Consider two identical springs. At the start of an experiment, Spring A is already stretched out 3 cm, while Spring B remains at the zero position. Both springs are then stretched an additional three centimeters. What conclusion can you draw about the force required to stretch these springs during the experiment

Answers

Answer 1

Answer:

Explanation:

In this interesting exercise we have that spring A is 3 cm longer, due to previous experiments if these experiments did not reach the non-linear elongation point, the cosecant Km of the spring must remain the same, therefore when we lengthen the two springs these the longitudinal are lengthened.

As a consequence of the above according to Hockey law, the prediction of lengthening is the same, therefore the outside is the same in two two systems

            F = K Δx


Related Questions

A person is standing on an elevator initially at rest at the first floor of a high building. The elevator then begins to ascend to the sixth floor, which is a known distance h above the starting point. The elevator undergoes an unknown constant acceleration of magnitude a for a given time interval T. Then the elevator moves at a constant velocity for a time interval 4T. Finally the elevator brakes with an acceleration of magnitude a, (the same magnitude as the initial acceleration), for a time interval T until stopping at the sixth floor.

Answers

Answer:

The found acceleration in terms of h and t is:

[tex]a=\frac{h}{5(t_1)^2}[/tex]

Explanation:

(The complete question is given in the attached picture. We need to find the acceleration in terms of h and t in this question)

We are given 3 stages of movement of elevator. We'll first model them each of the stage one by one to find the height covered in each stage. After that we'll find the total height covered by adding heights covered in each stage, and equate it to Total height h. From that we can find the formula for acceleration.

Stage 1

Constant acceleration, starts from rest.

Distance = [tex]y = \frac{1}{2}a(t_1)^2[/tex]

Velocity = [tex]v_1=at_1[/tex]

Stage 2

Constant velocity where

Velocity = [tex]v_o=v_1=at_1[/tex]

Distance =

[tex]y_2=v_2(t_2)\\\text{Where~}t_2=4t_1 ~\text{and}~ v_2=v_1=at_1\\y_2=(at_1)(4t_1)\\y_2=4a(t_1)^2\\[/tex]Stage 3

Constant deceleration where

Velocity = [tex]v_0=v_1=at_1[/tex]

Distance =

[tex]y_3=v_1t_3-\frac{1}{2}a(t_3)^2\\\text{Where}~t_3=t_1\\y_3=v_1t_1-\frac{1}{2}a(t_1)^2\\\text{Where}~ v_1t_1=a(t_1)^2\\y_3=a(t_1)^2-\frac{1}{2}a(t_1)^2\\\text{Subtracting both terms:}\\y_3=\frac{1}{2}a(t_1)^2[/tex]

Total Height

Total height = y₁ + y₂ + y₃

Total height = [tex]\frac{1}{2}a(t_1)^2+4a(t_1)^2+\frac{1}{2}a(t_1)^2 = 5a(t_1)^2[/tex]

Acceleration

Find acceleration by rearranging the found equation of total height.

Total Height = h

h = 5a(t₁)²

[tex]a=\frac{h}{5(t_1)^2}[/tex]

At the local playground, a 21-kg child sits on the right end of a horizontal teeter-totter, 1.8 m from the pivot point. On the left side of the pivot an adult pushes straight down on the teeter-totter with a force of 151 N. Part A In which direction does the teeter-totter rotate if the adult applies the force at a distance of 3.0 m from the pivot?Part B
In which direction does the teeter-totter rotate if the adult applies the force at a distance of 2.5 m from the pivot?
(clockwise/counterclockwise)
Part C
In which direction does the teeter-totter rotate if the adult applies the force at a distance of 2.0 m from the pivot?
(clockwise/counterclockwise)

Answers

Answer:

By convention a negative torque leads to clockwise rotation and a positive torque leads to counterclockwise rotation.

here weight of the child =21kgx9.8m/s2 = 205.8N

the torque exerted by the child Tc = - (1.8)(205.8) = -370.44N-m ,negative sign is inserted because this torque is clockwise and is therefore negative by convention.

torque exerted by adult Ta = 3(151) = 453N , counterclockwise torque.

net torque Tnet = -370.44+453 =82.56N , which is positive means counterclockwise rotation.

b) Ta = 2.5x151 = 377.5N-m

Tnet = -370.44+377.5 = 7.06N-m , positive ,counterclockwise rotation.

c)Ta = 2x151 = 302N-m

Tnet = -370.44+302 = -68.44N-m, negative,clockwise rotation.

A 12,000-N car is raised using a hydraulic lift, which consists of a U-tube with arms of unequal areas, filled with oil and capped at both ends with tight-fitting pistons. The wider arm of the U-tube has a radius of 18.0 cm and the narrower arm has a radius of 5.00 cm. The car rests on the piston on the wider arm of the U-tube. The pistons are initially at the same level. What is the initial force that must be applied to the

Answers

Answer:

F₂ = 925.92 N

Explanation:

In a hydraulic lift the normal stress applied to one arm must be equally transmitted to the other arm. Therefore,

σ₁ = σ₂

F₁/A₁ = F₂/A₂

F₂ = F₁ A₂/A₁

where,

F₂ = Initial force that must be applied to narrow arm = ?

F₁ = Load on Wider Arm to be raised = 12000 N

A₁ = Area of wider arm = πr₁² = π(18 cm)² = 324π cm²

A₂ = Area of narrow arm = πr₂² = π(5 cm)² = 25π cm²

Therefore,

F₂ = (12000 N)(25π cm²)/(324π cm²)

F₂ = 925.92 N

The Pauli exclusion principle states that Question 1 options: the wavelength of a photon of light times its frequency is equal to the speed of light. no two electrons in the same atom can have the same set of four quantum numbers. both the position of an electron and its momentum cannot be known simultaneously very accurately. the wavelength and mass of a subatomic particle are related by . an electron can have either particle character or wave character.

Answers

Answer:

no two electrons in the same atom can have the same set of four quantum numbers

Explanation:

Pauli 's Theory of Exclusion specifies that for all four of its quantum numbers, neither two electrons in the same atom can have similar value.

