(X = 8)}[/tex]
[tex]\mathrm {P(X = k) = (8, k) \times 0.40^k \times (1 - 0.40)^{(8 - k)}}[/tex]
[tex]\mathrm{P(X = 5)} = (8, 5) \times 0.40^5 \times (1 - 0.40)^{(8 - 5)}\\\\= 56 \times 0.01024 \times 0.343\\\\= 0.1961984[/tex]
[tex]\mathrm{P(X = 6)} = (8, 6) \times 0.40^6 \times (1 - 0.40)^{(8 - 6)}\\\\= 28 \times 0.004096 \times 0.36\\\\= 0.0516608[/tex]
[tex]\mathrm {P(X = 7)} = (8, 7) \times 0.40^7 \times (1 - 0.40)^{(8 - 7)}\\\\= 8 \times 0.0016384 \times 0.4\\\\= 0.0052224[/tex]
[tex]\mathrm {P(X = 8)} = (8, 8) \times 0.40^8 \times (1 - 0.40)^{(8 - 8)}\\\\= 1 \times 0.00065536 \times 0.4\\\\= 0.000262144[/tex]
Now, add all these probabilities together to get the final result:
[tex]\mathrm {P(X > 4)} = 0.1961984 + 0.0516608 + 0.0052224 + 0.000262144\\\\= 0.253343344[/tex]
Therefore, the probability that more than half of the 8 randomly chosen blood donors have Type A blood is approximately 0.2533 or 25.33%.
Learn more about probability click;
https://brainly.com/question/32117953
#SPJ4
Please answer this correctly
Answer:
Stem | Leaf
13 | 4 9 9
16 | 0 2 3 6
Step-by-step explanation:
134, 139, 139
160, 162, 163, 166
Solve X squared minus 8X +3 equals zero by completing the square which equation is used in the process?
Answer:
x = 4 ± √13
Step-by-step explanation:
x² − 8x + 3 = 0
Complete the square. (-8/2)² = 16.
x² − 8x + 16 − 13 = 0
(x − 4)² − 13 = 0
(x − 4)² = 13
x − 4 = ±√13
x = 4 ± √13
An object travels along a horizontal path at a constant rate.the object travels 1/20 of the length of the path in 3/4 second.at that rate,how many seconds does it take the object to travel the entire length of the path?
Answer:
The onject 1/8 of the length of the path 3/4 in second.
Using the ratio and proportion to find the total time does it take the object to travel the entire length of the path as following
Length:time
X:(total time )
Total time x.(3/4)/(1/8x)=(3/4)/(1/8) = 6 seconds
Suppose ARB Bank is reviewing its service charges and interest payment policies on current accounts. Suppose further that ARB has found that the average daily balance on personal current accounts is GH¢350.00, with a standard deviation of GH¢160.00. In addition, the average daily balances have been found to follow a normal distribution;
What percentage of customers carries a balance of GH¢100 or lower?
What percentage of customers carries a balance of GH¢500 or lower?
What percentage of current account customers carries average daily balances exactly equal to GH¢500?
What percentage of customers maintains account balance between GH¢100 and GH¢500?
Answer:
5.94% of customers carries a balance of GH¢100 or lower.
82.64% of customers carries a balance of GH¢500 or lower.
0% of current account customers carries average daily balances exactly equal to GH¢500.
76.7% of customers maintains account balance between GH¢100 and GH¢500
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
[tex]\mu = 350, \sigma = 160[/tex]
What percentage of customers carries a balance of GH¢100 or lower?
This is the pvalue of Z when X = 100. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{100 - 350}{160}[/tex]
[tex]Z = -1.56[/tex]
[tex]Z = -1.56[/tex] has a pvalue of 0.0594
5.94% of customers carries a balance of GH¢100 or lower.
What percentage of customers carries a balance of GH¢500 or lower?
This is the pvalue of Z when X = 500.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{500 - 350}{160}[/tex]
[tex]Z = 0.94[/tex]
[tex]Z = 0.94[/tex] has a pvalue of 0.8264
82.64% of customers carries a balance of GH¢500 or lower.
What percentage of current account customers carries average daily balances exactly equal to GH¢500?
In the normal distribution, the probability of finding a value exactly equal to X is 0. So
0% of current account customers carries average daily balances exactly equal to GH¢500.
What percentage of customers maintains account balance between GH¢100 and GH¢500?
