cyclohexene reacts with bromine to yield 1,2-dibromocyclohexane. the product would be ______ and, in the most stable conformation ______ .

Answers

Answer 1

The product of the reaction between cyclohexene and bromine would be 1,2-dibromocyclohexane. In the most stable conformation, the two bromine atoms would be in the axial positions of the cyclohexane ring, while the two hydrogen atoms would be in the equatorial positions.

In the most stable conformation, the two bromine atoms will be in a trans configuration with respect to each other. This means that they will be on opposite sides of the cyclohexane ring. The trans conformation is more stable than the cis conformation, where the two bromine atoms would be on the same side of the ring. This is due to the fact that the trans conformation allows for greater separation between the bulky bromine atoms, resulting in lower steric hindrance and greater stability.

To know more about cyclohexene :

https://brainly.com/question/6854548

#SPJ11


Related Questions

what is the product of the dieckmann condensation of this diester

Answers

The Dieckmann condensation is a type of intramolecular Claisen condensation that involves the cyclization of a diester to form a cyclic β-ketoester. The product of the reaction depends on the specific diester used as the starting material.

In general, the Dieckmann condensation of a diester with a total of n carbon atoms will result in the formation of a cyclic β-ketoester with n-1 carbon atoms.

For example, if the starting material is diethyl adipate (a diester with 8 carbon atoms), the product of the Dieckmann condensation would be ethyl 6-oxohexanoate (a cyclic β-ketoester with 7 carbon atoms).

The reaction is typically catalyzed by a base, such as sodium ethoxide or potassium tert-butoxide, and is often carried out in an aprotic solvent, such as dimethylformamide (DMF) or dimethylacetamide (DMA).

To learn more about Dieckmann condensation refer here:

https://brainly.com/question/28174591#

#SPJ11

The compound Ni(NO2)2 is an ionic compound. What are the ions of which it is composed? Cation formula Anion formula

Answers

The compound Ni(NO2)2 is composed of two different ions, a cation and an anion.

The cation in this compound is nickel (Ni) and the anion is nitrite (NO2). The nickel cation has a charge of +2, which is balanced by the two nitrite anions, each with a charge of -1. The overall charge of the compound must be neutral, so the two charges of the nitrite anions cancel out the charge of the nickel cation. Therefore, the cation formula for Ni(NO2)2 is Ni2+ and the anion formula is NO2-. The nitrite anion is a polyatomic ion consisting of one nitrogen atom and two oxygen atoms.

It is important to note that although Ni(NO2)2 is considered an ionic compound, the nitrite anion is a covalent compound due to the sharing of electrons between the nitrogen and oxygen atoms. However, when combined with the positively charged nickel cation, it forms an ionic compound.

To know more about  anion visit

https://brainly.com/question/29753623

#SPJ11

Which of the following statement(s) is/are correct? i) Breeder reactors convert the non-fissionable nuclide, 238U to a fissionable product. ii) The control rods in nuclear fission reactors are composed of a substance that emits neutrons. iii) Electric power is widely generated using nuclear fusion reactors.

Answers

Control rods in nuclear fission reactors are composed of a substance that absorbs neutrons, such as boron or cadmium, to regulate the rate of the nuclear reaction. Nuclear fusion reactors are still in the experimental stage and have not yet been developed for commercial electric power generation.

Breeder reactors are a type of nuclear reactor that use a process called nuclear transmutation to convert non-fissionable isotopes, such as 238U, into fissionable isotopes, such as 239Pu. This conversion process increases the amount of fuel available for nuclear reactors and reduces the amount of nuclear waste generated.

Control rods are an important safety feature in nuclear reactors, as they can be inserted or removed from the reactor core to control the rate of the nuclear reaction and prevent the reactor from overheating. Nuclear fusion reactors are still being developed and tested, with the goal of achieving a sustainable and safe source of energy.

Learn more about Control rods  here;

https://brainly.com/question/29824258

#SPJ11

True/False: if the carbon dioxide gas is captured in the bottle, the product is called table wine.

Answers

The given statement if the carbon dioxide gas is captured in the bottle, the product is called table wine is False .

Table wine refers to still wine without significant carbonation. Sparkling wine, such as Champagne, has noticeable carbon dioxide bubbles, which are often captured in the bottle during the fermentation process. Whether or not a wine is considered table wine has nothing to do with whether carbon dioxide gas is captured in the bottle. Table wine is a term used to describe still wine that contains between 7% and 14% alcohol by volume (ABV). Wines with higher ABV are typically classified as dessert wines or fortified wines.

Sparkling wine, on the other hand, is wine that contains significant amounts of dissolved carbon dioxide, resulting in bubbles and a fizzy texture. This can be achieved through a secondary fermentation in the bottle or tank, or by adding carbon dioxide artificially.

Therefore, capturing carbon dioxide gas in a bottle alone is not enough to determine whether a wine is table wine or not. Hence, If the carbon dioxide gas is captured in the bottle, the product is not called table wine; instead, it is called sparkling wine.

To know more about table wine refer here :

https://brainly.com/question/16975086

#SPJ11

the nh3 molecule is trigonal pyramidal, while bf3 is trigonal planar. which of these molecules is flat? only bf3 is flat. both nh3 and bf3 are flat. only nh3 is flat. neither nh3 nor bf3 is flat.

