consider an lti system with impulse response as, ℎ()=−(−2)(−2) determine the response of the system, (), when the input is ()=( 1)−(−2)

Answers

Answer 1

To determine the response of the system with impulse response ℎ()=−(−2)(−2) to an input ()=( 1)−(−2) is ()=−6, we need to convolve the input with the impulse response.

Let's first rewrite the impulse response in a more simplified form:
ℎ()=−(−2)(−2) = 4(−() + 2)
Now we can perform the convolution:
() = ∫^∞_−∞ ℎ(τ) ()−τ dτ
() = ∫^∞_−∞ 4(−(τ) + 2) ()−τ dτ
We can simplify this integral by breaking it up into two parts:
() = 4∫^∞_−∞ (−(τ) ()−τ) dτ + 8∫^∞_−∞ ()−τ dτ
Let's evaluate each part separately:
4∫^∞_−∞ (−(τ) ()−τ) dτ = 4∫^∞_−∞ (−(τ) ( 1)−(τ+2)) dτ
= −4∫^∞_−∞ ( 1) (−(τ)) dτ − 4∫^∞_−∞ (τ+2) (−(τ)) dτ
= 2( 1) − 2
8∫^∞_−∞ ()−τ dτ = 8∫^∞_−∞ ( 1)−(τ+2) dτ
= −8( 1)
Putting it all together:
() = 2( 1) − 2 - 8( 1)
() = −6

Learn more about impulse response here:

https://brainly.com/question/30516686

#SPJ11


Related Questions

The price of Harriet Tubman's First-Class stamp is shown. (13c) In 2021, the price of a First-Class stamp was $0. 58. How many times as great was the price of a First-Class stamp in 2021 than Tubman's stamp? Show the answer repeating as a decimal

Answers

The price of a First-Class stamp in 2021 was 4.46 times as great as the price of Tubman's stamp.

The price of Harriet Tubman's First-Class stamp was 13 cents.

In 2021, the price of a First-Class stamp was $0.58.

We can determine how many times as great the price of a First-Class stamp in 2021 was than Tubman's stamp by dividing the price of a First-Class stamp in 2021 by the price of Tubman's stamp.

So, 0.58/0.13

= 4.46 (rounded to two decimal places)

Thus, the price of a First-Class stamp in 2021 was 4.46 times as great as the price of Tubman's stamp.

To know more about price visit:

https://brainly.com/question/19091385

#SPJ11

Which expression is equivalent to the one below

Answers

Answer:

C. 8 * 1/9

Step-by-step explanation:

the answer is C because 8 * 1/9 = 8/9, and 8/9 is a division equal to 8:9

PLEASE HELP


A conservation biologist is observing a population of bison affected by an unknown virus. Initially there were 110 individuals but the population is now decreasing by 2% per month. Which function models the number of bison, b, after n months?


b= 110(. 8)^N


b= 110(. 2) ^N


b= 110(. 98)^n


b= 110(. 02)^n

Answers

The final answer is $110(0.02)^n$.

The given equation represents a decreasing function.

Given: $b= 110(. 02)^n$.The formula given is of exponential decay and is represented by:$$y = ab^x$$Where,$a$ is the initial value of $y$. In the given problem, the initial value is 110.$b$ is the base of the exponential expression. In the given problem, the base is $(0.02)$. $x$ is the number of times the value is multiplied by the base. In the given problem, $x$ is represented by $n$. Therefore, the formula becomes,$y = 110(0.02)^n$.The given formula is an example of exponential decay. Exponential decay is a decrease in quantity due to the decrease in each value of the variable. Here, the base value is less than 1, and so the value of $y$ will decrease as $x$ increases. The base value of $(0.02)$ shows that the value of $y$ is reduced to only 2% of the initial value for every time $x$ is incremented.

Know more about Exponential decay here:

https://brainly.com/question/13674608

#SPJ11

a) let f = 5y i 2 j − k and c be the line from (3, 2, -2) to (6, 1, 7). find f · dr c = ____

Answers

the answer is: f · dr = -30

To find f · dr for the line c from (3, 2, -2) to (6, 1, 7), we first need to parametrize the line in terms of a vector function r(t). We can do this as follows:

r(t) = <3, 2, -2> + t<3, -1, 9>

This gives us a vector function that describes all the points on the line c as t varies.