This is the pvalue of Z when X = 500 subtracted by the pvalue of Z when X = 100.
From b), when X = 500, Z = 0.94 has a pvalue of 0.8264
From a), when X = 100, Z = -1.56 has a pvalue of 0.0594
0.8264 - 0.0594 = 0.767
76.7% of customers maintains account balance between GH¢100 and GH¢500
PLS HELP ME 10PTS
An artist creates a cone-shaped sculpture for an art exhibit. If the sculpture is 7 feet tall and has a base with a circumference of 27.632 feet, what is the volume of the sculpture?
Answer: The volume of the sculpture is 141.84 cubic-feet
Step-by-step explanation: Please see the attachments below
In the triangles below, m B = MZP and mZT = m J.
What is the length of PQ?
6
3
5
12
I can't solve it because it didn't have enough information
The volume of a sphere is approximately 1767.1459 cubic inches. What is the length of the radius of the sphere the nearest tenth?
Answer:
7.5 in
Step-by-step explanation:
Step one
This problem bothers on the mensuration of solid shapes, a sphere.
We know that the volume of a sphere is expresses as
V= (4/3) πr³
Given that the volume of the sphere is
1767.1459 in³
To solve for the radius r we need to substitute the value of the volume in the expression for the volume we have
Step two
1767.1459= (4/3) πr³
1767.1459*3= 4πr³
5301.4377/4*3.142=r³
421.82031=r³
Step three
To get r we need to cube both sides we have
r= ³√421.82031
r= 7.49967589711
To the nearest tenth
r= 7.5 in
If the discriminant of a quadratic equation is equal to -8, which statement describes the roots?
There are two complex roots.
There are two real roots.
There is one real root.
There is one complex root.
Answer:
There are two complex roots.
Step-by-step explanation:
When the discriminant is a negative number, the parabola will not intersect the x-axis. This means that there are no solutions/two complex solutions.
18. The servicing of a machine requires two separate steps, with the time needed for the
first step being an exponential random variable with mean 0.2 hour and the time for the
second step being an independent exponential random variable with mean 0.3 hour. If a
repair person has 20 machines to service, what is approximately the probability that all the
work can be completed in 8 hours?
Answer:
Step-by-step explanation:
Let X denote the first step
Let Y denote the second step
Then
E(X) = 0.2
E (Y) = 0.3
V (X) = 0.04
V (Y) = 0.09
Now,
E(X,Y) = E[X] + E{Y}
0.2 + 0.3 = 0.5
And since X and Y are independent
Therefore,
V(X , Y) = V(X) + V(Y)
= 0.04 + 0.09
= 0.13
Now required probability is
[tex]P\{ \sum X_i+\sum Y_i<8 \}=P\{ \frac{\sum X_i + \sum Y_i-nE[X+Y]}{\sqrt{Var(X+Y)n} } <\frac{8-20\times0.5}{\sqrt{0.13\times20} } \}\\\\=P\{Z_n<\frac{8-10}{\sqrt{2.6} } \}\\\\=P\{Z_n<-1.24\}[/tex]
= Φ(-1.24)
= 1 - Φ (1.24)
= 1 - 0.8925
= 0.1075
The number of electrical outages in a city varies from day to day. Assume that the number of electrical outages ( x ) in the city has the following probability distribution.xf (x)00.8010.1520.0430.01The mean and the standard deviation for the number of electrical outages (respectively) are _____.
Answer:
Therefore, the mean and the standard deviation for the number of electrical outages (respectively) are 0.26 and 0.5765 respectively.
Step-by-step explanation:
Given the probability distribution table below:
[tex]\left|\begin{array}{c|cccc}x&0&1&2&3\\P(x)&0.8&0.15&0.04&0.01\end{array}\right|[/tex]
(a)Mean
Expected Value, [tex]\mu =\sum x_iP(x_i)[/tex]
=(0*0.8)+(1*0.15)+(2*0.04)+(3*0.01)
=0+0.15+0.08+0.03
Mean=0.26
(b)Standard Deviation
[tex](x-\mu)^2\\(0-0.26)^2=0.0676\\(1-0.26)^2=0.5476\\(2-0.26)^2=3.0276\\(3-0.26)^2=7.5076[/tex]
Standard Deviation [tex]=\sqrt{\sum (x-\mu)^2P(x)}[/tex]
[tex]=\sqrt{0.0676*0.8+0.5476*0.15+3.0276*0.04+7.5076*0.01}\\=\sqrt{0.3324}\\=0.5765[/tex]
Therefore, the mean and the standard deviation for the number of electrical outages (respectively) are 0.26 and 0.5765 respectively.