Answers

The statement "only BF3 is flat" is true, and both NH3 and BF3 have different geometries due to their differing electron pair arrangements. Option A.

The shape and geometry of a molecule are determined by the number of electron pairs surrounding the central atom and the repulsion between these electron pairs. In the case of NH3, there are four electron pairs surrounding the central nitrogen atom: three bonding pairs and one lone pair.

This leads to a trigonal pyramidal geometry, where the three bonding pairs are arranged in a triangular plane, with the lone pair occupying the fourth position above the plane.

This arrangement gives NH3 a three-dimensional shape, with the nitrogen atom at the center and the three hydrogen atoms and the lone pair of electrons extending outwards in different directions.

On the other hand, BF3 has a trigonal planar geometry, which means that all three fluorine atoms are arranged in the same plane around the central boron atom.

This is because boron has only three valence electrons, and each fluorine atom shares one electron with the boron atom to form three bonding pairs.

There are no lone pairs on the central atom, and the repulsion between the three bonding pairs results in a flat, two-dimensional structure. So Option A is correct.

For more question on geometries visit:

https://brainly.com/question/29650255

#SPJ11

Why are different lines used in sketches of possible solutions​

Answers

Different lines are used in sketches of possible solutions to represent various elements, features, or conditions in a clear and organized manner.

Differentiating components: Different lines help to distinguish between different components or objects in a sketch. For example, solid lines may represent the main parts or visible surfaces, while dashed or dotted lines may indicate hidden or obscured elements.

Showing dimensions: Lines with specific patterns, such as arrows or tick marks, are used to indicate dimensions in a sketch. These lines help provide measurements and convey the size, length, or height of various features accurately.

Depicting movement or alignment: Lines can also be used to represent movement, paths, or alignments. For instance, curved lines might indicate flow or rotation, while straight lines can show linear motion or alignment of elements.

Indicating different materials or sections: Differently styled lines, such as cross-hatching or stippling, are often employed to represent different materials or sections in a sketch. This helps to communicate distinctions in textures, materials, or cross-sectional views.

Learn more about sketches of possible solutions here

https://brainly.com/question/4638576

#SPJ11

calculate the simplest or empirical formula of a substance with 0.62400 grams of chromium (cr) and 1.42128 grams of selenium (se)(2 points) (2 points) use cr = 52.00 g/mole and se = 78.96 g/mole

Answers

The empirical formula of the substance with 0.62400 grams of chromium and 1.42128 grams of selenium is Cr2Se3.

To calculate the empirical formula, we need to determine the mole ratio of the elements in the substance. To do this, we first convert the given masses of chromium and selenium to moles using their respective molar masses.
Moles of chromium = 0.62400 g / 52.00 g/mole = 0.012 mols
Moles of selenium = 1.42128 g / 78.96 g/mole = 0.018 mols
Next, we divide the mole quantities by the smallest of the two values. In this case, chromium has the smallest value of 0.012 moles. So, we divide both values by 0.012.
Moles of chromium (Cr) = 0.012 / 0.012 = 1
Moles of selenium (Se) = 0.018 / 0.012 = 1.5
Now we have the mole ratio of the elements, and we need to convert them to whole numbers by multiplying by a common factor. In this case, the common factor is 2.
Moles of Cr = 1 x 2 = 2
Moles of Se = 1.5 x 2 = 3
Finally, we write the empirical formula using the whole number mole ratios as subscripts. The empirical formula is Cr2Se3.
In conclusion, the empirical formula of the substance with 0.62400 grams of chromium and 1.42128 grams of selenium is Cr2Se3. This formula represents the smallest whole-number ratio of atoms in the substance, based on the given masses and molar masses of the elements. The calculation involves converting the masses to moles, finding the mole ratio, and multiplying by a common factor to obtain the empirical formula.

To know more about Empirical formula visit:

https://brainly.com/question/14044066

#SPJ11

An empty beaker was found to have a mass of 50. 49 grams. A hydrate of sodium carbonate was added to the beaker. When the beaker and hydrate was weighed again, the new mass was 62. 29 grams. The beaker and the hydrated compound were heated and cooled several times to remove all of the water. The beaker and the anhydrate were then weighed and its new mass was determined to be 59. 29 grams.

Answers

Based on the given information, the mass of the hydrate of sodium carbonate can be calculated by subtracting the mass of the empty beaker from the mass of the beaker and hydrated compound. The mass of the anhydrate can then be determined by subtracting the mass of the beaker from the mass of the beaker and anhydrate. The difference in mass between the hydrate and the anhydrate corresponds to the mass of water that was removed during the heating and cooling process.

To find the mass of the hydrate of sodium carbonate, we subtract the mass of the empty beaker (50.49 grams) from the mass of the beaker and hydrated compound (62.29 grams): 62.29 g - 50.49 g = 11.80 grams. Therefore, the mass of the hydrate of sodium carbonate is 11.80 grams.

Next, to find the mass of the anhydrate, we subtract the mass of the empty beaker (50.49 grams) from the mass of the beaker and anhydrate (59.29 grams): 59.29 g - 50.49 g = 8.80 grams. Therefore, the mass of the anhydrate is 8.80 grams.