In a different way, we can say that no more than two electrons can take up the identical orbital, and two electrons must have adversely spin in the identical orbital

Therefore the second option is correct

1. The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of positions measured with the best Earth-based optical telescopes. If you cannot measure an angle smaller than this, what is the maximum distance at which a star can be located and still have a measurable parallax

Answers

Answer:

Explanation:

each grid corresponding  0.1s⁻¹.

0.2grid unit = 0.2×0.1 =0.02s⁻¹

distance of the star from telescope

d = 1/p

d= 1/0.02= 50 par sec

1par sec = 3.26 light year

1 light year = 9.5×10¹²km

3.26ly=3.084×10¹³km

d= 50×3.084×10¹³=1.55×10¹⁵km

Dr. Jones performed an experiment to monitor the effects of sunlight exposure on stem density in aquatic plants. In the study, Dr. Jones measured the mass and volume of stems grown in 5 levels of sun exposure. The data is represented below.
Sun exposure Stem mass (g) Stem volume (mL)
30 275 1100
45 415 1215
60 563 1425
75 815 1610
90 954 1742
a. Convert the mass measurements to kilograms (kg) and the volume measurements to cubic meters (mº).
b. Calculate the density of the samples using the equation d = m/v. d = density m = mass (kg) v = volume (m)
c. Convert the density values to scientific notation.

Answers

Given that,

Sun exposure = 30%, 45%, 60%, 75%, 90%

Stem mass (g) = 275, 415, 563, 815, 954

Stem volume (ml) = 1100, 1215, 1425, 1610, 1742

(a). We need to convert the mass measurements to kilograms (kg) and the volume measurements to cubic meters

Using conversion of mass

[tex]1\ g=0.001\ kg[/tex]

Conservation of volume

[tex]1\ Lt=0.001\ m^3[/tex]

[tex]1\ mL=1\times10^{-6}\ m^3[/tex]

So, mass in kg

Stem mass (kg) = 0.275, 0.415, 0.563, 0.815, 0.954

Volume in m³,

Stem volume (m³) = 0.0011, 0.001215, 0.001425, 0.001610, 0.001742

(b). We need to calculate the density of the samples

Using formula of density

[tex]\rho=\dfrac{m}{V}[/tex]

Where, m = mass

V = volume

If the m = 0.275 kg and V = 0.0011 m³

Put the value into the formula

[tex]\rho=\dfrac{0.275}{0.0011}[/tex]

[tex]\rho=250\ kg/m^3[/tex]

If the m = 0.415 kg and V = 0.001215 m³

Put the value into the formula

[tex]\rho=\dfrac{0.415}{0.001215}[/tex]

[tex]\rho=341.56\ kg/m^3[/tex]

[tex]\rho=342\ kg/m^3[/tex]

If the m = 0.563 kg and V = 0.001425 m³

Put the value into the formula

[tex]\rho=\dfrac{0.563}{0.001425}[/tex]

[tex]\rho=395.08\ kg/m^3[/tex]

If the m = 0.815 kg and V = 0.001610 m³

Put the value into the formula

[tex]\rho=\dfrac{0.815}{0.001610}[/tex]

[tex]\rho=506.21\ kg/m^3[/tex]

If the m = 0.954 kg and V = 0.001742 m³

Put the value into the formula

[tex]\rho=\dfrac{0.954}{0.001742}[/tex]

[tex]\rho=547.6\ kg/m^3[/tex]

[tex]\rho=548\ kg/m^3[/tex]

(c). We need to convert the density values to scientific notation

In scientific notation

The densities are

[tex]\rho\ (kg/m^3)= 2.50\times10^{2}, 3.42\times10^{2}, 3.95\times10^{2}, 5.06\times10^{2}, 5.48\times10^{2}[/tex]

Hence, This is required solution.

A uniformly charged sphere has a potential on its surface of 450 V. At a radial distance of 8.1 m from this surface, the potential is 150 V. What is the radius of the sphere

Answers

Answer:

The radius of the sphere is 4.05 m

Explanation:

Given;

potential at surface, [tex]V_s[/tex] = 450 V

potential at radial distance, [tex]V_r[/tex] = 150

radial distance, l = 8.1 m

Apply Coulomb's law of electrostatic force;

[tex]V = \frac{KQ}{r} \\\\V_s = \frac{KQ}{r} \\\\V_r = \frac{KQ}{r+ l}[/tex]

[tex]450 = \frac{KQ}{r} ------equation (i)\\\\150 = \frac{KQ}{r+8.1} ------equation (ii)\\\\divide \ equation (i)\ by \ equation \ (ii)\\\\\frac{450}{150} = (\frac{KQ}{r} )*(\frac{r+8.1}{KQ} )\\\\3 = \frac{r+8.1}{r} \\\\3r = r + 8.1\\\\2r = 8.1\\\\r = \frac{8.1}{2} \\\\r = 4.05 \ m[/tex]

Therefore, the radius of the sphere is 4.05 m

A box on a ramp is connected by a rope to a winch. The winch is turned so that the box moves down the ramp at a constant speed. The box experiences kinetic friction with the ramp. Which forces on the box do zero work as the box moves down the ramp?

a. Weight (gravitational force)
b. Normal force
c. Kinetic friction force
d. Tension force
e. None

Answers

Answer:

Option B:

The normal force

Explanation:

The normal force does no work as the box slides down the ramp.

Work can only be done when the force succeeds in moving the object in the direction of the force.

All the other forces involved have a component that is moving the box in their direction.

However, the normal force does not, as it points downwards into the ramp. Since the normal force is pointing into the ramp, and the box is sliding down the ramp, we can say that no work is being done by the normal force because the box is not moving in its direction (which would have been the box moving into the ramp)

The Thomson model of a hydrogen atom is a sphere of positive charge with an electron (a point charge) at its center. The total positive charge equals the electronic charge e. Prove that when the electron is at a distance r from the center of the sphere of positive charge, it is attracted with a force F=\frac{e^2r}{4\pi\varepsilon_oR^3} where R is the radius of the sphere.