Next, we need to calculate f · dr for this line. We can use the formula:

f · dr = ∫c f · dr

where the integral is taken over the line c. We can evaluate this integral by substituting r(t) for dr and evaluating the dot product:

f · dr = ∫c f · dr = ∫[3,6] f(r(t)) · r'(t) dt

where [3,6] is the interval of values for t that correspond to the endpoints of the line c. We can evaluate the dot product f(r(t)) · r'(t) as follows:

f(r(t)) · r'(t) = <5y, 2, -1> · <3, -1, 9>

= 15y - 2 - 9

= 15y - 11

where we used the given expression for f and the derivative of r(t), which is r'(t) = <3, -1, 9>.

Plugging this dot product back into the integral, we get:

f · dr = ∫[3,6] f(r(t)) · r'(t) dt

= ∫[3,6] (15y - 11) dt

To evaluate this integral, we need to express y in terms of t. We can do this by using the equation for the y-component of r(t):

y = 2 - t/3

Substituting this into the integral, we get:

f · dr = ∫[3,6] (15(2 - t/3) - 11) dt

= ∫[3,6] (19 - 5t) dt

= [(19t - 5t^2/2)]|[3,6]

= (57/2 - 117/2)

= -30

Therefore, the answer is:

f · dr = -30

Learn more about line here:

https://brainly.com/question/2696693

#SPJ11

A cream is sold in a 26-gram container. the average amount of cream used per application is 1 6 7 grams. how many applications can be made with the container?

Answers

To find out how many applications can be made with the 26-gram container, we need to divide the total amount of cream in the container by the average amount of cream used per application.

Total amount of cream (container) = 26 grams
Average amount of cream per application = 1 6/7 grams

First, let's convert the mixed fraction 1 6/7 to an improper fraction:
(1 * 7) + 6 = 13/7 grams

Now, divide the total amount of cream by the average amount of cream per application:

26 grams ÷ 13/7 grams

To divide by a fraction, you multiply by its reciprocal (the fraction flipped):

26 * 7/13

Now, cancel out the common factor (13):

(26/13) * (7/1)

2 * 7 = 14

So, you can make 14 applications with the 26-gram container.

To know more about applications, visit:

https://brainly.com/question/31164894

#SPJ11

It has been proposed that wood alcohol, CH3OH, relatively inexpensive fuel to produce, be decomposed to produce methane.



Methane is a natural gas commonly used for heating homes. Is the decomposition of wood alcohol to methane and oxygen thermodynamically feasible at 25°C and 1 atm?

Answers

The decomposition of wood alcohol (CH3OH) to produce methane (CH4) and oxygen (O2) at 25°C and 1 atm is not thermodynamically feasible.

To explain further, we can consider the enthalpy change (∆H) associated with the reaction. The decomposition of wood alcohol can be represented by the equation:

CH3OH → CH4 + 1/2O2

By comparing the standard enthalpies of formation (∆Hf) for each compound involved, we can determine the overall enthalpy change of the reaction. The standard enthalpy of formation for wood alcohol (∆Hf(CH3OH)) is known to be negative, indicating its formation is exothermic. However, the standard enthalpy of formation for methane (∆Hf(CH4)) is more negative than the sum of ∆Hf(CH3OH) and 1/2∆Hf(O2).

This means that the formation of methane and oxygen from wood alcohol would require an input of energy, making it thermodynamically unfavorable at 25°C and 1 atm. Therefore, under these conditions, the decomposition of wood alcohol to methane and oxygen would not occur spontaneously.

Learn more about sum here:

https://brainly.com/question/17208326

#SPJ11

The correlation between two scores X and Y equals 0. 75. If both scores were converted to z-scores, then the correlation between the z-scores for X and z-scores for Y would be (4 points)





1)



−0. 75



2)



0. 25



3)



−0. 25



4)



0. 0



5)



0. 75

Answers

The correlation between two scores X and Y equals 0.75. If both scores were converted to z-scores, then the correlation between the z-scores for X and z-scores for Y would be the same as the original correlation between X and Y, which is 0.75.

To determine the correlation between z-scores of X and Y, the formula for correlation coefficient (r) is used, which is as follows:

r = covariance of (X, Y) / (SD of X) (SD of Y). We have a given correlation coefficient of two scores, X and Y, which is 0.75. To find out the correlation coefficient between the z-scores of X and Y, we can use the formula:

r(zx,zy) = covariance of (X, Y) / (SD of X) (SD of Y)

r(zx, zy) = r(X,Y).

We know that correlation is invariant under linear transformations of the original variables.

Hence, the correlation between the original variables X and Y equals the correlation between their standardized scores zX and zY. Therefore, the correlation between the z-scores for X and z-scores for Y would be the same as the original correlation between X and Y.