The difference in mass between the hydrate and the anhydrate is the mass of water that was present in the hydrate. Subtracting the mass of the anhydrate (8.80 grams) from the mass of the hydrate (11.80 grams), we find that the mass of water lost during the heating and cooling process is 3 grams.

To learn more about Hydrate - brainly.com/question/14027291

#SPJ11

0.100 l solution of 0.270 m agno3 is combined with a 0.100 l solution of 1.00 m na3po4. calculate the concentration of ag and po3−4 at equilibrium after the precipitation of ag3po4 (sp=8.89×10−17).

Answers

The equilibrium concentration of Ag⁺ and PO₃⁻⁴ are 2.35 x 10⁻⁶ M and 7.05 x 10⁻⁶ M, respectively.

First, we need to write the balanced chemical equation for the precipitation of Ag₃PO₄;

3AgNO₃ + Na₃PO₄ → Ag₃PO₄ + 3NaNO₃

According to the stoichiometry of the equation, 3 moles of AgNO₃ are required to react with 1 mole of Na₃PO₄ to form 1 mole of Ag₃PO₄. So, we need to find out which reactant is limiting.

The number of moles of AgNO₃ present in 0.100 L of 0.270 M solution is:

0.100 L x 0.270 mol/L = 0.027 mol AgNO₃

The number of moles of Na₃PO₄ present in 0.100 L of 1.00 M solution is:

0.100 L x 1.00 mol/L = 0.100 mol Na₃PO₄

According to the stoichiometry of the equation, 0.100 mol Na₃PO₄ would require 0.300 mol AgNO₃ (3 times as many moles). However, we only have 0.027 mol AgNO₃, which is the limiting reactant.

Therefore, all 0.027 mol of AgNO will react to form Ag₃PO₄. The amount of Ag₃PO₄ that will precipitate can be calculated using its solubility product constant (Ksp);

Ksp = [Ag⁺]³ [PO₃⁻⁴]

Ksp = (x)(3x)³ = 8.89 x 10⁻¹⁷

Solving for x gives;

x = [Ag⁺] = 2.35 x 10⁻⁶ M

[PO₃⁻⁴] = 3x = 7.05 x 10⁻⁶ M

Therefore, the concentrations of Ag⁺ is 2.35 x 10⁻⁶ M and the concentration of PO3-4 is 7.05 x 10⁻⁶ M, respectively.

To know more about concentration here

https://brainly.com/question/10725862

#SPJ4

for a given atom, identify the species that has the largest radius. group of answer choices. anion radical neutral cation They are all the same size.

Answers

The species with the largest radius is the A) anion.

This is because when an atom gains an electron to become an anion, the increased electron-electron repulsion causes the electron cloud to expand, increasing the atomic radius.

In contrast, when an atom loses an electron to become a cation, the decreased electron-electron repulsion causes the remaining electrons to be drawn closer to the positively charged nucleus, resulting in a smaller atomic radius. Neutral atoms and radicals also have similar radii to their corresponding ions due to the same number of electrons.

To calculate the atomic radius, one can use X-ray crystallography, electron diffraction, or measure the distance between two bonded atoms and divide by two. So A is correct option.

For more questions like Electron click the link below:

https://brainly.com/question/1255220

#SPJ11

the combustion of ethylene proceeds by the reaction: c2h4(g) 3 o2(g) → 2 co2(g) 2 h2o(g) when the rate of appearance of co2 is 0.060 m s−1 , what is the rate of disappearance of o2?

Answers

The rate of the appearance of the CO₂ is the 0.060 m s⁻¹ , the rate of the disappearance of the O₂ is 0.090 m s⁻¹.

The chemical reaction is :

C₂H₄(g)  +  3O₂(g)  ---->  2CO₂(g)   +  2H₂O(g)

For the O₂, the coefficient is 3.

For the CO₂, the coefficient is 2.

Rate of CO₂ appearance = (rate of O₂ disappearance) * (rate ratio)

0.060 = rate of O₂ disappearance ( 2/3 )

Rate of the O₂ disappearance = 0.090 m s⁻¹.

The rate of disappearance of the O₂ is the 0.090 m s⁻¹ and the rate of the appearance of the CO₂ is the 0.060 m s⁻¹.

To learn more about rate here

https://brainly.com/question/17137298

#SPJ4

Write a balanced chemical reaction, complete ionic equation and net ionic equation for the following equations

Answers

I apologize, but you haven't provided any specific chemical equations for me to generate the balanced chemical reaction, complete ionic equation, and net ionic equation. Please provide the specific chemical equation you would like me to work with.

#SPJ11

Complete question

should all of the angles in methane (ch4) be equal? why or why not?

Answers

Therefore, the angles in methane are all equal because of the symmetry of the molecule and the hybridization of the carbon atom.

Methane (CH4) is a tetrahedral molecule, meaning that it has a three-dimensional shape with four equivalent C-H bonds pointing towards the four corners of a tetrahedron. Therefore, all of the angles in methane should be equal. The bond angle in methane is approximately 109.5 degrees, which is the angle between any two C-H bonds. This is due to the geometry of the molecule, which is based on the sp3 hybridization of the carbon atom. Each of the four C-H bonds in methane is formed by the overlap of one s orbital of carbon and one s orbital of hydrogen, resulting in a tetrahedral geometry with bond angles of 109.5 degrees.

