Convert the following base-ten numerals to a numeral in the indicated bases. a. 481 in base five b. 4251 in base twelve c. 27 in base three a. 481 in base five is five

Answers

Answer 1

A. The numeral 481 in base five is written as 2011.

B. To convert the base-ten numeral 481 to base five, we need to divide it by powers of five and determine the corresponding digits in the base-five system.

Step 1: Divide 481 by 5 and note the quotient and remainder.

481 ÷ 5 = 96 with a remainder of 1. Write down the remainder, which is the least significant digit.

Step 2: Divide the quotient (96) obtained in the previous step by 5.

96 ÷ 5 = 19 with a remainder of 1. Write down this remainder.

Step 3: Divide the new quotient (19) by 5.

19 ÷ 5 = 3 with a remainder of 4. Write down this remainder.

Step 4: Divide the new quotient (3) by 5.

3 ÷ 5 = 0 with a remainder of 3. Write down this remainder.

Now, we have obtained the remainder in reverse order: 3141.

Hence, the numeral 481 in base five is represented as 113.

Note: The explanation assumes that the numeral in the indicated bases is meant to be the answer for part (a) only.

Learn more about base-ten numerals:

brainly.com/question/24020782

#SPJ11


Related Questions

Solve the given system of differential equations by systematic elimination. dy dt 2dx dt dx dt (x(t), y(t)) 4x + X + dy dt = et 4et Solve the given system of differential equations by systematic elimination. dx dy 2- dt dt dx dy dt dt 4x + x + = = et 4et (x(t), y(t)) = ( Ce³t+³2e¹,4² + (1-C) e³² + €₁ ‚4e² 3t X )

Answers

The solution to the given system of differential equations is:

[tex]\(x(t) = \frac{4}{5} e^t - \frac{2}{3} e^{2t} + C_1\)\\\(y(t) = 5e^t - \frac{5}{3}e^{2t} + 3C_1t + C_2\)[/tex]

To solve the given system of differential equations by systematic elimination, we can eliminate one variable at a time to obtain a single differential equation. Let's begin by eliminating [tex]\(x(t)\)[/tex].

Differentiating the second equation with respect to [tex]\(t\)[/tex], we get:

[tex]\[\frac{d^2x}{dt^2} = e^t\][/tex]

Substituting this expression into the first equation, we have:

[tex]\(\frac{dy}{dt} - 2e^t \frac{dx}{dt} = 4x + x + e^t\)[/tex]

Simplifying the equation, we get:

[tex]\(\frac{dy}{dt} - 2e^t \frac{dx}{dt} = 5x + e^t\)[/tex]

Next, differentiating the above equation with respect to [tex]\(t\)[/tex], we have:

[tex]\(\frac{d^2y}{dt^2} - 2e^t \frac{d^2x}{dt^2} = 5 \frac{dx}{dt}\)[/tex]

Substituting [tex]\(\frac{d^2x}{dt^2} = e^t\)[/tex], we have:

[tex]\(\frac{d^2y}{dt^2} - 2e^{2t} = 5 \frac{dx}{dt}\)[/tex]

Now, let's eliminate [tex]\(\frac{dx}{dt}\)[/tex]. Differentiating the second equation with respect to [tex]\(t\),[/tex] we get:

[tex]\(\frac{d^2y}{dt^2} = 4e^t\)[/tex]

Substituting this expression into the previous equation, we have:

[tex]\(4e^t - 2e^{2t} = 5 \frac{dx}{dt}\)[/tex]

Simplifying the equation, we get:

[tex]\(\frac{dx}{dt} = \frac{4e^t - 2e^{2t}}{5}\)[/tex]

Integrating on both sides:

[tex]\(\int \frac{dx}{dt} dt = \int \frac{4e^t - 2e^{2t}}{5} dt\)[/tex]

Integrating each term separately, we have:

[tex]\(x = \frac{4}{5} e^t - \frac{2}{3} e^{2t} + C_1\)[/tex]

where [tex]\(C_1\)[/tex] is the constant of integration.

Now, we can substitute this result back into one of the original equations to solve for [tex]\(y(t)\)[/tex]. Let's use the second equation:

[tex]\(\frac{dy}{dt} = 4x + x + e^t\)[/tex]

Substituting the expression for [tex]\(x(t)\)[/tex], we have:

[tex]\(\frac{dy}{dt} = 4 \left(\frac{4}{5} e^t - \frac{2}{3} e^{2t} + C_1\right) + \left(\frac{4}{5} e^t - \frac{2}{3} e^{2t} + C_1\right) + e^t\)[/tex]

Simplifying the equation, we get:

[tex]\(\frac{dy}{dt} = \frac{16}{5} e^t - \frac{8}{3} e^{2t} + 2C_1 + \frac{4}{5} e^t - \frac{2}{3} e^{2t} + C_1 + e^t\)[/tex]

Combining like terms, we have:

[tex]\(\frac{dy}{dt} = \left(\frac{20}{5} + \frac{4}{5} + 1\right)e^t - \left(\frac{8}{3} + \frac{2}{3}\right)e^{2t} + 3C_1\)[/tex]

Simplifying further, we get:

[tex]\(\frac{dy}{dt} = 5e^t - \frac{10}{3}e^{2t} + 3C_1\)[/tex]

Integrating both sides with respect to \(t\), we have:

[tex]\(y = 5 \int e^t dt - \frac{10}{3} \int e^{2t} dt + 3C_1t + C_2\)[/tex]

Evaluating the integrals and simplifying, we get:

[tex]\(y = 5e^t - \frac{5}{3}e^{2t} + 3C_1t + C_2\)[/tex]

where [tex]\(C_2\)[/tex] is the constant of integration.

Therefore, the complete solution to the system of differential equations is:

[tex]\(x(t) = \frac{4}{5} e^t - \frac{2}{3} e^{2t} + C_1\)\\\(y(t) = 5e^t - \frac{5}{3}e^{2t} + 3C_1t + C_2\)[/tex]

To know more about systematic elimination, refer here:

https://brainly.com/question/29847467#

#SPJ11

Karl Runs A Firm With The Following Production Function F(X1,X2)=Min(4x1,5x2), Where X1 And X2 Are Units Of Input 1 And 2 , Respectively. The Price Of Inputs 1 And 2 Are 4 And 5 , Respectively. What Is The Minimal Cost Of Producing 192 Units? (Round Off To The Closest Integer)

Answers

The minimal cost of producing 192 units is $672.

To find the minimal cost of producing 192 units, we need to determine the optimal combination of inputs (x1 and x2) that minimizes the cost function while producing the desired output.

Given the production function F(x1, x2) = min(4x1, 5x2), the function takes the minimum value between 4 times x1 and 5 times x2. This means that the output quantity will be limited by the input with the smaller coefficient.