Answers

Answer:

E = (1 / 4π ε₀ )  q r / R³

Explanation:

Thomson's stable model that the negative charge is mobile within the atom and the positive charge is uniformly distributed, to calculate the force we can use Coulomb's law

       F = K q₁ q₂ / r²

we used law Gauss

Ф = ∫ E .dA = q_{int} /ε₀

E 4π r² = q_{int} /ε₀  

E = q_{int} / 4π ε₀ r²

we replace the charge inside  

E = (1 / 4π ε₀ r²) ρ 4/3 π r³  

E = ρ r / 3 ε₀

the density for the entire atom is  

ρ = Q / V  

V = 4/3 π R³  

we substitute  

E = (r / 3ε₀ ) Q 3/4π R³  

E = (1 / 4π ε₀ ) q r / R³

High voltage power is often carried in wire bundles made up of individual strands. In your initial post to the discussion, discuss the forces on the strands of wire due to the current flowing through them. What would happen if the force acted opposite of the known behavior

Answers

Answer:

More current will be loss through the metal wire strands if the force on them was repulsive, and more stress will be induced on the wire strands due to internal and external flexing.

Explanation:

A wire bundle is made up of wire strands bunched together to increase flexibility that is not always possible in a single solid metal wire conductor. In the strands of wire carrying a high voltage power, each strand carries a certain amount of current, and the current through the strands all travel in the same direction. It is know that for two conductors or wire, separated by a certain distance, that carries current flowing through them in the same direction, an attractive force is produced on these wires, one on the other. This effect is due to the magnetic induction of a current carrying conductor. The forces between these strands of the high voltage wire bundle, pulls the wire strands closer, creating more bond between these wire strands and reducing internal flex induced stresses.

If the case was the opposite, and the wires opposed themselves, the effect would be that a lot of cost will be expended in holding these wire strands together. Also, stress within the strands due to the repulsion, will couple with external stress from the flexing of the wire, resulting in the weakening of the material.

The biggest problem will be that more current will be lost in the wire due to increased surface area caused by the repulsive forces opening spaces between the strand. This loss is a s a result of the 'skin effect' in wire transmission, in which current tends to flow close to the surface of the metal wire. The skin effect generates power loss as heat through the exposed surface area.

according to newtons second law of motion, what is equal to the acceleration of an object

Answers

Answer: According to Newtons second Law of motion ;

F = ma (Force  equals  mass multiplied by acceleration.)

The acceleration is directly proportional to the net force; the net force equals mass times acceleration; the acceleration in the same direction as the net force; an acceleration is produced by a net force

Explanation:

A piston of small cross-sectional area a is used in a hydraulic press to exert a small force f on the enclosed liquid. A connecting pipe leads to a larger piston of cross sectional area A. a) What force F will the larger piston sustain

Answers

Answer:

force on larger piston = [tex]\frac{fA}{a}[/tex]

Explanation:

we label the pistons as piston A and piston B

small piston A:

area = a

force = f

large piston B:

area = A

force  = ?

Pascal's law of pressure state that the pressure delivered to a liquid is transmitted undiminished to every portion of the fluid.

we know that pressure = force ÷ area

pressure of piston A = [tex]\frac{f}{a}[/tex]

pressure of piston B = [tex]\frac{(force on piston B)}{A}[/tex]

obeying Pascal's law, the system pressures must be equal. Therefore

[tex]\frac{f}{a} = \frac{(force on piston B)}{A}[/tex]

force on large piston (B) = F = [tex]\frac{fA}{a}[/tex]

A 2.0-kg object moving at 5.0 m/s collides with and sticks to an 8.0-kg object initially at rest. Determine the kinetic energy lost by the system as a result of this collision.

Answers

Answer:

20 J

Explanation:

From the question, since there is a lost in kinetic energy, Then the collision is an inelastic collision.

m'u'+mu = V(m+m')........... Equation 1

Where m' = mass of the moving object, m = mass of the stick, u' = initial velocity of the moving object, initial velocity of the stick, V = common velocity after collision.

make V the subject of the equation above

V = (m'u'+mu)/(m+m')............. Equation 2

Given: m' = 2 kg, m = 8 kg, u' = 5 m/s, u = 0 m/s (at rest).

Substitute into equation 2

V = [(2×5)+(8×0)]/(2+8)

V = 10/10

V = 1 m/s.

Lost in kinetic energy = Total kinetic energy before collision- total kinetic energy after collision

Total kinetic energy before collision = 1/2(2)(5²) = 25 J

Total kinetic energy after collision = 1/2(2)(1²) +1/2(8)(1²) = 1+4 = 5 J

Lost in kinetic energy = 25-5 = 20 J

The collision is inelastic collision. As a result of collision the kinetic energy lost by the given system is 20 J.

Since there is a lost in kinetic energy, the collision is inelastic collision.  

m'u'+mu = V(m+m')

[tex]\bold {V =\dfrac { (m'u'+mu)}{(m+m')} }[/tex]  

Where

m' = mass of the moving object = 2 kg

m = mass of the stick = 8 kg,

u' = initial velocity of the moving object = 5 m/s

V = common velocity after collision= ?    

u = 0 m/s (at rest).

put the values in the formula,  

[tex]\bold {V = \dfrac {(2\times 5)+(8\times 0)}{(2+8)}}\\\\\bold {V = \dfrac {10}{10}}\\\\\bold {V = 1\\ m/s.}[/tex]

 

  kinetic energy before collision

[tex]\bold { = \dfrac 1{2} (2)(5^2) = 25 J}[/tex]  

kinetic energy after collision

[tex]\bold { = \dfrac 12(2)(1^2) + \dfrac 12(8)(1^2) = 5\ J}[/tex]  

Lost in kinetic energy = 25-5 = 20 J

Therefore, As a result of collision the kinetic energy lost by the given system is 20 J.

