Answer:
B; LargerExplanation:
I took the K-12 quiz, and that was the correct answer. Hope this helped!Tom has a mass of 50,000 g and runs up a flight of stairs 4 m high in 12.5 seconds.
Calculate Tom’s power. (g = 10 m/s2)
Answer:
160 watts.
Explanation:
Remark
Power = Work / Time
Work = F * d
Note: Since he is running up stairs he is doing work against gravity.
Givens
m = 50000 g kg / 1000 grmsm = 50000 / 1000 = 50 kgh = 4 mtime = 12.5 secondsg = 10 m/s^2Formula
P = W * d/tW = m*g *d / tSolution
P = 50kg * 10 m/s^2 * 4 m / 12.5 P = 160 watts.
Which of the following would produce the most power?
b
ОООО
A mass of 10 kilograms lifted 10 meters in 10 seconds
A mass of 5 kilograms lifted 10 meters in 5 seconds
A mass of 10 kilograms lifted 10 meters in 5 seconds
A mass of 5 kilograms lifted 5 meters in 10 seconds
d
Answer:
A mass of 10 kilograms lifted 10 meters in 5 seconds.
Explanation:
Power can be defined as the energy required to do work per unit time.
Mathematically, it is given by the formula;
[tex] Power = \frac {Energy}{time} [/tex]
But Energy = mgh
Substituting into the equation, we have
[tex] Power = \frac {mgh}{time} [/tex]
Given the following data;
Mass = 10kg
Height = 10m
Time = 5 seconds
We know that acceleration due to gravity is equal to 9.8 m/s²
[tex] Power = \frac {10*9.8*10}{5} = 490 Watts [/tex]
Hence, a mass of 10 kilograms lifted 10 meters in 5 seconds would produce the most power.
A cyclist traveling at 5m/s uniformly accelerates up to 10 m/s in 2 seconds. Each tire of the bike has a 35 cm radius, and a small pebble is caught in the tread of one of them. (A) What is the angular acceleration of the pebble during those two seconds
Answer:
[tex]a=2.5\ m/s^2[/tex]
Explanation:
Given that,
Initial speed, u = 5 m/s
Final speed, v = 10 m/s
Time, t = 2 s
The radius of the tire of the bike, r = 35 cm
We need to find the angular acceleration of the pebble during those two seconds. It can be calculated as follows.
[tex]a=\dfrac{v-u}t{}\\\\a=\dfrac{10-5}{2}\\\\a=2.5\ m/s^2[/tex]
So, the required angular acceleration of the pebble is equal to [tex]2.5\ m/s^2[/tex].
ocean currents are always cold true or false
Match the descriptions with the graphs !
Answer:
Graph 1 matches with B, 2 with A, and 3 with C.
Explanation:
Graph 2 shows a car whose distance part of the graph is not going up or down, while the time going up. That means that the car is stopped. Graph 1 shows a straight line, meaning that the car is traveling at a constant speed. Graph 3 is a curved line, meaning the speed of the car is changing somehow, and since the line is becoming more horizontal, the car is getting slower.
BRAINLEST FOR CORRECT ANSWER PLEASE
Which has more momentum: a 3 kg sledgehammer swung at 1.5 m/s OR a 4 kg sledgehammer swung at 0.9 m/s? SHOW YOUR WORK
Answer:
Sledgehammer A has more momentum
Explanation:
Given:
Mass of Sledgehammer A = 3 Kg
Swing speed = 1.5 m/s
Mass of Sledgehammer B = 4 Kg
Swing speed = 0.9 m/s
Find:
More momentum
Computation:
Momentum = mv
Momentum sledgehammer A = 3 x 1.5
Momentum sledgehammer A = 4.5 kg⋅m/s
Momentum sledgehammer B = 4 x 0.9
Momentum sledgehammer B = 3.6 kg⋅m/s
Sledgehammer A has more momentum
A 744 N force is applied to an object to reach an acceleration of 24 m/s2. What is the objects mass?
31kg
Explanation:
F = ma
m = F/a
m = 744N/24m/s^2
m = 31kg
(*Newton's Second Law*)