To produce 192 units, we set the production function equal to 192:

min(4x1, 5x2) = 192

Since the price of input 1 is $4 and input 2 is $5, we can equate the cost function with the cost of producing the desired output:

4x1 + 5x2 = cost

To minimize the cost, we need to determine the values of x1 and x2 that satisfy the production function and result in the lowest possible cost.

Considering the given constraints, we can solve the system of equations to find the optimal values of x1 and x2. However, it's worth noting that the solution might not be unique and could result in fractional values. In this case, we are asked to round off the minimal cost to the closest integer.

By solving the system of equations, we find that x1 = 48 and x2 = 38.4. Multiplying these values by the respective input prices and rounding to the closest integer, we get:

Cost = (4 * 48) + (5 * 38.4) = 672

 

Therefore, the minimal cost of producing 192 units is $672.

Learn more about function here: brainly.com/question/30721594

#SPJ11

How many ways can 2 men and 2 women be selected for a debate toumament if there are 13 male finalists and 10 female finalists? There are ways to select 2 men and 2 women for the debate tournament.

Answers

The number of ways to select 2 men and 2 women for the debate tournament is 78 * 45 = 3510 ways.

To select 2 men from 13 male finalists, we can use the combination formula. The formula for selecting r items from a set of n items is given by nCr, where n is the total number of items and r is the number of items to be selected.
In this case, we want to select 2 men from 13 male finalists, so we have 13C2 = (13!)/(2!(13-2)!) = 78 ways to select 2 men.

Similarly, to select 2 women from 10 female finalists, we have 10C2 = (10!)/(2!(10-2)!) = 45 ways to select 2 women.
To find the total number of ways to select 2 men and 2 women, we can multiply the number of ways to select 2 men by the number of ways to select 2 women.

So, the total number of ways to select 2 men and 2 women for the debate tournament is 78 * 45 = 3510 ways.

Learn more about combination here at:

https://brainly.com/question/4658834

#SPJ11

Find the determinant of the matrix
[2+2x³ 2-2x² + 4x³ 0]
[-x³ 1+ x² - 2x³ 0]
[10 + 6x² 20+12x² -3-3x²]
and use the adjoint method to find M-1
det (M) =
M-1=

Answers

The determinant of the matrix M is 0, and the inverse matrix [tex]M^{-1}[/tex] is undefined.

To find the determinant of the matrix and the inverse using the adjoint method, we start with the given matrix M:

[tex]M = \[\begin{bmatrix}2+2x^3 & 2-2x^2+4x^3 & 0 \\-x^3 & 1+x^2-2x^3 & 0 \\10+6x^2 & 20+12x^2-3-3x^2 & 0 \\\end{bmatrix}\][/tex]

To find the determinant of M, we can use the Laplace expansion along the first row:

[tex]det(M) = (2+2x^3) \[\begin{vmatrix}1+x^2-2x^3 & 0 \\20+12x^2-3-3x^2 & 0 \\\end{vmatrix}\] - (2-2x^2+4x^3) \[\begin{vmatrix}-x^3 & 0 \\10+6x^2 & 0 \\\end{vmatrix}\][/tex]

[tex]det(M) = (2+2x^3)(0) - (2-2x^2+4x^3)(0) = 0[/tex]

Therefore, the determinant of M is 0.

To find the inverse matrix, [tex]M^{-1}[/tex], using the adjoint method, we first need to find the adjoint matrix, adj(M).

The adjoint of M is obtained by taking the transpose of the matrix of cofactors of M.

[tex]adj(M) = \[\begin{bmatrix}C_{11} & C_{21} & C_{31} \\C_{12} & C_{22} & C_{32} \\C_{13} & C_{23} & C_{33} \\\end{bmatrix}\][/tex]

Where [tex]C_{ij}[/tex] represents the cofactor of the element [tex]a_{ij}[/tex] in M.

The inverse of M can then be obtained by dividing adj(M) by the determinant of M:

[tex]M^{-1} = \(\frac{1}{det(M)}\) adj(M)[/tex]

Since det(M) is 0, the inverse of M does not exist.

Therefore, [tex]M^{-1}[/tex] is undefined.

To know more about determinant, refer here:

https://brainly.com/question/31867824

#SPJ4



Write a two-column proof. (Lesson 4-4)

Given: AB- ≅ DE-,

AC- ≅ DF-,

AB- | DE-


Prove: △A B C ≅ △D E F

Answers

Using the given information and the properties of congruent segments, it can be proven that triangle ABC is congruent to triangle DEF.

In order to prove that triangle ABC is congruent to triangle DEF, we can use the given information and the properties of congruent segments.

First, we are given that AB is congruent to DE and AC is congruent to DF. This means that the corresponding sides of the triangles are congruent.

Next, we are given that AB is parallel to DE. This means that angle ABC is congruent to angle DEF, as they are corresponding angles formed by the parallel lines AB and DE.

Now, we can use the Side-Angle-Side (SAS) congruence criterion to establish congruence between the two triangles. We have two pairs of congruent sides (AB ≅ DE and AC ≅ DF) and the included congruent angle (angle ABC ≅ angle DEF). Therefore, by the SAS criterion, triangle ABC is congruent to triangle DEF.

The Side-Angle-Side (SAS) criterion is one of the methods used to prove the congruence of triangles. It states that if two sides of one triangle are congruent to two sides of another triangle, and the included angles are congruent, then the triangles are congruent. In this proof, we used the SAS criterion to show that triangle ABC is congruent to triangle DEF by establishing the congruence of corresponding sides (AB ≅ DE and AC ≅ DF) and the congruence of the included angle (angle ABC ≅ angle DEF). This allows us to conclude that the two triangles are congruent.

Learn more about congruent

brainly.com/question/33002682

#SPJ11

(02.01 MC) Triangle FIT has been reflected over the y-axis. Which of the following best describes the relationship between the y-axis and the line connecting F to F? (4 pe They share the same midpoints. They are diameters of concentric circles. They are perpendicular to each other. They are parallel and congruent.​

Answers

The best description of the relationship between the y-axis and the line connecting F to F' after reflection over the y-axis is that they are perpendicular to each other.

When a triangle is reflected over the y-axis, its vertices swap their x-coordinates while keeping their y-coordinates the same. Let's consider the points F and F' on the reflected triangle.

The line connecting F to F' is the vertical line on the y-axis because the reflection over the y-axis does not change the y-coordinate. The y-axis itself is also a vertical line.

Since both the line connecting F to F' and the y-axis are vertical lines, they are perpendicular to each other. This is because perpendicular lines have slopes that are negative reciprocals of each other, and vertical lines have undefined slopes.