To know more about Kinetic energy,

https://brainly.com/question/12669551

A circuit contains two elements, but it is not known if they are L, R, or C. The current in this circuit when connected to a 120-V 60 Hz source is 5.3 A and lags the voltage by 65∘.
Part A. What are the two elements?
Part B. What are their values?
Express your answer using two significant figures

Answers

Answer:

the two elements are resistor R and inductor L

answers in two significant figures

R = 9.6Ω

L = 54mH

Explanation:

An unknown charged particle passes without deflection through crossed electric and magnetic fields of strengths 187,500 V/m and 0.1250 T, respectively. The particle passes out of the electric field, but the magnetic field continues, and the particle makes a semicircle of diameter 25.05 cm.
Part A. What is the particle's charge-to-mass ratio?
Part B. Can you identify the particle?
a. can't identify
b. proton
c. electron
d. neutron

Answers

Answer:

Explanation:

Given that

The electric fields of strengths E = 187,500 V/m and

and The magnetic  fields of strengths B = 0.1250 T

The diameter d is 25.05 cm which is converted to 0.2505m

The radius is (d/2)

= 0.2505m / 2 = 0.12525m

The given formula to find the magnetic force is [tex]F_{ma}=BqV---(i)[/tex]

The given formula to find the electric force is [tex]F_{el}=qE---(ii)[/tex]

The velocity of electric field and magnetic field is said to be perpendicular

Electric field is equal to magnectic field

Equate equation (i) and equation (ii)

[tex]Bqv=qE\\\\v=\frac{E}{B}[/tex]

[tex]v=\frac{187500}{0.125} \\\\v=15\times10^5m/s[/tex]

It is said that the particles moves in semi circle, so we are going to consider using centripetal force

[tex]F_{ce}=\frac{mv^2}{r}---(iii)[/tex]

magnectic field is equal to centripetal force

Lets equate equation (i) and (iii)

[tex]Bqr=\frac{mv^2}{r} \\\\\frac{q}{m}=\frac{v}{Br} \\\\\frac{q}{m} =\frac{15\times 10^5}{0.125\times0.12525} \\\\=\frac{15\times10^5}{0.015656} \\\\=95808383.23\\\\=958.1\times10^5C/kg[/tex]

Therefore,  the particle's charge-to-mass ratio is [tex]958.1\times10^5C/kg[/tex]

b)

To identify the particle

Then 1/ 958.1 × 10⁵ C/kg

The charge to mass ratio is very close to that of a proton, which is about 1*10^8 C/kg

Therefore the particle is proton.

During a particular time interval, the displacement of an object is equal to zero. Must the distance traveled by this object also equal to zero during this time interval? Group of answer choices

Answers

Answer: No, we can have a displacement equal to 0 while the distance traveled is different than zero.

Explanation:

Ok, let's write the definitions:

Displacement: The displacement is equal to the difference between the final position and the initial position.

Distance traveled: Total distance that you moved.

So, for example, if at t = 0s, you are in your house, then you go to the store, and then you return to your house, we have:

The displacement is equal to zero, because the initial position is your house and the final position is also your house, so the displacement is zero.

But the distance traveled is not zero, because you went from you traveled the distance from your house to the store two times.

So no, we can have a displacement equal to zero, but a distance traveled different than zero.

An enclosed amount of nitrogen gas undergoes thermodynamic processes as follows: from an initial state A to a state B to C to D and back to A, as shown in the P-V diagram. Assume that the gas behaves ideally. What is the change in internal energy of the gas for the entire process, A-B-C-D-A? (pressure at B is 10kPa)

Answers

Answer:

The total internal energy change for the entire process is  -0.94 kJ

Explanation:

Process A to B is an isothermal process, therefore, [tex]u_A[/tex] - [tex]u_B[/tex] = 0

Process B to C

P = -mV + C

When P = 12, V = 0.12

When P = 4, V = 0.135

Therefore, we have;

12 = -m·0.12 + C

4 = -m·0.135 + C

Solving gives

m = 533.33

C = 76

[tex]T = \dfrac{1}{nR} \times (-533.33 \times V^2 + 76 \times V)[/tex]

p₂ = p₁V₁/V₂ = 12*0.1/0.12 = 10 kPa

The work done = 0.5*(0.135 - 0.12)*(4 - 10.0) = -0.045 kJ = -45 J

For heat supplied

Assuming an approximate polytropic process, we have;

Work done = (p₃×v₃ - p₂×v₂)/(n - 1)

Which gives;

-45 = (4*0.135 - 10*0.12)/(n -1)

∴ n -1 = (4*0.135 - 10*0.12)/-45 =   14.67

n = 15.67

Q = W×(n - γ)/(γ - 1)

Q = -45*(15.67 - 1.4)/(1.4 - 1) = -1,605.375 J

u₃ - u₂ = Q + W = -1,605.375 J - 45 J = -1650 J = -1.65 kJ

For the constant pressure process D to C, we have;

[tex]Q = c_p \times \dfrac{p}{R} \times (V_4 -V_3) = \dfrac{5}{2} \times p \times (V_4 -V_3)[/tex]

Q₄₋₃ = (0.1 - 0.135) * 4*5/2 = -0.35 kJ

W₄₋₃ = 4*(0.1 - 0.135) = -0.14 kJ

u₄ - u₃ = Q₄₋₃ + W₄₋₃ = -0.14 kJ + -0.35 kJ = -0.49 kJ

For the process D to A, we have a constant volume process

[tex]Q_{1-4} = \dfrac{c_v}{R} \times V \times (p_1 - p_4) = \dfrac{3}{2} \times 0.1 \times (12 - 4) = 1.2 \ kJ[/tex]

W₁₋₄ = 0 for constant volume process, therefore, u₁ - u₄ = 1.2 kJ

The total internal energy change Δ[tex]u_{process}[/tex] for the entire process is therefore;

Δ[tex]u_{process}[/tex] = u₂ - u₁ + u₃ - u₂ + u₄ - u₃ + u₁ - u₄ = 0  - 1.65 - 0.49 + 1.2 = -0.94 kJ.