The iron cube of side 42 com has a hole of diameter 14cm
drilled out. Calculate the volume of iron in the cube
and the total Surface area
of the Cube
Answer:
Step-by-step explanation:
Total surface of the cube = 6a²
= 6 * 42 * 42
= 10584 cm²
Hole that is drilled out, will make a cylinder shape in the middle of the cube
Volume of iron in the cube = Volume of cube - volume of cylinder
Volume of cube = a³
= 42 * 42 * 42
= 74088 cm³
Cylinder:
r = 14/2 = 7 cm
h = sideof the cube = 42 cm
Volume = πr²h
[tex]=\frac{22}{7}*7*7*42\\\\=22*7*7*6[/tex]
= 6468 cm³
Volume of iron in the cube = Volume of cube - volume of cylinder
= 74088 - 6468
= 67620 cm³
if y=5x what happens to the value of y if the value of x doubles
Answer:
[tex] y = 5x[/tex]
And we need to ee what happen if we increase the value of x by a factor of 2. So then for this case we can set up the equation like this:
[tex] y_f = 5(2x) = 10x[/tex]
And if we find the ratio between the two equations we got:
[tex] \frac{y_f}{y} =\frac{10x}{5x} =2[/tex]
So then if we increase the value of x by a factor of 2 then the value of y increase also by a factor of 2
Step-by-step explanation:
For this case we have this equation given:
[tex] y = 5x[/tex]
And we need to ee what happen if we increase the value of x by a factor of 2. So then for this case we can set up the equation like this:
[tex] y_f = 5(2x) = 10x[/tex]
And if we find the ratio between the two equations we got:
[tex] \frac{y_f}{y} =\frac{10x}{5x} =2[/tex]
So then if we increase the value of x by a factor of 2 then the value of y increase also by a factor of 2
The mean family income for a random sample of 600 suburban households in Loganville shows that a 95 percent confidence interval is ($43,100, $59,710). Alma is conducting a test of the null hypothesis H0: µ = 42,000 against the alternative hypothesis Ha: µ ≠ 42,000 at the α = 0.05 level of significance. Does Alma have enough information to conduct a test of the null hypothesis against the alternative?
Answer:
[tex] 43100 \leq \mu \leq 59710[/tex]
And for this case we want to test the following hypothesis:
Null hypothesis: [tex] \mu =42000[/tex]
Alternative hypothesis: [tex] \mu \neq 42000[/tex]
For this case since the lower value of the confidence interval is higher than 42000 we have enough evidence to reject the null hypothesis at the 55 of significance and we can conclude that the true mean is significantly different from 42000
Step-by-step explanation:
The confidence interval for the mean is given by the following formula:
[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex] (1)
And for this case the 95% confidence interval is already calculated as:
[tex] 43100 \leq \mu \leq 59710[/tex]
And for this case we want to test the following hypothesis:
Null hypothesis: [tex] \mu =42000[/tex]
Alternative hypothesis: [tex] \mu \neq 42000[/tex]
For this case since the lower value of the confidence interval is higher than 42000 we have enough evidence to reject the null hypothesis at the 55 of significance and we can conclude that the true mean is significantly different from 42000
Answer: Yes, because $42,000 is not contained in the 95% confidence interval, the null hypothesis would be rejected in favor of the alternative, and it could be concluded that the mean family income is significantly different from $42,000 at the α = 0.05 level
Step-by-step explanation:
took the test
If a triangle has sides that are 21 and 6 what is the range for third side x?
Enter your answer without spaces in range format.
Example: 1<x<3
Answer:
15<x<27
Step-by-step explanation:
Rule for the sides of a triangle:
The sum of the two smallest sides of a triangle must be greater than the biggest side.
In this question:
Sides of 6, 21 and x. We have to find the range for x.
If 21 is the largest side:
Two smallest are 6 and x.
x + 6 > 21
x > 21 - 6
x > 15
If x is the largest side:
Two smallest and 6 and 21. So
21 + 6 > x
27 > x
x < 27
Then
x has to be greater than 15 and smaller than 27. So the answer is:
15<x<27
What is the final amount if 784 is decreased by 1% followed by a 4% increase?