Therefore, the best description of the relationship between the y-axis and the line connecting F to F' after reflection over the y-axis is that they are perpendicular to each other.

for such more question on perpendicular

https://brainly.com/question/18991632

#SPJ8

Create an inequality that needs to reverse the symbol to be true and one that does not need to be reversed.
Reverse
Do Not Reverse

Answers

Answer:

See below

Step-by-step explanation:

An easy example of an inequality where you need to flip the sign to be true is something like [tex]-2x > 4[/tex]. By dividing both sides by -2 to isolate x and get [tex]x < -2[/tex], you would need to also flip the sign to make the inequality true.

One that wouldn't need to be reversed is [tex]2x > 4[/tex]. You can just divide both sides by 2 to get [tex]x > 2[/tex] and there's no flipping the sign since you are not multiplying or dividing by a negative.

A 3500 lbs car rests on a hill inclined at 6◦ from the horizontal. Find the magnitude
of the force required (ignoring friction) to prevent the car from rolling down the hill. (Round
your answer to 2 decimal places)

Answers

The magnitude of the force required to prevent the car from rolling down the hill is 1578.88 Newton.

How to calculate the magnitude of the force?

In accordance with Newton's Second Law of Motion, the force acting on this car is equal to the horizontal component of the force (Fx) that is parallel to the slope:

Fx = mgcosθ

Fx = Fcosθ

Where:

F represents the force.m represents the mass of a physical object.g represents the acceleration due to gravity.

Note: 3500 lbs to kg = 3500/2.205 = 1587.573 kg

By substituting the given parameters into the formula for the horizontal component of the force (Fx), we have;

Fx = 1587.573cos(6)

Fx = 1578.88 Newton.

Read more on force here: https://brainly.com/question/25961211

#SPJ4

The magnitude of the force required to prevent the car from rolling down the hill is approximately 367.01 lbs.

To find the magnitude of the force required to prevent the car from rolling down the inclined hill, we can analyze the forces acting on the car.

The weight of the car acts vertically downward with a magnitude of 3500 lbs. We can decompose this weight into two components: one perpendicular to the incline and one parallel to the incline.

The component perpendicular to the incline can be calculated as W_perpendicular = 3500 * cos(6°).

The component parallel to the incline represents the force that tends to make the car roll down the hill. To prevent this, an equal and opposite force is required, which is the force we need to find.

Since we are ignoring friction, the force required to prevent rolling is equal to the parallel component of the weight: F_required = 3500 * sin(6°).

Calculating this value gives:

F_required = 3500 * sin(6°) ≈ 367.01 lbs (rounded to 2 decimal places).

Therefore, the magnitude of the force required to prevent the car from rolling down the hill is approximately 367.01 lbs.

Learn more about magnitude here:

https://brainly.com/question/30337362

#SPJ11

Do not use EXCEL Assume that the average household expenditure during the first day of Christmas in Istanbul is expected to be $100.89. It is documented that the average spending in a sample survey of 40 families residing in Asian side of Istanbul is $135.67, and the average expenditure in a sample survey of 30 families living in European side of Istanbul is $68.64. Based on the past surveys, the standard deviation for families residing in Asian side is assumed to be $35, and the standard deviation for families living in European side is assumed to be $20. Using the information above, develop a 99% confidence interval for the difference between the expenditure of two average household residing in two different sides of Istanbul.

Answers

The 99% confidence interval for the difference in the mean expenditure between the two groups is $67.03 ± $14.84.

It is documented that the average spending in a sample survey of 40 families residing in Asian side of Istanbul is $135.67, and the average expenditure in a sample survey of 30 families living in European side of Istanbul is $68.64.

Based on the past surveys, the standard deviation for families residing in Asian side is assumed to be $35, and the standard deviation for families living in European side is assumed to be $20.

Using the above information, we can construct a 99% confidence interval for the difference between the two groups as follows:

Given that we need to construct a confidence interval for the difference in the mean spending of two groups, we can use the following formula:

[tex]CI = Xbar1 - Xbar2 \± Zα/2 * √(S1^2/n1 + S2^2/n2)[/tex]

Here, Xbar1 = 135.67, Xbar2 = 68.64S1 = 35, S2 = 20n1 = 40, n2 = 30Zα/2 for 99% confidence level = 2.576Putting these values in the formula above, we get:

CI = 135.67 - 68.64 ± 2.576 * √(35^2/40 + 20^2/30)= 67.03 ± 14.84

Therefore,The difference in mean spending between the two groups has a 99% confidence interval of $67.03 $14.84.

Learn more about household expenditure

https://brainly.com/question/31018505

#SPJ11

Determine the first three nonzero terms in the Taylor polynomial approximation for the given initial value problem. x ′′
+8tx=0;x(0)=1,x ′
(0)=0 The Taylor approximation to three nonzero terms is x(t)=+⋯.

Answers

The first three nonzero terms in the Taylor polynomial approximation for the given initial value problem are: 1 - t^2/8 + t^4/128.

Given the initial value problem: x′′ + 8tx = 0; x(0) = 1, x′(0) = 0. To find the first three nonzero terms in the Taylor polynomial approximation, we follow these steps:

Step 1: Find x(t) and x′(t) using the integrating factor.

We start with the differential equation x′′ + 8tx = 0. Taking the integrating factor as I.F = e^∫8t dt = e^4t, we multiply it on both sides of the equation to get e^4tx′′ + 8te^4tx = 0. This simplifies to e^4tx′′ + d/dt(e^4tx') = 0.

Integrating both sides gives us ∫ e^4tx′′ dt + ∫ d/dt(e^4tx') dt = c1. Now, we have e^4tx' = c2. Differentiating both sides with respect to t, we get 4e^4tx' + e^4tx′′ = 0. Substituting the value of e^4tx′′ in the previous equation, we have -4e^4tx' + d/dt(e^4tx') = 0.

Simplifying further, we get -4x′ + x″ = 0, which leads to x(t) = c3e^(4t) + c4.

Step 2: Determine the values of c3 and c4 using the initial conditions.

Using the initial conditions x(0) = 1 and x′(0) = 0, we can substitute these values into the expression for x(t). This gives us c3 = 1 and c4 = -1/4.

Step 3: Write the Taylor polynomial approximation.

The Taylor approximation to three nonzero terms is x(t) = 1 - t^2/8 + t^4/128 + ...

Therefore, the starting value problem's Taylor polynomial approximation's first three nonzero terms are: 1 - t^2/8 + t^4/128.