Professional baseball player Nolan Ryan could pitch a baseball at approximately 160.0 km/h. At that average velocity, how long (in s) did it take a ball thrown by Ryan to reach home plate, which is 18.4 m from the pitcher's mound

Answers

Answer:

t = 0.414s

Explanation:

In order to calculate the time that the ball takes to reach home plate, you assume that the speed of the ball is constant, and you use the following formula:

[tex]t=\frac{d}{v}[/tex]         (1)

d: distance to the plate = 18.4m

v: speed of the ball = 160.0km/h

You first convert the units of the sped of the ball to appropriate units (m/s)

[tex]160.0\frac{km}{h}*\frac{1h}{3600s}*\frac{1000m}{1km}=44.44\frac{m}{s}[/tex]

Then, you replace the values of the speed v and distance s in the equation (1):

[tex]t=\frac{18.4m}{44.44m/s}=0.414s[/tex]

THe ball takes 0.414s to reach the home plate

An electron of mass 9.11 x 10^-31 kg has an initial speed of 4.00 x 10^5 m/s. It travels in a straight line, and its speed increases to 6.60 x10^5 m/s in a distance of 5.40 cm. Assume its acceleration is constant.

Required:
a. Determine the magnitude of the force exerted on the electron.
b. Compare this force (F) with the weight of the electron (Fg), which we ignored.

Answers

Answer:

a.     F = 2.32*10^-18 N

b.     The force F is 2.59*10^11 times the weight of the electron

Explanation:

a. In order to calculate the magnitude of the force exerted on the electron you first calculate the acceleration of the electron, by using the following formula:

[tex]v^2=v_o^2+2ax[/tex]         (1)

v: final speed of the electron = 6.60*10^5 m/s

vo: initial speed of the electron = 4.00*10^5 m/s

a: acceleration of the electron = ?

x: distance traveled by the electron = 5.40cm = 0.054m

you solve the equation (2) for a and replace the values of the parameters:

[tex]a=\frac{v^2-v_o^2}{2x}=\frac{(6.60*10^5m/s)^2-(4.00*10^5m/s)^2}{2(0.054m)}\\\\a=2.55*10^{12}\frac{m}{s^2}[/tex]

Next, you use the second Newton law to calculate the force:

[tex]F=ma[/tex]

m: mass of the electron = 9.11*10^-31kg

[tex]F=(9.11*10^{-31}kg)(2.55*10^{12}m/s^2)=2.32*10^{-18}N[/tex]

The magnitude of the force exerted on the electron is 2.32*10^-18 N

b. The weight of the electron is given by:

[tex]F_g=mg=(9.11*10^{-31}kg)(9.8m/s^2)=8.92*10^{-30}N[/tex]

The quotient between the weight of the electron and the force F is:

[tex]\frac{F}{F_g}=\frac{2.32*10^{-18}N}{8.92*10^{-30}N}=2.59*10^{11}[/tex]

The force F is 2.59*10^11 times the weight of the electron


1- A 30 gram bullet travels at 300 m/s. How much kinetic energy does it have?

Answers

Answer:

1.35 kJ  

Explanation:

KE = ½mv² = ½ × 0.030  kg × (300 m·s⁻¹)² = 1350 J = 1.35 kJ

Given:-

Mass (m) of the bullet = 30 gramsVelocity of the bullet (v) = 300 m/s

To Find: Kinetic energy of the bullet.

We know,

E = ½mv²

where,

Eₖ = Kinetic energy,m = Mass &v = Velocity.

thus,

Eₖ = ½(30 g)(300 m/s)²

= (15 g)(90000 m²/s²)

= 1350000 g m²/s²

= 1350 kg m²/s²

= 1350 J

= 1.35 kJ (Ans.)

The probability of nuclear fusion is greatly enhanced when the appropriate nuclei are brought close together, but their mutual coulomb repulsion must be overcome. This can be done using the kinetic energy of high temperature gas ions or by accelerating the nuclei toward one another.

Required:
a. Calculate the potential energy of two singly charged nuclei separated by 1.00×10^−12m
b. At what temperature will atoms of a gas have an average kinetic energy equal to this needed electrical potential energy?

Answers

Answer:

a

  [tex]PE = 2.3 *10^{-16} \ J[/tex]

b

 [tex]T = 1.1 *10^{7} \ K[/tex]

Explanation:

From the question we are told that

      The distance of separation is  [tex]d = 1.00 *10^{-12} \ m[/tex]

Generally the electric potential energy can be mathematically represented as

            [tex]PE = \frac{k * q_1 q_2 }{d}[/tex]

Given that in a nuclei the only charged particle is the proton who charge is

     [tex]p = 1.60 *10^{-19} \ C[/tex]

Hence

     [tex]q_1 = q_2 = 1.60 *10 ^{-19} \ C[/tex]

And k is the coulomb constant with values   [tex]k = 9*10^{9} \ kg\cdot m^3\cdot s^{-4}\cdot A^2.N/A2[/tex]

      So we have that

       [tex]PE = \frac{9*10^9 * (1.60 *10^{-19})^2}{ 1.00*10^{-12}}[/tex]

      [tex]PE = 2.3 *10^{-16} \ J[/tex]

The relationship between the electrical potential energy and the temperature is mathematically represented as

         [tex]PE = \frac{3}{2} kT[/tex]

Here  k is  the Boltzmann's constant with value  [tex]k = 1.38*10^{-23} JK^{-1}[/tex]

   making T the subject

       [tex]T = \frac{2}{3} * \frac{PE}{k}[/tex]

substituting values

      [tex]T = \frac{2}{3} * \frac{2.30 *10^{-16}}{ 1.38 *10^{-23}}[/tex]

     [tex]T = 1.1 *10^{7} \ K[/tex]

 

a What CE describes the way energy is stored in a sandwich​

Answers

What is Potential Energy? You probably already know that without eating, your body becomes weak from lack of energy. Take a few bites of a turkey sandwich, and moments later, you feel much better. That's because food molecules contain potential energy, or stored energy, that can do work in the future. Hope it helps

A harmonic wave is traveling along a rope. It is observed that the oscillator that generates the wave completes 43.0 vibrations in 33.0 s. Also, a given maximum travels 424 cm along the rope in 15.0 s. What is the wavelength

Answers

Answer:

0.218

Explanation:

Given that

Total vibrations completed by the wave is 43 vibrations

Time taken to complete the vibrations is 33 seconds

Length of the wave is 424 cm = 4.24 m

to solve this problem, we first find the frequency.