To know more about methane visit:

https://brainly.com/question/2127750

#SPJ11

11) cesium-131 has a half-life of 9.7 days. what percent of a cesium-131 sample remains after 60 days? a) 100 b) 0 c) 1.4 d) 98.6 e) more information is needed to solve the problem answer: c

Answers

After 60 days, the amount of cesium-131 that remains is option (c) 1.4% of the original sample.

The half-life of cesium-131 is 9.7 days, which means that after 9.7 days, half of the initial amount of the sample remains. After another 9.7 days (total of 19.4 days), half of that remaining amount remains, and so on.

To find the percent of the sample that remains after 60 days, we can divide 60 by 9.7 to get the number of half-life periods that have elapsed:

60 days / 9.7 days per half-life = 6.19 half-life periods

This means that the initial sample has undergone 6 half-life periods, so only 1/2⁶ = 1.5625% of the initial sample remains. Therefore, the answer is c) 1.4%.

To know more about the cesium-131 refer here :

https://brainly.com/question/24292973#

#SPJ11

do two identical half-cells constitute a galvanic cell? (look at e and f)

Answers

Yes, two identical half-cells can indeed constitute a galvanic cell. In fact, this is often the case in laboratory experiments where the focus is on understanding the principles of electrochemistry.

A galvanic cell is made up of two half-cells, each of which contains an electrode and an electrolyte solution. When the two half-cells are connected by a wire and a salt bridge, a flow of electrons occurs from the electrode with the higher potential to the electrode with the lower potential. This creates a current that can be used to do work.

In the case of two identical half-cells, the two electrodes have the same potential, so there is no potential difference between them. As a result, there will be no net flow of electrons and no current will be generated. However, this setup can still be useful for certain types of experiments, such as those that focus on the behavior of specific electrolytes or the effects of temperature on electrochemical reactions.

Know more about Galvanic Cells here:

https://brainly.com/question/13031093

#SPJ11

Consider the complex ions Co(NH3)63+, Co(CN)63− and CoF63−. The wavelengths of absorbed electromagnetic radiation for these compounds are (in no specific order) 770 nm, 440 nm, and 290 nm. Match the complex ion to the wavelength of absorbed electromagnetic radiation.

Answers

The complex ion Co(NH3)63+ matches with the wavelength of absorbed electromagnetic radiation of 770 nm, Co(CN)63− matches with the wavelength of 440 nm, and CoF63− matches with the wavelength of 290 nm.

To match the complex ions to the wavelength of absorbed electromagnetic radiation, we need to consider the nature of the ligands in each compound. The ligands surrounding the cobalt ion affect the energy levels and thus the wavelengths of light that can be absorbed.
Co(NH3)63+ has ammonia ligands, which are weak-field ligands, meaning they cause small splitting of energy levels. Therefore, it absorbs longer wavelengths of light. The wavelength of absorbed electromagnetic radiation for this compound is 770 nm.
Co(CN)63− has cyanide ligands, which are strong-field ligands, meaning they cause large splitting of energy levels. Therefore, it absorbs shorter wavelengths of light. The wavelength of absorbed electromagnetic radiation for this compound is 440 nm.
CoF63− has fluoride ligands, which are also strong-field ligands and cause large splitting of energy levels. Therefore, it absorbs even shorter wavelengths of light. The wavelength of absorbed electromagnetic radiation for this compound is 290 nm.
In summary, the complex ion Co(NH3)63+ matches with the wavelength of absorbed electromagnetic radiation of 770 nm, Co(CN)63− matches with the wavelength of 440 nm, and CoF63− matches with the wavelength of 290 nm.

To know more about electromagnetic radiation visit :

https://brainly.com/question/28954595

#SPJ11

If a temperature increase from 25. 0 °c to 50. 0 °c triples the rate constant for a reaction, what is the value of the activation barrier for the reaction in kj/mol?

Answers

The activation barrier for the reaction is approximately 2665.24 kJ/mol obtained using the Arrhenius equation, which relates the rate constant (k) of a reaction to the temperature (T) and the activation energy (Ea) of the reaction

To calculate the activation barrier for the reaction, we can use the Arrhenius equation, which relates the rate constant (k) of a reaction to the temperature (T) and the activation energy (Ea) of the reaction. The equation is given as:

k = Ae^(-Ea/RT),

where A is the pre-exponential factor, R is the gas constant, and T is the temperature in Kelvin.

We are given that the rate constant triples when the temperature increases from 25.0 °C to 50.0 °C. Let's denote the rate constant at 25.0 °C as k1 and the rate constant at 50.0 °C as k2.

So, we have:

3k1 = k2.

We can plug these values into the Arrhenius equation:

Ae^(-Ea/(RT1)) = 3Ae^(-Ea/(RT2)).

Canceling out the pre-exponential factor (A) and taking the natural logarithm of both sides, we get:

(-Ea/(RT1)) = ln(3) - (Ea/(RT2)).

Simplifying further:

(Ea/(RT2)) - (Ea/(RT1)) = ln(3).

Factoring out Ea:

Ea((1/(RT2)) - (1/(RT1))) = ln(3).

Now, we can substitute the temperature values by converting them to Kelvin (T1 = 298 K, T2 = 323 K):

Ea((1/(298 × R)) - (1/(323 × R))) = ln(3).

Simplifying:

Ea(323 - 298)/(298 × 323 × R) = ln(3).