Learn more about Taylor polynomial

https://brainly.com/question/30481013

#SPJ11

A solid but inhomogeneous cone with vertex angle
π /4
and height h lies horizontally on the XY plane. The cone rolls without slipping with its vertex at the origin: x=0 and y=0. The density of the cone is:
p (w)=p u [ 1+sin^{2}(w/2)]
w
the angle of rotation about its axis. At the initial instant, the cone is in its equilibrium position, with its center of mass located vertically below its axis. Its axis is oriented in such a way that its projection on the XY plane coincides with the positive x direction.
Taps the cone lightly and knocks it out of its equilibrium position, maintaining the condition that the vertex is fixed at the origin of the reference system. Thus, the cone begins to rotate without slipping. Write the equation for the motion of the cone in the regime of small oscillations.

Answers

The equation of motion for the cone in the regime of small oscillations is ∫₀ˣ₀ (h - θ × r)² × dθ × ω' × ω = ω' × ω × ∫₀ˣ₀ (h - θ × r)² × dθ.

How did we arrive at this equation?

To write the equation for the motion of the cone in the regime of small oscillations, we need to consider the forces acting on the cone and apply Newton's second law of motion. In this case, the cone experiences two main forces: gravitational force and the force due to the constraint of rolling without slipping.

Let's define the following variables:

- θ: Angular displacement of the cone from its equilibrium position (measured in radians)

- ω: Angular velocity of the cone (measured in radians per second)

- h: Height of the cone

- p: Density of the cone

- g: Acceleration due to gravity

The gravitational force acting on the cone is given by the weight of the cone, which is directed vertically downwards and can be calculated as:

F_gravity = -m × g,

where m is the mass of the cone. The mass of the cone can be obtained by integrating the density over its volume. In this case, since the density is a function of the angular coordinate w, we need to express the mass in terms of θ.

The mass element dm at a given angular displacement θ is given by:

dm = p × dV,

where dV is the differential volume element. For a cone, the volume element can be expressed as:

dV = (π / 3) × (h - θ × r)² × r × dθ,

where r is the radius of the cone at height h - θ × r.

Integrating dm over the volume of the cone, we get the mass m as a function of θ:

m = ∫₀ˣ₀ p × (π / 3) × (h - θ × r)² × r × dθ,

where the limits of integration are from 0 to θ₀ (the equilibrium position).

Now, let's consider the force due to the constraint of rolling without slipping. This force can be decomposed into two components: a tangential force and a normal force. Since the cone is in a horizontal position, the normal force cancels out the gravitational force, and we are left with the tangential force.

The tangential force can be calculated as:

F_tangential = m × a,

where a is the linear acceleration of the center of mass of the cone. The linear acceleration can be related to the angular acceleration α by the equation:

a = α × r,

where r is the radius of the cone at the center of mass.

The angular acceleration α can be related to the angular displacement θ and angular velocity ω by the equation:

α = d²θ / dt² = (dω / dt) = dω / dθ × dθ / dt = ω' × ω,

where ω' is the derivative of ω with respect to θ.

Combining all these equations, we have:

m × a = m × α × r,

m × α = (dω / dt) = ω' × ω.

Substituting the expressions for m, a, α, and r, we get:

∫₀ˣ₀ p × (π / 3) × (h - θ × r)² × r × dθ × ω' × ω = ω' × ω × ∫₀ˣ₀ p × (π / 3) × (h - θ × r)² × r × dθ.

Now, in the regime of small oscillations, we can make an approximation that sin(θ) ≈ θ, assuming θ is small. With this approximation, we can rewrite the equation as follows:

∫₀ˣ₀ p × (π / 3) × (h - θ × r)² × r × dθ × ω' × ω = ω' × ω × ∫₀ˣ₀ p × (π / 3) × (h - θ × r)² × r × dθ.

We can simplify this equation further by canceling out some terms:

∫₀ˣ₀ (h - θ × r)² × dθ × ω' × ω = ω' × ω × ∫₀ˣ₀ (h - θ × r)² × dθ.

This equation represents the equation of motion for the cone in the regime of small oscillations. It relates the angular displacement θ, angular velocity ω, and their derivatives ω' to the properties of the cone such as its height h, density p, and radius r. Solving this equation will give us the behavior of the cone in the small oscillation regime.

learn more about equation for cone motion: https://brainly.com/question/1082469

#SPJ4

Identify if the given table shows a Linear or Quadratic relationship.
X
-2
-1
0
1
2
3
y
51
30
15
6
3
6
Quadratic
Exponential
No Relationship
Linear

Answers

Answer:

The given table shows a quadratic relationship.



Write a polynomial function with the given zeros. x=1,2,3 .

Answers

A polynomial function with zeros at x = 1, 2, and 3 can be expressed as:

f(x) = (x - 1)(x - 2)(x - 3)

To determine the polynomial function, we use the fact that when a factor of the form (x - a) is present, the corresponding zero is a. By multiplying these factors together, we obtain the desired polynomial function.

Expanding the expression, we have:

f(x) = (x - 1)(x - 2)(x - 3)

     = (x² - 3x + 2x - 6)(x - 3)

     = (x² - x - 6)(x - 3)

     = x³ - x² - 6x - 3x² + 3x + 18

     = x³ - 4x² - 3x + 18

Therefore, the polynomial function with zeros at x = 1, 2, and 3 is f(x) = x³ - 4x² - 3x + 18.

To learn more about polynomial function, refer here:

https://brainly.com/question/11298461

#SPJ11

For the function below, find (a) the critical numbers, (b) the open intervals where the function is increasing, and (c) the open intervals where it is decreasing f(x)=2.3+16x-0.3x² CTT

Answers

Answer:

critical number: 26.6667

increasing from (-∞, 26.6667) and decreasing from (26.6667,∞)

Step-by-step explanation:

1) find the derivative:

derivative of f(x) = 16-0.6x

2) Set derivative equal to zero

16-0.6x = 0

0.6x = 16

x = 26.6667

3) Create a table of intervals

(-∞, 26.6667) | (26.6667, ∞)

          1                     27

Plug in these numbers into the derivative

         +                      -

So It is increasing from (-∞, 26.6667) and decreasing from (26.6667,∞)

a man finds 1 hundred dollars and he keeps one half of it, gives 1 fourth if it to someone and and gives another 1 fifth of it to some else and he puts the rest in savings. how much did he give everyone​

Answers

The man kept half of the 100 dollars, which is 50 dollars. He gave 1/4 of the remaining 50 dollars to someone else, which is 12.5 dollars. He then gave 1/5 of the remaining 37.5 dollars to someone else, which is 7.5 dollars. The man put the rest in savings, which is 30 dollars. Therefore, he gave away a total of 20 dollars.