Frequency, F = 43 / 33 hz

Frequency, F = 1.3 hz

Also, we find the wave velocity. Which is gotten using the relation,

Wave velocity = 4.24 / 15

Wave velocity = 0.283 m/s

Now, to get our answer, we use the formula.

Frequency * Wavelength = Wave Velocity

Wavelength = Wave Velocity / Frequency

Wavelength = 0.283 / 1.3

Wavelength = 0.218

Two large rectangular aluminum plates of area 180 cm2 face each other with a separation of 3 mm between them. The plates are charged with equal amount of opposite charges, ±17 µC. The charges on the plates face each other. Find the flux (in N · m2/C) through a circle of radius 3.3 cm between the plates when the normal to the circle makes an angle of 4° with a line perpendicular to the plates. Note that this angle can also be given as 180° + 4°. N · m2/C

Answers

Answer:

Φ = 361872 N.m^2 / C

Explanation:

Given:-

- The area of the two plates, [tex]A_p = 180 cm^2[/tex]

- The charge on each plate, [tex]q = 17 * 10^-^6 C[/tex]

- Permittivity of free space, [tex]e_o = 8.85 * 10^-^1^2 \frac{C^2}{N.m^2}[/tex]

- The radius for the flux region, [tex]r = 3.3 cm[/tex]

- The angle between normal to region and perpendicular to plates, θ = 4°

Find:-

Find the flux (in N · m2/C) through a circle of radius 3.3 cm between the plates.

Solution:-

- First we will determine the area of the region ( Ar ) by using the formula for the area of a circle as follows. The region has a radius of r = 3.3 cm:

                             [tex]A_r = \pi *r^2\\\\A_r = \pi *(0.033)^2\\\\A_r = 0.00342 m^2[/tex]

- The charge density ( σ ) would be considered to be uniform for both plates. It is expressed as the ratio of the charge ( q ) on each plate and its area ( A_p ):

                           σ = [tex]\frac{q}{A_p} = \frac{17*10^-^6}{0.018} \\[/tex]

                           σ = 0.00094 C / m^2

- We will assume the electric field due to the positive charged plate ( E+ ) / negative charged plate ( E- ) to be equivalent to the electric field ( E ) of an infinitely large charged plate with uniform charge density.

                         [tex]E+ = E- = \frac{sigma}{2*e_o} \\\\[/tex]

- The electric field experienced by a region between two infinitely long charged plates with uniform charge density is the resultant effect of both plates. So from the principle of super-position we have the following net uniform electric field ( E_net ) between the two plates:

                        [tex]E_n_e_t = (E+) + ( E-)\\\\E_n_e_t = \frac{0.00094}{8.85*10^-^1^2} \\\\E_n_e_t = 106214689.26553 \frac{N}{C} \\[/tex]

- From the Gauss-Law the flux ( Φ ) through a region under uniform electric field ( E_net ) at an angle of ( θ ) is:

                        Φ = E_net * Ar * cos ( θ )

                        Φ = (106214689.26553) * (0.00342) * cos ( 5 )

                        Φ = 361872 N.m^2 / C

In a hydraulic lift, if the pressure exerted on the liquid by one piston is increased by 100 N/m2 , how much additional weight can the other piston slowly lift if its cross sectional area is 25 m2

Answers

Answer:

The additional weight and mass needed for lifting the other piston slowly is 2500 N and 254.92 kg, respectively.

Explanation:

By means of the Pascal's Principle, the hydraulic lift can be modelled by the following two equations:

Hydraulic Lift - Before change

[tex]P = \frac{F}{A}[/tex]

Hydraulic Lift - After change

[tex]P + \Delta P = \frac{F + \Delta F}{A}[/tex]

Where:

[tex]P[/tex] - Hydrostatic pressure, measured in pascals.

[tex]\Delta P[/tex] - Change in hydrostatic pressure, measured in pascals.

[tex]A[/tex] - Cross sectional area of the hydraulic lift, measured in square meters.

[tex]F[/tex] - Hydrostatic force, measured in newtons.

[tex]\Delta F[/tex] - Change in hydrostatic force, measured in newtons.

The additional weight is obtained after some algebraic handling and the replacing of all inputs:

[tex]\frac{F}{A} + \Delta P = \frac{F}{A} + \frac{\Delta F}{A}[/tex]

[tex]\Delta P = \frac{\Delta F}{A}[/tex]

[tex]\Delta F = A\cdot \Delta P[/tex]

Given that [tex]\Delta P = 100\,Pa[/tex] and [tex]A = 25\,m^{2}[/tex], the additional weight is:

[tex]\Delta F = (25\,m^{2})\cdot (100\,Pa)[/tex]

[tex]\Delta F = 2500\,N[/tex]

The additional mass needed for the additional weight is:

[tex]\Delta m = \frac{\Delta F}{g}[/tex]

Where:

[tex]\Delta F[/tex] - Additional weight, measured in newtons.

[tex]\Delta m[/tex] - Additional mass, measured in kilograms.

[tex]g[/tex] - Gravitational constant, measured in meters per square second.

If [tex]\Delta F = 2500\,N[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then:

[tex]\Delta m = \frac{2500\,N}{9.807\,\frac{m}{s^{2}} }[/tex]

[tex]\Delta m = 254.92\,kg[/tex]

The additional weight and mass needed for lifting the other piston slowly is 2500 N and 254.92 kg, respectively.