Give your answer rounded to 2 DP.
Answer:
3136
Step-by-step explanation:
Thats the answer please I don't have time to write the explanation
SELECT THE EQUIVALENT EXPRESSION
(6^-4 x 8^-7)^-9
A. 6^36•8^63
B. 1/6^13•8^16
Answer:
A
Step-by-step explanation:
Calculate the products in the multiple choice and see if any equal the product in the problem.
Hence as the products calculated in choice A equal that in the problem;the answer is A
please hurry I’ll make brainiest
A marble is thrown off of a balcony, towards the ground, from a height
of 18 feet above ground level, with a velocity of 4.5 feet per second.
Which function could be used to model the height of the marble, after
t seconds?
Answer:
Option (3)
Step-by-step explanation:
A stone has been thrown off towards the ground from a height [tex]h_{0}[/tex] = 18 feet
Initial speed of the stone 'u' = 4.5 feet per second
Since height 'h' of a projectile at any moment 't' will be represented by the function,
h(t) = ut - [tex]\frac{1}{2}(g)(t)^2[/tex] + [tex]h_{0}[/tex]
h(t) = 4.5t - [tex]\frac{1}{2}(32)t^2[/tex]+ 18 [ g = 32 feet per second square]
h(t) = 4.5t - 16t² + 18
h(t) =-16t² + 4.5t + 18
Therefore, Option (3) will be the answer.
Please answer this correctly
Answer:
the second oneStep-by-step explanation:
so much for bein a college student.
Outline the procedure for finding probabilities of any given compound events.
Answer:
Explained below.
Step-by-step explanation:
A compound event is an event in which has possible outcomes more than one.
To determine the probability of compound events on has to compute the sum of the probabilities of all the individual events and, if required, remove any coinciding probabilities.
Examples of compound events are:
The events of roll a five using a 6-sided die .The number of favorable outcome is rolling a 5, is 1.
The total number of outcomes of rolling a die is 6.
Then the probability of rolling a 5 is 1/6.
The events of pulling a heart out of a standard deck of cardsThe number of favorable outcome of pulling a heart is 13.
The total number of outcomes is 52.
The probability of pulling a heart from a standard deck is 13/52 or 1/4.
Thus, the procedure is to compute the sum of the probabilities of all the individual events and, if required, remove any coinciding probabilities.
If (-2, y) lies on the graph of y=3x, then y=
1/9
0-6
hi
if reduce equation of line is y = 3x
and if x = -2 so y = 3*-2 = -6
A container holds less than 4 gallons of paint. Which inequality represents q, the number of quarts of paint it can hold? Recall that 4 quarts equal 1 gallon. A. q 1 C q 16
Answer:
q<16
Step-by-step explanation:
Multiply four quarts by four gallons. This gives us 16. Now, since it says less than, and not less than or equal to, we use < symbol. q<16
Answer:
q<16
Step-by-step explanation:
2.In a large university 13.5% of the students take economics, 24.7% of the students take statistics and 11.7% take economics and statistics. The probability that a randomly selected student didn’t take economics but did take statistics is close toالقارئ الشامل (2/2 نقط
Answer:
The probability that a randomly selected student didn’t take economics but did take statistics is 13%.
Step-by-step explanation:
Let the event that a student offers Economics be E.
The event that a student does NOT offer Economics is E'.
Let the event that a student offers Statistics be S.
The event that a student does NOT offer Statistics be S'.
P(E) = 13.5% = 0.135
P(S) = 24.7% = 0.247
P(E n S) = 11.7% = 0.117
Find the probability that a randomly selected student didn’t take economics but did take statistics
This probability = P(E' n S)
Since E and E' are mutually exclusive events,
P(S) = P(E' n S) + P(E n S)
P(E' n S) = P(S) - P(E n S)
P(E' n S) = 0.247 - 0.117 = 0.13 = 13%
Hope this Helps!!!
Nam owns a used car lot. He checked the odometers of the cars and recorded how far they had driven. He
then created both a histogram and a box plot to display this same data (both diagrams are shown below).
Which display can be used to find how many vehicles had driven more than 200,000 km (kilometers)?
Choose 1 answer:
Answer:
a histogram
Step-by-step explanation:
You can count easily from hiistogram how many vehicles had driven more than 200,000 km (kilometers) and that's not the case with the box plot