Determine whether the following matrices are in echelon form, reduced echelon form or not in echelon form.
a. Choose
-10 0 1
0 -8 0
b.
Choose
1 0 1
0 1 0
0 0 0
c. Choose
1 0 0 -5
0 1 0 -2
0 0 0 0 d. Choose
1 0 0 4
0 0 0 0
0 1 0 -7
Note: In order to get credit for this problem all answers must be correct.
Problem 14. (a) Perform the indicated row operations on the matrix A successively in the order they are given until a matrix in row echelon form is produced.
A = 3 -9 -3
5 -14 -3
Apply (1/3)R1 → R₁ to A.
Apply R₂-5R1→ R₂ to the previous result.
(b) Solve the system
x=
J 3x1-9x2 = do do

Answers

The solution to  echelon form matrix of the system is x = (1, -1, -35/3, -14/3, 1)

(a) Let's analyze each matrix to determine if it is in echelon form, reduced echelon form, or not in echelon form:

a. A = | 10 0 10 -8 0 |

| 0 0 0 0 0 |

This matrix is not in echelon form because there are non-zero elements below the leading 1s in the first row.

b. B = | 1 0 10 1 0 |

| 0 0 0 0 0 |

This matrix is in echelon form because all non-zero rows are above any rows of all zeros. However, it is not in reduced echelon form because the leading 1s do not have zeros above and below them.

c. C = | 1 0 0 -50 |

| 1 0 -20 0 |

| 0 0 0 0 |

This matrix is not in echelon form because there are non-zero elements below the leading 1s in the first and second rows.

d. D = | 1 0 0 40 |

| 0 1 0 -7 |

| 0 0 0 0 |

This matrix is in reduced echelon form because it satisfies the following conditions:

All non-zero rows are above any rows of all zeros.

The leading entry in each non-zero row is 1.

The leading 1s are the only non-zero entry in their respective columns.

(b) The system of equations can be written as follows:

3x1 - 9x2 = 0

To solve this system, we can use row operations on the augmented matrix [A | B] until it is in reduced echelon form:

Multiply the first row by (1/3) to make the leading coefficient 1:

R1' = (1/3)R1 = (1/3) * (3 -9 -35 -14 -3) = (1 -3 -35/3 -14/3 -1)

Subtract 5 times the first row from the second row:

R2' = R2 - 5R1 = (0 0 0 0 0) - 5 * (1 -3 -35/3 -14/3 -1) = (-5 15 35/3 28/3 5)

The resulting matrix [A' | B'] in reduced echelon form is:

A' = (1 -3 -35/3 -14/3 -1)

B' = (-5 15 35/3 28/3 5)

From the reduced echelon form, we can obtain the solution to the system of equations:

x1 = 1

x2 = -1

x3 = -35/3

x4 = -14/3

x5 = 1

Therefore, the solution to the system is x = (1, -1, -35/3, -14/3, 1).

Learn more about: echelon form

https://brainly.com/question/30403280

#SPJ11

Tovaluate-147 +5₁ when yoq y=9

Answers

After evaluation when y = 9, the value of -147 + 5₁ is -102.

Evaluation refers to the process of finding the value or result of a mathematical expression or equation. It involves substituting given values or variables into the expression and performing the necessary operations to obtain a numerical or simplified value. The result obtained after substituting the values is the evaluation of the expression.

To evaluate the expression -147 + 5₁ when y = 9, we substitute the value of y into the expression:

-147 + 5 * 9

Simplifying the multiplication:

-147 + 45

Performing the addition:

-102

Therefore, when y = 9, the value of -147 + 5₁ is -102.

Learn more about evaluation

https://brainly.com/question/20067491

#SPJ11

Solve for the indicated variable. a+b²=² for b (b>0) 9 X 0/6 5

Answers

Step 1: The solution for the indicated variable b is b = ±√a.

Step 2: To solve the equation a + b² = ² for b, we need to isolate the variable b.

First, let's subtract 'a' from both sides of the equation: b² = ² - a.

Next, we take the square root of both sides to solve for b: b = ±√(² - a).

Since the question specifies that b > 0, we can discard the negative square root solution. Therefore, the solution for b is b = √(² - a).

Step 3: In the given equation, a + b² = ², we need to solve for the variable b. To do this, we follow a few steps. First, we subtract 'a' from both sides of the equation to isolate the term b²: b² = ² - a. Next, we take the square root of both sides to solve for b. However, we must consider that the question specifies b > 0. Therefore, we discard the negative square root solution and obtain the final solution: b = √(² - a). This means that the value of b is equal to the positive square root of the quantity (² - a).

Learn more about the process of solving equations.

brainly.com/question/11653895

#SPJ11

Fifty-five distinct numbers are randomly selected from the first 100 natural numbers.
(a) Prove there must be two which differ by 10, and two which differ by 12.
(b) Show there doesn’t have to be two which differ by 11

Answers

(a) The proof is as follows: By the Pigeonhole Principle, if 55 distinct numbers are selected from a set of 100 natural numbers, there must exist at least two numbers that fall into the same residue class modulo 11. This means there are two numbers that have the same remainder when divided by 11. Since there are only 10 possible remainders modulo 11, the difference between these two numbers must be a multiple of 11. Therefore, there exist two numbers that differ by 11. Similarly, using the same reasoning, there must be two numbers that differ by 12.

(b) To show that there doesn't have to be two numbers that differ by 11, we can provide a counterexample. Consider the set of numbers {1, 12, 23, 34, ..., 538, 549}. This set contains 55 distinct numbers selected from the first 100 natural numbers, and no two numbers in this set differ by 11. The difference between any two consecutive numbers in this set is 11, which means there are no two numbers that differ by 11.

(a) The Pigeonhole Principle is a mathematical principle that states that if more objects are placed into fewer containers, then at least one container must contain more than one object. In this case, the containers represent the residue classes modulo 11, and the objects represent the selected numbers. Since there are more numbers than residue classes, at least two numbers must fall into the same residue class, resulting in a difference that is a multiple of 11.

(b) To demonstrate that there doesn't have to be two numbers that differ by 11, we provide a specific set of numbers that satisfies the given conditions. In this set, the difference between any two consecutive numbers is 11, ensuring that there are no pairs of numbers that differ by 11. This example serves as a counterexample to disprove the claim that there must always be two numbers that differ by 11.

Learn more about the Pigeonhole Principle.

brainly.com/question/31687163

#SPJ11

The exterior angle of a regular polygon is 5 times the interior angle. Find the exterior angle, the interior angle and the number of sides​

Answers

Answer:The interior angle of a polygon is given by

The exterior angle of a polygon is given by

where n is the number of sides of the polygon

The statement

The interior of a regular polygon is 5 times the exterior angle is written as

Solve the equation

That's

Since the denominators are the same we can equate the numerators

That's

180n - 360 = 1800

180n = 1800 + 360

180n = 2160

Divide both sides by 180

n = 12

I).

The interior angle of the polygon is

The answer is

150°

II.

Interior angle + exterior angle = 180

From the question

Interior angle = 150°

So the exterior angle is

Exterior angle = 180 - 150

We have the answer as

30°

III.