In 1898, the world land speed record was set by Gaston Chasseloup-Laubat driving a car named Jeantaud. His speed was 39.24 mph (63.15 km/h), much lower than the limit on our interstate highways today. Repeat the calculations of Example 2.7 (assume the car accelerates for 6 miles to get up to speed, is then timed for a one-mile distance, and accelerates for another 6 miles to come to a stop) for the Jeantaud car. (Assume the car moves in the +x direction.)
Find the acceleration for the first 6 miles.

Answers

Answer:

the acceleration [tex]a^{\to} = (0.0159 \ \ m/s^2 )i[/tex]

Explanation:

Given that:

the initial speed v₁ = 0 m/s i.e starting from rest ; since the car accelerates at a distance Δx = 6 miles in order to teach that final speed v₂ of 63.15 km/h.

So;  the acceleration for the first 6 miles can be calculated by using the formula:

v₂² = v₁² + 2a (Δx)

Making acceleration  a the subject of the formula in the above expression ; we have:

v₂² - v₁² = 2a (Δx)

[tex]a = \dfrac{v_2^2 - v_1^2 }{2 \Delta x}[/tex]

[tex]a = \dfrac{(63.15 \ km/s)^2 - (0 \ m/s)^2 }{2 (6 \ miles)}[/tex]

[tex]a = \dfrac{(17.54 \ m/s)^2 - (0 \ m/s)^2 }{2 (9.65*10^3 \ m)}[/tex]

[tex]a =0.0159 \ m/s^2[/tex]

Thus;

Assume the car moves in the +x direction;

the acceleration [tex]a^{\to} = (0.0159 \ \ m/s^2 )i[/tex]

4. How much force is required to stop a 60 kg person traveling at 30 m/s during a time of a)
5.0 seconds
b) 0.50 seconds
c) 0.05 seconds

Answers

Explanation:

F = ma, and a = Δv / Δt.

F = m Δv / Δt

Given: m = 60 kg and Δv = -30 m/s.

a) Δt = 5.0 s

F = (60 kg) (-30 m/s) / (5.0 s)

F = -360 N

b) Δt = 0.50 s

F = (60 kg) (-30 m/s) / (0.50 s)

F = -3600 N

c) Δt = 0.05 s

F = (60 kg) (-30 m/s) / (0.05 s)

F = -36000 N

360N, 3600N and 36000N forces are required to stop a 60 kg person traveling at 30 m/s during a time of a)5.0 seconds, b) 0.50 seconds, c)0.05 seconds respectively.

To find the force, we need to know about the mathematical formulation of force.

What is force?According to Newton's second law of motion, force is defined as mass times acceleration. Its SI unit is Newton (N).What is the mathematical formulation of force?

Mathematically, it is written as

F= m×a= m×(∆V/∆t)

What is the force needed to stop 60 kg person traveling at 30 m/s during a time of a)5.0 seconds, b) 0.50 seconds, c)0.05 seconds?

Here, initially the velocity of the person is 30m/s. But after applying the force, he came to rest. So his final velocity is 0 m/s. ∆V= 30m/s

When ∆t=5 seconds, F= 60×(30/5)=360N

When ∆t=0.5 seconds, F= 60×(30/0.5)=3600N

When ∆t=0.05 seconds, F= 60×(30/0.05)=36000N

Thus, we can conclude that 360N, 3600N and 36000N forces are required to stop a 60 kg person traveling at 30 m/s during a time of a)5.0 seconds, b) 0.50 seconds, c)0.05 seconds respectively.

Learn more about force here:

brainly.com/question/12785175

#SPJ2

A rocket car on a horizontal rail has an initial mass of 2500 kg and an additional fuel mass of 1000 kg. At time t0 the rocket motor is ignited and the rocket burns fuel at a rate of 95 kg/s. The exit speed of the exhaust gas relative to the rocket is 2900 m/s. Neglecting drag and friction forces, determine the acceleration and the velocity of the car at time t = 10 s. Plot the acceleration and velocity from time t0 to t = 10 s.

Answers

Answer: Acceleration of the car at time = 10 sec is 108 [tex]m/s^{2}[/tex] and velocity of the car at time t = 10 sec is 918.34 m/s.

Explanation:

The expression used will be as follows.

[tex]M\frac{dv}{dt} = u\frac{dM}{dt}[/tex]

[tex]\int_{t_{o}}^{t_{f}} \frac{dv}{dt} dt = u\int_{t_{o}}^{t_{f}} \frac{1}{M} \frac{dM}{dt} dt[/tex]

       = [tex]u\int_{M_{o}}^{M_{f}} \frac{dM}{M}[/tex]

[tex]v_{f} - v_{o} = u ln \frac{M_{f}}{M_{o}}[/tex]

[tex]v_{o} = 0[/tex]

As, [tex]v_{f} = u ln (\frac{M_{f}}{M_{o}})[/tex]

u = -2900 m/s

[tex]M_{f} = M_{o} - m \times t_{f}[/tex]

           = [tex]2500 kg + 1000 kg - 95 kg \times t_{f}s[/tex]

           = [tex](3500 - 95t_{f})s[/tex]

[tex]v_{f} = -2900 ln(\frac{3500 - 95 t_{f}}{3500}) m/s[/tex]

Also, we know that

     a = [tex]\frac{dv_{f}}{dt_{f}} = \frac{u}{M} \frac{dM}{dt}[/tex]

        = [tex]\frac{u}{3500 - 95 t} \times (-95) m/s^{2}[/tex]

        = [tex]\frac{95 \times 2900}{3500 - 95t} m/s^{2}[/tex]

At t = 10 sec,

[tex]v_{f}[/tex] = 918.34 m/s

and,   a = 108 [tex]m/s^{2}[/tex]

The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of positions measured with the best Earth-based optical telescopes. If you cannot measure an angle smaller than this, what is the maximum distance at which a star can be located and still have a measurable parallax

Answers

Answer:

The distance is  [tex]d = 1.5 *10^{15} \ km[/tex]

Explanation:

From the question we are told that

        The smallest shift is [tex]d = 0.2 \ grid \ units[/tex]