Ea = (ln(3) × 298 × 323 × R)/(323 - 298).

Using the value of the gas constant (R = 8.314 J/(mol·K)), we can calculate the activation energy in joules per mole (J/mol). To convert it to kilojoules per mole (kJ/mol), we divide the result by 1000:

Ea = ((ln(3) × 298 × 323 × 8.314)/(323 - 298))/1000.

Ea = ((ln(3) × 298 × 323 × 8.314)/(25))/1000.

Ea = (0.693 × 298 × 323 × 8.314)/25.

Ea = (0.693 × 96094.584)/25.

Ea = 66631.066/25.

Ea = 2665.24264.

The activation barrier for the reaction is approximately 2665.24 kJ/mol.

Learn more about the Arrhenius equation here: brainly.com/question/30232477

#SPJ11

Which is a stronger base? a. CH3CHCO or CH3CHCC BrCH2CH2CO or CH3CH2CO c. b. CH3CHCH2CO or CH,CH2CHCO d. CH3CCH2CH20 or CH,CH2CCH2O Cl Cl

Answers

Looking at the given compounds, CH₃CHCO and CH₃CHCC have similar base strengths as they both have a carbonyl group with a lone pair of electrons.

So, the correct answer is A.

BrCH₂CH₂CO is a stronger base than CH₃CH₂CO because the electronegative bromine atom pulls electron density away from the carbonyl, making the lone pair of electrons more available.

CH₃CHCH₂CO and CH,CH₂CHCO have similar base strengths as they both have a conjugated system that delocalizes the negative charge.

CH₃CCH₂CH₂₀ is a stronger base than CH,CH₂CCH₂O because the electronegative oxygen atom is more able to donate its lone pair of electrons compared to the electronegative chlorine atom.

Hence the answer of the question is A.

Learn more about strong base at

https://brainly.com/question/13931351

#SPJ11

a sample of a noble gas has a mass of 980 mg. its volume is 0.270 l at a temperature of 88 °c and a pressure of 975 mmhg. identify the gas by answering with the symbol.

Answers

A noble gas is helium, weighs 980 mg and occupies a volume of 0.270 L at a temperature of 88 °C and a pressure of 975 mmHg.

To determine the identity of the gas, we can use the ideal gas law, which relates the pressure (P), volume (V), temperature (T), and number of moles of gas (n) using the gas constant (R): PV = nRT

We can rearrange this equation to solve for the number of moles: n = PV/RT

Substituting the given values and converting units to SI units: P = 975 mmHg = 129,982.8 Pa

V = 0.270 L = 0.270 x 10^-3 m^3

T = 88 °C = 361.15 K

R = 8.314 J/mol•K

We can calculate the number of moles of gas: n = (129,982.8 Pa x 0.270 x 10^-3 m^3) / (8.314 J/mol•K x 361.15 K) = 0.011 mol

Next, we can calculate the molar mass of the gas: M = mass / n = 980 mg / 0.011 mol = 89 g/mol

The molar mass of helium is 4 g/mol, which is much smaller than the calculated molar mass. Therefore, we can conclude that the gas is helium (He), which is a noble gas and has a molar mass of 4 g/mol.

The ideal gas law is a fundamental equation in thermodynamics that relates the physical properties of a gas to each other. It is an equation of state for a gas, which means that it describes the relationship between the state variables of the gas, such as pressure, volume, and temperature.

The ideal gas law assumes that the gas is composed of particles that are in constant random motion, and that the volume of the particles is negligible compared to the volume of the container. The law also assumes that there are no intermolecular forces between the particles of the gas.

learn more about noble gas here:

https://brainly.com/question/13715159

#SPJ11

what is the second stepwise equilibrium constant expression for phosphoric acid h3po4?

Answers

The second stepwise equilibrium constant, K2, refers to the dissociation of the second proton from the conjugate base formed in the first step (H₂PO₄⁻).

In the second step, the reaction is: H₂PO₄⁻ (aq) ↔ HPO₄²⁻ (aq) + H⁺ (aq)

The equilibrium constant expression for this step, K2, can be written as:

K2 = [HPO₄²⁻][H⁺] / [H2PO₄-]

K2 is important in determining the extent of the second proton dissociation and influences the acid-base behavior of the system.

The value of K2 for phosphoric acid is approximately 6.2 x 10⁻⁸ at 25°C.

Learn more about acid-base reaction at

https://brainly.com/question/27344449

#SPJ11

Rank the following from weakest intermolecular forces to strongest. justify your answers. h2se h2s h2po h2te

Answers

The ranking of the given molecules from weakest to strongest intermolecular forces is:  H2S < H2Se < H2Te < H2PO

This ranking is based on the size, dipole moments, and polarity of each molecule, which are factors that contribute to the strength of their intermolecular forces. Also ranking is based on the trend of increasing atomic size down the group. As we move down the group, the atomic size increases which results in larger electron clouds and hence stronger intermolecular forces. 1. H2S: Weakest intermolecular forces due to its small size and relatively low dipole moment. 2. H2Se: Slightly stronger intermolecular forces than H2S because it has a larger size and a higher dipole moment. 3. H2Te: Stronger intermolecular forces due to its larger size and higher dipole moment compared to H2Se and H2S. 4. H2PO: Strongest intermolecular forces because it has a significant dipole moment, making its overall polarity higher than the other molecules listed.