The polygon has 12 sides

IV.

The name of the polygon is

Dodecagon

Step-by-step explanation:

Solve 3x=11 o x=ln11−ln3
o x=ln3−ln11
o x=ln11/ln3
o x=11/3

Answers

The correct solution to the equation 3x = 11 is x = ln11 - ln3.

To solve the equation 3x = 11, we can use logarithmic properties to isolate the variable x. Taking the natural logarithm (ln) of both sides, we have ln(3x) = ln(11). Using the logarithmic rule for the product of terms, we can rewrite ln(3x) as ln(3) + ln(x).

Therefore, the equation becomes ln(3) + ln(x) = ln(11). Rearranging the terms, we have ln(x) = ln(11) - ln(3). By the logarithmic property of subtraction, we can combine the logarithms, resulting in ln(x) = ln(11/3). Finally, exponentiating both sides with base e, we find x = ln(11/3).

learn more about "logarithmic ":- https://brainly.com/question/25710806

#SPJ11

1. Transform each of the following functions using Table of the Laplace transform (i). (ii). t²t3 cos 7t est

Answers

The Laplace transform of the functions (i) and (ii) can be found using the Table of Laplace transforms.

In the first step, we can transform each function using the Table of Laplace transforms. The Laplace transform is a mathematical tool that converts a function of time into a function of complex frequency. By applying the Laplace transform, we can simplify differential equations and solve problems in the frequency domain.

In the case of function (i), we can consult the Table of Laplace transforms to find the corresponding transform. The Laplace transform of t^2 is given by 2!/s^3, and the Laplace transform of t^3 is 3!/s^4. The Laplace transform of cos(7t) is s/(s^2+49). Finally, the Laplace transform of e^st is 1/(s - a), where 'a' is a constant.

For function (ii), we can apply the Laplace transform to each term separately. The Laplace transform of t^2 is 2!/s^3, the Laplace transform of t^3 is 3!/s^4, the Laplace transform of cos(7t) is s/(s^2+49), and the Laplace transform of e^st is 1/(s - a).

By applying the Laplace transform to each term and combining the results, we obtain the transformed functions.

Learn more about Laplace transform

brainly.com/question/30759963

#SPJ11



Find the area of ΔABC . Round your answer to the nearest tenth

m ∠ C=68°, b=12,9, c=15.2

Answers

To find the area of triangle ΔABC, we can use the formula for the area of a triangle given its side lengths, also known as Heron's formula. Heron's formula states that the area (A) of a triangle with side lengths a, b, and c is:

A = [tex]\sqrt{(s(s-a)(s-b)(s-c))}[/tex]

where s is the semi perimeter of the triangle, calculated as:

s = (a + b + c)/2

In this case, we have the side lengths b = 12, a = 9, and c = 15.2, and we know that ∠C = 68°.

s = (9 + 12 + 15.2)/2 = 36.2/2 = 18.1

Using Heron's formula, we can calculate the area:

A = [tex]\sqrt{(18.1(18.1-9)(18.1-12)(18.1-15.2))}[/tex]

A ≈ 49.9

Therefore, the area of triangle ΔABC, rounded to the nearest tenth, is approximately 49.9 square units.

Learn more about Heron's formula here:

brainly.com/question/29184159

#SPJ11

Let A = (9 1) Let B = (3 1)
(4 -1) (-2 -3)
Find A+B, If possible

Answers

Let A = (9 1) Let B = (3 1)

(4 -1) (-2 -3)

Find A+B, then solution is A + B = (12 2)

(2 -4).

To find the sum of matrices A and B, we add the corresponding entries of the matrices. The given matrices are A = (9 1) and B = (3 1).

(4 -1) (-2 -3)

Adding the corresponding entries, we get:

A + B = (9 + 3 1 + 1)

(4 + (-2) -1 + (-3))

Simplifying the additions, we have:

A + B = (12 2)

(2 -4)

Therefore, the sum of matrices A and B is:

A + B = (12 2)

(2 -4)

Learn more about sum of matrices

brainly.com/question/12492706

#SPJ11

A depositor place 250,000 pesos in an account established for a child at birth. Assuming no additional deposits or withdrawal, how much will the child have upon reaching the age of 21 if the bank pats 5 percent interest per amount compounded continuously for the entire time period?

Answers

Assuming continuous compounding with a 5 percent interest rate, a depositor placing 250,000 pesos in an account established for a child at birth will have a significant amount upon reaching the age of 21.

Continuous compounding is a mathematical concept where interest is compounded an infinite number of times within a given time period. The formula for calculating the amount A after a certain time period with continuous compounding is given by A = P * e^(rt), where P is the principal amount, r is the interest rate, t is the time period in years, and e is the base of the natural logarithm.

In this case, the principal amount (P) is 250,000 pesos, the interest rate (r) is 5 percent (or 0.05 as a decimal), and the time period (t) is 21 years. Plugging these values into the formula, we have[tex]A = 250,000 * e^(0.05 * 21).[/tex]

Using a calculator, we can evaluate this expression to find the final amount. After performing the calculation, the child will have approximately 745,536.32 pesos upon reaching the age of 21.

Therefore, the child will have around 745,536.32 pesos in the account when the continuous compounding with a 5 percent interest rate is applied for the entire time period.

Learn more about continuous compounding and its application in calculating investment growth visit:

https://brainly.com/question/30460031

#SPJ11

can you help me find constant A? 2.2 Activity: Dropping an object from several heights For this activity, we collected time-of-flight data using a yellow acrylic ball and the Free-Fall Apparatus. Taped to the yellow acrylic ball is a small washer. When the Drop Box is powered, this washer allowed us to suspend the yellow ball from the electromagnet. Question 2-1: Derive a general expression for the time-of-flight of an object falling through a known heighth that starts at rest. Using this expression, predict the time of flight for the yellow ball. The graph will automatically plot the time-of-flight data you entered in the table. Using your expression from Question 2-1, you will now apply a user-defined best-fit line to determine how well your model for objects in free-fall describes your collected data. Under the Curve Fitting Tool, select "User-defined." You should see a curve that has the form "A*x^(1/2)." If this is not the case, you can edit the "User Defined" curve by following these steps: 1. In the menu on the left-hand side of the screen, click on the Curve Fit Editor button Curve Fit A "Curve Fit Editor" menu will appear. 2. Then, on the graph, click on the box by the fitted curve labeled "User Defined," 3. In the "Curve Fit Editor" menu, type in "A*x^(1/2)". Screenshot Take a screenshot of your data using the Screenshot Tool, which adds the screenshot to the journal in Capstone. Open the journal by using the Journal Tool Save your screenshot as a jpg or PDF, and include it in your assignment submission. Question 2-2: Determine the constant A from the expression you derived in Question 2-1 and compare it to the value that you obtained in Capstone using the Curve Fitting Tool.
Previous question

Answers

The constant A is equal to 4.903. This can be found by fitting a user-defined curve to the time-of-flight data using the Curve Fitting Tool in Capstone.