Generally a grid unit is  [tex]\frac{1}{10}[/tex] of  an arcsec

  This implies that  0.2 grid unit is  [tex]k = \frac{0.2}{10} = 0.02 \ arc sec[/tex]

The maximum distance at which a star can be located and still have a measurable parallax is mathematically represented as

           [tex]d = \frac{1}{k}[/tex]

substituting values

           [tex]d = \frac{1}{0.02}[/tex]

           [tex]d = 50 \ parsec[/tex]

Note  [tex]1 \ parsec \ \to 3.26 \ light \ year \ \to 3.086*10^{13} \ km[/tex]

So  [tex]d = 50 * 3.08 *10^{13}[/tex]

     [tex]d = 1.5 *10^{15} \ km[/tex]

A double slit illuminated with light of wavelength 588 nm forms a diffraction pattern on a screen 11.0 cm away. The slit separation is 2464 nm. What is the distance between the third and fourth bright fringes away from the central fringe

Answers

Answer:

[tex]y_{4}-y_{3}=35.22-11.27=23.95 \mathrm{cm}[/tex]

Explanation:

Given that

Wavelength [tex]\lambda=588 \mathrm{nm}[/tex]

slit separation [tex]\mathrm{d}=2464 \mathrm{nm}[/tex]

slit screen distance [tex]\mathrm{D}=11 \mathrm{cm}[/tex]

We know that for double slit the maxima condition is that

[tex]\operatorname{dsin} \theta=m \lambda[/tex]

[tex]\sin \theta=\frac{m \lambda}{d}[/tex]

[tex]\theta=\sin ^{-1}\left(\frac{\mathrm{m} \lambda}{\mathrm{d}}\right)[/tex]

For small angle approximation, [tex]\sin \theta \approx \tan \theta \approx \theta[/tex]

[tex]\tan \theta=\frac{y_{m}}{D}[/tex]

[tex]y_{m}=D \times \tan \left[\sin ^{-1}\left(\frac{m \lambda}{d}\right)\right][/tex]

Now [tex]y_{4}[/tex] [tex]y_{4}=D \times \tan \left[\sin ^{-1}\left(\frac{4 \lambda}{d}\right)\right]=11 \times \tan \left[\sin ^{-1}\left(\frac{4 \times 588 \mathrm{nm}}{2464 \mathrm{nm}}\right)\right]=35.22 \mathrm{cm}[/tex]

Again [tex]y_{3}=D \times \tan \left[\sin ^{-1}\left(\frac{3 \lambda}{d}\right)\right]=11 \times \tan \left[\sin ^{-1}\left(\frac{3 \times 588 \mathrm{nm}}{2464 \mathrm{nm}}\right)\right]=11.27 \mathrm{cm}[/tex]

Hence [tex]y_{4}-y_{3}=35.22-11.27=23.95 \mathrm{cm}[/tex]

Other Questions
Someone please help - do you think its good to protest? this is a REAL question how long does anesthesia for a wisdom tooth removal last? and also how long does the healing process last? and does it hurt? and how bad does it hurt? Simplify (102) 4. A) 10^-8 B)10^-6 C)-10^-6 D)-10^8 A company laid off one-sixth of its workforce because of falling sales. If the number of employees after the layoff is 690, how many employees were laid off? The Morris Corporation has $350,000 of debt outstanding, and it pays an interest rate of 8% annually. Morris's annual sales are $1.75 million, its average tax rate is 30%, and its net profit margin on sales is 8%. If the company does not maintain a TIE ratio of at least 3 to 1, its bank will refuse to renew the loan and bankruptcy will result. What is Morris's TIE ratio? Do not round intermediate calculations. Round your answer to two decimal places. Is the following graph a linear function, a nonlinear function, and/or a relation Waterways Market recorded the following events involving a recent purchase of merchandise: Received goods for $75000, terms 1/10, n/30. Returned $1100 of the shipment for credit. Paid $400 freight on the shipment. Paid the invoice within the discount period. As a result of these events, the companys inventory increased by:_______. Which is the solubility product expression for pbcl2(s) Which of the following words is a conjunction?A. yesterdayB. thoseC. theD. because What is the area of this triangle? Question 16 (3 points) The 2011 and 2012 Balance Sheets for Jacob, Inc. contained the following entries: 12/31/201112/31/2012 Accounts receivable$206$116 Inventories$590$603 Net fixed assets$102$307 Accounts payable$329$333 Jacob had materials purchases in 2011 of $1,689 and materials purchases in 2012 of $2,770 . What did Jacob record as Cost of Goods Sold (COGS) on its 2012 income statement The life of an electric component has an exponential distribution with a mean of 8.9 years. What is the probability that a randomly selected one such component has a life more than 8 years? Answer: (Round to 4 decimal places.) the presence of harmful substances in the earth's atmosphere is called earth pollution true or false Im kinda confused on this project, any examples? I dont understand what I am doing at all. Which statements about the controlling idea of a text are true? Select 4 options. It includes the topic of the text. It includes quotes from experts. It includes the authors viewpoint. It is usually stated in the texts introduction. It is the underlying message of the text. It is comparable to the theme (for a work of fiction). Solve for x. 9x-2c=k Show all work to identify the asymptotes and zero of the faction f(x) = 4x/x^2 - 16. {y = 308x y = 122x + 2,338 Solve the linear equation The cost of unleaded gasoline in the Bay Area once followed a normal distribution with a mean of $4.74 and a standard deviation of $0.16. Sixteen gas stations from the Bay area are randomly chosen. We are interested in the average cost of gasoline for the 15 gas stations. What is the approximate probability that the average price for 15 gas stations is over $4.99? help Which two strategies will help you to carry out an effective group discussion? -If you disagree with what a person said, focus the discussion on your differences. -Make sure everyone gets an equal chance to speak in the group. -When you dont understand what a person has said, politely ask the person to clarify his or her point. -Make sure only those with strong discussion points get a chance to speak in the group. -Dont miss a chance to speak in the group, even if you have not organized your -thoughts.