To know more about molecules visit :-

https://brainly.com/question/21263612

#SPJ11

Draw the major product of this reaction. Ignore inorganic byproducts and CO2. o 1. KMnO4, OH- (warm) 2. H3O+

Answers

The given reaction involves the oxidation of an organic compound by potassium permanganate (KMnO4) in basic medium (OH-). The intermediate formed in this step is an unstable compound that further reacts with H3O+ in acidic medium to form the final product.


To draw the major product of the reaction with the given reagents, follow these steps:
1. The reactant undergoes oxidation using KMnO4 and OH- under warm conditions. This step involves the cleavage of any carbon-carbon double bonds and converting them into carbonyl groups (C=O).
2. The addition of H3O+ in the next step results in the hydration of carbonyl groups, forming geminal diols (two -OH groups on the same carbon).
The major product formed in this reaction is a carboxylic acid. The exact compound formed will depend on the starting material. The reaction of KMnO4 with a primary alcohol forms a carboxylic acid as the major product.
Therefore, the answer to the question "Draw the major product of this reaction. Ignore inorganic byproducts and CO2. o 1. KMnO4, OH- (warm) 2. H3O+" is a carboxylic acid. Without knowing the exact structure of the starting material, I cannot provide a specific structure for the major product. However, the general outcome of the reaction involves the conversion of carbon-carbon double bonds to geminal diols.

To know more about potassium permanganate visit:

https://brainly.com/question/30636651

#SPJ11

Solve 0. 0853 + 0. 05477 + 0002 report the answer to correct number of significant figures

Answers

The sum of 0.0853, 0.05477, and 0.0002, reported to be the correct number of significant figures, is 0.14.

When performing addition or subtraction with numbers, it is important to consider the significant figures in the given values and report the final answer with the appropriate number of significant figures. In this case, the number 0.0853 has four significant figures, 0.05477 has five significant figures, and 0.0002 has only one significant figure.

To determine the correct number of significant figures in the sum, we need to consider the least precise value, which is 0.0002 with one significant figure. Therefore, the final answer should also have one significant figure. Adding up the given values, we get 0.14 as the sum, which is reported to be one significant figure.

Learn more about significant figures here:

https://brainly.com/question/29153641

#SPJ11

what is the binding ernergy per nucleon of hg that has an atomic mass of 201.970617

Answers

The binding energy per nucleon of a mercury atom with an atomic mass of 0.12724 amu/nucleon is calculated to be 7.854 MeV. This value indicates the stability of the nucleus and is important in understanding nuclear reactions.

The binding energy per nucleon of a nucleus can be calculated using the formula:

BE/A = [Z(mp) + (A-Z)mn - M]/A

where BE is the binding energy, A is the atomic mass number, Z is the atomic number, mp is the mass of a proton, mn is the mass of a neutron, and M is the mass of the nucleus.

For Hg-201, Z=80, A=201, and M=201.970617 amu.

The mass of a proton is 1.00728 amu, and the mass of a neutron is 1.00867 amu.

Plugging in these values, we get:

BE/A = [80(1.00728) + (201-80)(1.00867) - 201.970617]/201

BE/A = (80.58304 + 121.28236 - 201.970617)/201

BE/A = 0.12724 amu/nucleon

Therefore, the binding energy per nucleon of Hg-201 is 0.12724 amu/nucleon.

To know more about the binding energy refer here :

https://brainly.com/question/31817434#

#SPJ11

Find the temperature of a gas system constrained to a volume of 1758ml if the pressure is measured as. 84 atm. The system contains 5. 0mol of gas

Answers

To find the temperature of a gas system with a volume of 1758 mL and a pressure of 0.84 atm, containing 5.0 mol of gas, we can use the ideal gas law equation PV = nRT.

Where:

P = Pressure (in atm)

V = Volume (in liters)

n = Number of moles

R = Ideal gas constant (0.0821 L·atm/mol·K)

T = Temperature (in Kelvin)

First, we need to convert the volume from milliliters (mL) to liters (L):

V = 1758 mL = 1758 mL / 1000 mL/L = 1.758 L

Next, we can rearrange the ideal gas law equation to solve for temperature:

T = PV / (nR)

Substituting the given values:

T = (0.84 atm) * (1.758 L) / (5.0 mol * 0.0821 L·atm/mol·K)

Calculating this expression gives us:

T = 17.4 K

Therefore, the temperature of the gas system constrained to a volume of 1758 mL, with a pressure of 0.84 atm, and containing 5.0 mol of gas is approximately 17.4 Kelvin.

Learn more about ideal gas law equation  here

https://brainly.com/question/3778152

#SPJ11

Complete the net equation for the synthesis of aspartate (a nonessential amino acid) from glucose, carbon dioxide, and ammonia.Glucose + ___ CO2 + ___ NH3 = ___ Aspartate + ____________What is the moles for CO2, NH3 and Aspartate and the name of the other final product?

Answers

Glucose + [tex]CO_2[/tex] + [tex]NH_3[/tex] = Aspartate + [tex]H_2O[/tex]. The moles for [tex]CO_2[/tex], [tex]NH_3[/tex], and Aspartate are 1 each, and the other final product is water.