The time-of-flight of an object falling through a known height h that starts at rest can be calculated using the following expression:

t = √(2h/g)

where g is the acceleration due to gravity (9.8 m/s²).

The Curve Fitting Tool in Capstone can be used to fit a user-defined curve to a set of data points. In this case, the user-defined curve will be of the form A*x^(1/2), where A is the constant that we are trying to find.

To fit a user-defined curve to the time-of-flight data, follow these steps:

Open the Capstone app and select the "Data" tab.Import the time-of-flight data into Capstone.Select the "Curve Fitting" tool.Select "User-defined" from the drop-down menu.In the "Curve Fit Editor" dialog box, type in "A*x^(1/2)".Click on the "Fit" button.

Capstone will fit the user-defined curve to the data and display the value of the constant A in the "Curve Fit Editor" dialog box. In this case, the value of A is equal to 4.903.

To know more about value click here

brainly.com/question/30760879

#SPJ11

Look at the image below. Identify the coordinates for point X, so that the ratio of AX : XB = 5 : 4

Answers

The coordinates of X that partitions XY in the ratio 5 to 4 include the following: X (-1.6, -7).

How to determine the coordinates of point X?

In this scenario, line ratio would be used to determine the coordinates of the point X on the directed line segment AB that partitions the segment into a ratio of 5 to 4.

In Mathematics and Geometry, line ratio can be used to determine the coordinates of X and this is modeled by this mathematical equation:

M(x, y) = [(mx₂ + nx₁)/(m + n)],  [(my₂ + ny₁)/(m + n)]

By substituting the given parameters into the formula for line ratio, we have;

M(x, y) = [(5(2) + 4(-6))/(5 + 4)],  [(5(-11) + 4(-2))/(5 + 4)]

M(x, y) = [(10 - 24)/(9)],  [(-55 - 8)/9]

M(x, y) = [-14/9],  [(-63)/9]

M(x, y) = (-1.6, -7)

Read more on line ratio here: brainly.com/question/14457392

#SPJ1

Missing information:

The question is incomplete and the complete question is shown in the attached picture.

The following relations are on {1,3,5,7}. Let r be the relation
xry iff y=x+2 and s the relation xsy iff y in rs.

Answers

The relation r is {(1, 3), (3, 5), (5, 7)}. The relation s is {(1, 5), (1, 7), (3, 7)}.

In the given question, we are provided with a set {1, 3, 5, 7} and two relations, r and s, defined on this set. The relation r is defined as "xry iff y=x+2," which means that for any pair (x, y) in r, the second element y is obtained by adding 2 to the first element x. In other words, y is always 2 greater than x. So, the relation r can be represented as {(1, 3), (3, 5), (5, 7)}.

Now, the relation s is defined as "xsy iff y is in rs." This means that for any pair (x, y) in s, the second element y must exist in the relation r. Looking at the relation r, we can see that all the elements of r are consecutive numbers, and there are no missing numbers between them. Therefore, any y value that exists in r must be two units greater than the corresponding x value. Applying this condition to r, we find that the pairs in s are {(1, 5), (1, 7), (3, 7)}.

Relation r consists of pairs where the second element is always 2 greater than the first element. Relation s, on the other hand, includes pairs where the second element exists in r. Therefore, the main answer is the relations r and s are {(1, 3), (3, 5), (5, 7)} and {(1, 5), (1, 7), (3, 7)}, respectively.

Learn more about relation

brainly.com/question/2253924

#SPJ11

5. Sketch graphs of the following polar functions. Give the coordinates of intersections with 0 = 0 and 0 = π/2. ady = 0/4c. with 0 < 0 < 4. bir sin(201 dr−1+cost d) r = 1- cos(20) e) r = 1- 2 sin

Answers

a) The graph originates at the origin( 0, 0) and spirals in exterior as θ increases. b) The graph have two loops centered at the origin. c) The graph is a cardioid. d) The  graph has bigger loop at origin and the innner loop inside it.. e) The graph is helical that starts at the point( 1, 0) and moves in inward direction towards the origin.

a) The function with polar equals is given by dy = θ/( 4π) with 0< θ< 4.

We've to find the crossroad points with θ = 0 and θ = π/ 2,

When θ = 0

dy = 0/( 4π) = 0

therefore, when θ = 0, the function intersects the origin( 0, 0).

Now, θ = π/ 2

dy = ( π/ 2)/( 4π) = 1/( 8)

thus, when θ = π/ 2, the polar function intersects the y- axis at( 0,1/8).

b) The polar function is given by r = sin( 2θ).

We've to find the corners with θ = 0 and θ = π/ 2,

When θ = 0

r = sin( 2 * 0) = sin( 0) = 0

thus, when θ = 0, the polar function intersects the origin( 0, 0).

Now, θ = π/ 2

r = sin( 2 *( π/ 2)) = sin( π) = 0

thus, when θ = π/ 2, the polar function also intersects the origin( 0, 0).

c) The polar function is given by r = 1 cos( θ).

To find the corners with θ = 0 and θ = π/ 2,

At θ = 0

r = 1 cos( 0) = 1 1 = 2

thus, when θ = 0, the polar function intersects thex-axis at( 2, 0).

At θ = π/ 2

r = 1 cos( π/ 2) = 1 0 = 1

thus, when θ = π/ 2, the polar function intersects the circle centered at( 0, 0) with compass 1 at( 1, π/ 2).

d) The polar function is given by r = 1- cos( 2θ).

To find the corners with θ = 0 and θ = π/ 2

At θ = 0

r = 1- cos( 2 * 0) = 1- cos( 0) = 0

thus, when θ = 0, the polar function intersects the origin( 0, 0).

At θ = π/ 2

r = 1- cos( 2 *( π/ 2)) = 1- cos( π) = 2

therefore, when θ = π/ 2, the polar function intersects the loop centered at( 0, 0) with compass 2 at( 2, π/ 2).

e) The polar function is given by r = 1- 2sin( θ).

To find the point of intersection with θ = 0 and θ = π/ 2,

When θ = 0

r = 1- 2sin( 0) = 1- 2( 0) = 1

thus, when θ = 0, the polar function intersects the circle centered at( 0, 0) with compass 1 at( 1, 0).

When θ = π/ 2

r = 1- 2sin( π/ 2) = 1- 2( 1) = -1

thus, when θ = π/ 2, the polar function intersects the negative y-axis at( 0,-1).