The net equation for the synthesis of aspartate from glucose, carbon dioxide, and ammonia is:

Glucose + [tex]CO_2[/tex] + [tex]NH_3[/tex] = Aspartate + [tex]H_2O[/tex].

The moles of [tex]CO_2[/tex] and [tex]NH_3[/tex] required for the synthesis of one mole of aspartate are one and two, respectively. The moles of aspartate produced from one mole of glucose, [tex]CO_2[/tex], and [tex]NH_3[/tex] are also one.

The name of the other final product is water, which is produced as a byproduct of the reaction. This process occurs in the liver and kidneys and is important for the synthesis of nonessential amino acids, which are used for protein synthesis in the body.

For more such questions on Glucose, click on:

https://brainly.com/question/30174368

#SPJ11

Glucose + 2CO2 + NH3 = Aspartate + H2O. The moles for CO2 and NH3 are 2 and 1, respectively. The moles of Aspartate produced will depend on the amount of glucose used. The other final product is water.

The net equation for the synthesis of aspartate involves the conversion of glucose, carbon dioxide, and ammonia into aspartate and another final product. To balance the equation, two moles of CO2 and one mole of NH3 are required for every mole of glucose. The balanced equation is: Glucose + 2CO2 + NH3 → Aspartate + other final product To determine the moles of CO2 and NH3 used and the moles of aspartate produced, we need to know the amount of glucose used. Without this information, we cannot determine the number of reactants and products produced. The name of the other final product cannot be determined without additional information about the reaction.

Learn more about synthesis here:

https://brainly.com/question/30575627

#SPJ11

Consider the following reaction. Would each of these changes increase or decrease the rate of reaction? All statements will be sorted. 3H2 + N2 --> 2 NH3 Increase rate Decrease rate No Answers Chosen No Answers Chosen Possible answers Removing H2 Adding N2 Adding a catalyst Lowering temperature Raising temperature

Answers

Answer:

Yes it increase the Rate of chemical reaction

Removing H2 - Decrease rate; Adding N2 - Increase rate; Adding a catalyst - Increase rate; Lowering temperature - Decrease rate; Raising temperature - Increase rate.


1. Removing H2: Decrease rate. This reaction is a synthesis reaction, which means that the reactants are combining to form a product. If one of the reactants is removed, there are fewer particles available to react, which means the rate of reaction will decrease.


2. Adding N2: No change. The balanced equation shows that there is already enough N2 present to react with the available H2. Adding more N2 will not increase the rate of reaction.


3. Adding a catalyst: Increase rate. A catalyst is a substance that speeds up the rate of a reaction without being consumed in the reaction itself. In this case, a catalyst would provide an alternative pathway for the reaction to occur, which would lower the activation energy required for the reaction to take place. This would increase the rate of reaction.


4. Lowering temperature: Decrease rate. This reaction is exothermic, which means it releases heat. According to the Arrhenius equation, as temperature decreases, the rate of reaction decreases as well. Lowering the temperature would therefore decrease the rate of reaction.


5. Raising temperature: Increase rate. As mentioned above, the Arrhenius equation states that increasing temperature increases the rate of reaction. This is because the increased kinetic energy of the particles leads to more frequent and energetic collisions between particles, which increases the likelihood of successful collisions and therefore increases the rate of reaction.

To learn more about rate of reaction visit:

brainly.com/question/30546888

#SPJ11



what is the ph of a buffer solution made by adding 0.010 mole of solid naf to 50. ml of0.40 m hf? assume no change in volume. ka (hf) = 6.9xl0-4

Answers

The pH of the buffer solution made by adding 0.010 mole of solid naf to 50. ml of0.40 m hf is 3.16.

The Henderson-Hasselbalch equation, which links the pH of a buffer solution to the dissociation constant (Ka) of the weak acid and the ratio of its conjugate base to acid, must be used to calculate the pH of the buffer solution created by adding 0.010 mole of solid NaF to 50 ml of 0.40 M HF.Calculating the concentration of HF and NaF in the solution following the addition of solid NaF is the first step. The new concentration of HF may be determined using the initial concentration and the quantity of HF present before and after the addition of NaF because the volume of the solution remains constant: Amount of HF in moles prior to addition = 0.40 M x 0.050  = 0.02 moles After addition, the amount of HF is equal to 0.02 moles minus 0.01 moles.

New HF concentration is equal to 0.01 moles per 0.050 litres, or 0.20 M.

The amount of NaF added divided by the total volume of the solution gives the solution's concentration in NaF.NaF concentration: 0.010 moles per 0.050 litres, or 0.20 M. The Henderson-Hasselbalch equation is now applicable: pH equals pKa plus log([A-]/[HA]). where [A-] is the concentration of the conjugate base (NaF), [HA] is the concentration of the weak acid (HF), and [pKa] is the negative logarithm of the dissociation constant of HF (pKa = -log(Ka) = -log(6.9x10-4) = 3.16).

For more such questions on solid

https://brainly.com/question/23864332

#SPJ11

Why do chlorine atoms like to form -1 charged anions?
a.because chlorine has a very large atomic radius
b.because chlorine’s electron configuration is one electron short of a filled principal quantum number shell.
c.because chlorine is a relatively heavy atom
d.because chlorine has a very high ionization potential
e.because chlorine is a metallic substance

Answers

Option b is the correct answer. The other options are not related to the formation of anions by chlorine.

The reason why chlorine atoms like to form -1 charged anions is because of its electron configuration. Chlorine has one electron short of a filled principal quantum number shell, which means it can gain an electron to achieve a stable octet configuration.

                                      This process results in the formation of a negatively charged ion, or an anion, with a charge of -1. The reason why chlorine atoms like to form -1 charged anions is because chlorine's electron configuration is one electron short of a filled principal quantum number shell (option b).

                             When a chlorine atom gains one electron, it achieves a stable electron configuration similar to that of a noble gas, which is energetically favorable. This process results in the formation of a negatively charged anion, Cl-.

Therefore, option b is the correct answer. The other options are not related to the formation of anions by chlorine.

Learn more about electron configuration

brainly.com/question/31812229

#SPJ11

Suppose Sam prepares a solution of 1 g of sugar in 100 mL of water and Ash prepares a solution of 2 g of sugar in 100 mL of water Who made the more concentrated solution? Choose... Then, Ash adds 100 mL more water to her solution. Who has the most concentrated solution after the dilution?

Answers

a. When Sam prepares a solution of 1 g of sugar in 100 mL of water and Ash prepares a solution of 2 g of sugar in 100 mL, the more concentrated solution is made by Ash.

b. The most concentrated solution after the dilution is had by Sam and Ash.

Initially, Sam prepares a solution of 1 g of sugar in 100 mL of water, while Ash prepares a solution of 2 g of sugar in 100 mL of water. Ash made the more concentrated solution since her solution has a higher sugar-to-water ratio (2 g/100 mL compared to 1 g/100 mL).

After that, Ash adds 100 mL more water to her solution, which is a dilution. The new concentration of Ash's solution is 2 g of sugar in 200 mL of water (2 g/200 mL).

Now, comparing the two solutions after Ash's dilution:

Sam's solution: 1 g/100 mLAsh's solution: 2 g/200 mL

Both solutions have the same concentration, as both have a 1:100 sugar-to-water ratio. So, after the dilution, both Sam and Ash have equally concentrated solutions.

Learn more about concentrated solution: https://brainly.com/question/28311107

#SPJ11

Other Questions
why do the inflation rate and the nominal interest rate tend to move together? B. Answer the question.How is living in space different from living on Earth? how much energy is absorbed in heating 30.0 g of water from 0.0c to 100.0c? does changing the rate at which heat is added to the water from 50 j/s to 100 j/s affect this calculation? explain. paper must be heated to 234c to begin reacting with oxygen. this can be done by putting the paper over a flame. why do you think the paper must be heated to start burning? A third-party beneficiary is one whichGroup of answer choicesA. does not have privity of contract, but is known to the contracting parties and intended to benefit under the contract.B. does not have privity of contract and is unknown to the contracting parties.C. has failed to establish legal standing before the court.D. may establish legal standing before the court after a contract has been consummated. a) what is the ip address of your host? what is the ip address of the destination host? b) why is it that an icmp packet does not have source and destination port numbers give an example schedule with actions of transactions t1 and t 2 on objects x and y that results in a write-read conflict. The concept that allows us to draw conclusions about the population based strictly on sample data without having anyknowledge about the distribution of the underlying population debate on the topic strict discipline alone helps students get educated for students . against the topic consider the problem of example 7.3.1. find the maximum p 0 without causing yielding if n = 50 106 n (compression). find an equation for the plane that passes through the point (7, 8, 9) and is perpendicular to the line v = (0, 7, 3) t(1, 2, 3). While loop with multiple conditions Write a while loop that multiplies userValue by 2 while all of the following conditions are true: - userValue is not 10 - userValue is less than 25 you have a string and produce waves on it with 60.00 hz. the wavelength you measure is 2.00 cm. what is the speed of the wave on this string? The side of a cube of metal is measured to be (1.000.06) cm and its mass is measured to be (41.00.4) g. Determine the uncertainty in the density of the solid in kilograms per cubic meter. (a) Calculate the work (in MJ) necessary to bring a 101 kg object to a height of 992 km above the surface of the Earth.__ MJ (b) Calculate the extra work (in J) needed to launch the object into circular orbit at this height.__J The local amazon distribution center ships 5,000 packages per day. they randomly select 50 packages and find 4 have the wrong shipping label attached. predict how many of their daily packages may have the correct shipping label You want to estimate the number of eighth-grader students in your school who find it relaxing to listen to music. You consider two samples. Fifteen randomly selected members of the band. Every fifth student whose name appears on an alphabetical list of eighth-grade studentsPlease show work PLEASE HELP!!!!! all 3 questions11. In 2015, you bought a baseball card for $30 that you expect toincreasein value 2% each year. Estimate the value of the card the year yougraduate from high school. You graduate in 2025. 12. You bought a used car in 2012 for $16,000. Each year the cardepreciates by 8%. a. Write the exponential decay model to represent this situation. b. Estimate the value of the car in 6 years. 13. Classify each as exponential growth or decay. By = 18(0. 16) y = 24(1. 8) y = 13(1/2) consider the stork reaction between acetophenone and propenal. draw the structure of the product of the enamine formed between acetophenone and dimethylamine. calculate the entropy change for the vaporization of 1.00 mol of water at 100c. the enthalpy of vaporization of water is 40.7 kj/mol at 100c.