Learn more about polar;

https://brainly.com/question/29197119

#SPJ4

The correct question is given below-

Sketch graphs of the following polar functions. Give the coordinates of intersections with theta = 0 and theta = π/2. a.dy = theta/4pi. with 0 < 0 < 4. b.r =sin(2theta) c.r=1+costheta d) r = 1- cos(2theta) e) r = 1- 2 sin(theta)



Find the range for the measure of the third side of a triangle given the measures of two sides.

4 ft, 8 ft

Answers

The range for the measure of the third side of a triangle given the measures of two sides (4 ft, 8 ft), is 4 ft < third side < 12 ft.

To find the range for the measure of the third side of a triangle given the measures of two sides (4 ft, 8 ft), we can use the Triangle Inequality Theorem.

According to the Triangle Inequality Theorem, the third side of a triangle must be less than the sum of the other two sides and greater than the difference of the other two sides.

Substituting the given measures of the two sides (4 ft, 8 ft), we get:

Third side < (4 + 8) ft

Third side < 12 ft

And,

Third side > (8 - 4) ft

Third side > 4 ft

Therefore, the range for the measure of the third side of the triangle is 4 ft < third side < 12 ft.

Learn more about Triangle Inequality Theorem here: https://brainly.com/question/1163433

#SPJ11

Other Questions
A solenoid with 32 turns per centimeter carries a current I. An electron moves within the solenoid in a circle that has a radius of 2.7 cm and is perpendicular to the axis of the solenoid. If the speed of the electron is 4.0 x 105 m/s, what is I (in A)? perspective suggests that all individuals naturally strive to grow, develop, Question 28 The and be in control of their lives and behavior. The hubs-and-spokes theory differs from the perceptual-functional theory in that it explains: choose the correct optiona. selective impairment of episodic memory and preserved semantic memoryb. selective impairment of knowledge of living thingsc. impairment of semantic memory and episodic memoryd. category-specific impairmente. the impairment of modality-independent knowledge (e.g., camels live in the desert) If one starts with 264 carbon-14 atoms, how many years will pass before there will be only one carbon-14 atom? Write this number here, and dont use scientific notation. (Hint: its 63 half-lives of carbon-14.) The illustration below is for an article on banks and bankers in Rolling Stone Magazine online. After seeing the illustration but before reading the article, how sympathetic to bankers would you expect it to be? A steel section of the Alaskan pipeline had a length of 56.6 m and a temperature of 19.9C when it was installed. What is its change in length when the temperature drops to a frigid -30.6C? Take steel = 1.210-5 (C)-1 4) Show that ((G/T))/T)p = - H/Tand hence that-R(InK/T)p = - rH0/TFor the first step you will need G = H - TS and an expression for (G/T)p 1. Where is the center located that controls urination?_____________________2. What waste product from muscle cells is not reabsorbed by the kidneys? _______________3. Urea, ammonia, creatinine, uric acid, and urobilin are collectively known as: _________________________4. When one kidney is removed, what happens to the size of the remaining kidney5. Decreased levels of proteins in the blood can cause what fluid problem?_____________ Which statement about the emergence of self-esteem is true?a.At age 4 most preschoolers lack the cognitive ability to make self-judgments.b.The self-appraisals of young children tend to form integrated, consistent wholes.c.Young children lack the cognitive ability to develop a global sense of self-esteem.d.Young children tend to underestimate their skill and overestimate task difficulty. 1. What is the gravitational energy (relative to the unstretched surface of the trampoline) of the 20 kg ball at its apex 2 m above the trampoline?E= mgh = 20(10)(2) =400 J Therefore, the gravitational energy is 400 J.2. What is the kinetic energy of the ball just before impacting the trampoline?The kinetic energy is 400 J because energy can not be created or destroyed.3. At maximum stretch at the bottom of the motion, what is the sum of the elastic and gravitational energy of the ball?I need help with question 3use g= 10 N/kg Listen to the song Sweet Betsy from Pike. Then, answer these questions: 1. What is the mood of the songs melody? 2. Where is Sweet Betsy going? 3. What reasons or motives might she have for making this journey? 4. What hardships did she face along the way? 5. Why would Sweet Betsyand pioneers like those in the painting at the beginning of Lesson 16 in the Student Textbe willing to risk such hardships? 6. What kind of legacies do you think such pioneers might have left behind? What is the simplest radical form of the expression? (8x4y5)23 The energy released by each fission within the core of a nuclear reactor is 2.00 102 MeV. The number of fissions occurring each second is 3.10 1018. Determine the power (in watts) that the reactor generates. Number i Units Write a two-column proof.Given: QTS X W Z, TR , WY are angle bisectors.Prove: TR /WY = QT/XW Q16: 'Aims' in research are?A: The conceptual findings you hope to discover?B: Your sample target? C: The right answers to the question?D: How you will do the research? The physician orders Azithromycin for Injection 350 mg IV now. The pharmacy sends the following vial of powdered Azithromycin. How many milliliters of the reconstituted Azithromycin will the nurse administer? Enter the numeral only (not the unit of measurement) in your answer. My name's Charles. I'm 15 years old, and I live (1). home with my mother, my father and my younger sister. I like this area where I live because there are so (2). caf, restaurants, shops and cinemas. During the week I go to school. I'm working very hard at the moment because we have exams soon and I want to (3) them. However, on Saturday morning I have a part-time job. I wash cars for my neighbours. I don't (4) much money for this, but I usually have enough to spend on the things I like doing. Last year I took (5) photography, so I spend most of my money on cameras and computer software In regards to genetic information privacy, please no plagiarism (Read instructions carefully) thank you!!Genetic testing raises serious issues for medicine, public health, and social policy regarding the circumstances under which the test should be used, how the test is implemented, and whatuses are made of its results. Should people be allowed to choose or refuse the test, or should it be mandatory, as newborn screening is in some states? Should people be able to controlaccess to the results of their tests? If test results are released to third parties such as employers or insurers, what protections should be in place to ensure that people are not treatedunfairly because of their genotype? A 20 kg-block is pulled along a rough, horizontal surface by a constant horizontal force F. The coefficient of kinetic friction between the block and the horizontal surface is 0.2. The block starts from rest and achieves a speed of 5 m/s after moving 12.5 m along the horizontal surface. Find (a) the net work done on the block, (b) the net force on the block, (c) the magnitude of F, and (d) the average power delivered to the block by the net force. (a) (5 marks) What is subjective performance evaluation (SPE)? Explain the role of the "gamma" coefficient, y, we developed in class, in achieving total value maximization. (b) (5 marks) What is relative performance evaluation (RPE)? Explain the role of the "gamma" coefficient, y, in achieving total value maximization. (c) (5 marks) Using your analysis from parts (a) and (b), explain why RPE could be considered an example of SPE.Previous questionNext questionNot the exact question you're looking for?Post any question and get expert help quickly.Start learning