Therefore, the correlation between two scores, X and Y, equals 0.75. If both scores were converted to z-scores, then the correlation between the z-scores for X and z-scores for Y would be the same as the original correlation between X and Y, which is 0.75. Therefore, the answer to the given question is 5) 0.75.

To know more about linear transformations, visit:

brainly.com/question/13595405

#SPJ11

4a. what do we know about the long-run equilibrium in perfect competition? in long-run equilibrium, economic profit is _____ and ____.

Answers

In long-run equilibrium in perfect competition, economic profit is zero and firms are producing at their efficient scale.

In the long-run equilibrium of perfect competition, we know that firms operate efficiently and economic forces balance supply and demand. In this market structure, numerous firms produce identical products, with no barriers to entry or exit.

Due to free entry and exit, firms cannot maintain any long-term economic profit. In the long-run equilibrium, economic profit is zero and firms earn a normal profit.

This outcome occurs because if firms were to earn positive economic profits, new firms would enter the market, increasing competition and driving down prices until profits are eliminated.

Conversely, if firms experience losses, some will exit the market, reducing competition and allowing prices to rise until the remaining firms reach a break-even point.

As a result, resources are allocated efficiently, and consumer and producer surpluses are maximized.

Learn more about long-run equilibrium at

https://brainly.com/question/13998424

#SPJ11

find the taylor series for f centered at 6 if f (n)(6) = (−1)nn! 5n(n 3) .

Answers

This is the Taylor series representation of the function f centered at x=6.

To find the Taylor series for f centered at 6, we need to use the formula:
f(x) = Σn=0 to infinity (f^(n)(a) / n!) (x - a)^n
where f^(n)(a) denotes the nth derivative of f evaluated at x = a.
In this case, we know that f^(n)(6) = (-1)^n * n! * 5^n * (n^3). So, we can substitute this into the formula above:
f(x) = Σn=0 to infinity ((-1)^n * n! * 5^n * (n^3) / n!) (x - 6)^n
Simplifying, we get:
f(x) = Σn=0 to infinity (-1)^n * 5^n * n^2 * (x - 6)^n
This is the Taylor series for f centered at 6.
This is the Taylor series representation of the function f centered at x=6.

To know more about function visit:

https://brainly.com/question/12431044

#SPJ11

Weights of eggs: 95% confidence; n = 22, = 1.37 oz, s = 0.33 oz

Answers

The 95% confidence interval is 1.23 to 1.51

How to calculate the 95% confidence interval

From the question, we have the following parameters that can be used in our computation:

Sample, n = 22

Mean, x = 1.37 oz

Standard deviation, s = 0.33 oz

Start by calculating the margin of error using

E = s/√n

So, we have

E = 0.33/√22

E = 0.07

The 95% confidence interval is

CI = x ± zE

Where

z = 1.96 i.e. z-score at 95% CI

So, we have

CI = 1.37 ± 1.96 * 0.07

Evaluate

CI = 1.37 ± 0.14

This gives

CI = 1.23 to 1.51

Hence, the 95% confidence interval is 1.23 to 1.51

Read more about confidence interval at

https://brainly.com/question/20309162

#SPJ4

flip a coin 4n times. the most probable number of heads is 2n, and its probability is p(2n). if the probability of observing n heads is p(n), show that the ratio p(n)/p(2n) diminishes as n increases.

Answers

The most probable number of heads becomes more and more likely as the number of tosses increases.

Let's denote the probability of observing tails as q (which is 1/2 for a fair coin). Then the probability of observing exactly n heads in 4n tosses is given by the binomial distribution:

p(n) = (4n choose n) * (1/2)^(4n)

where (4n choose n) is the number of ways to choose n heads out of 4n tosses. We can express this in terms of the most probable number of heads, which is 2n:

p(n) = (4n choose n) * (1/2)^(4n) * (2^(2n))/(2^(2n))

= (4n choose 2n) * (1/4)^n * 2^(2n)

where we used the identity (4n choose n) = (4n choose 2n) * (1/4)^n * 2^(2n). This identity follows from the fact that we can choose 2n heads out of 4n tosses by first choosing n heads out of the first 2n tosses, and then choosing the remaining n heads out of the last 2n tosses.

Now we can express the ratio p(n)/p(2n) as:

p(n)/p(2n) = [(4n choose 2n) * (1/4)^n * 2^(2n)] / [(4n choose 4n) * (1/4)^(2n) * 2^(4n)]

= [(4n)! / (2n)!^2 / 2^(2n)] / [(4n)! / (4n)! / 2^(4n)]

= [(2n)! / (n!)^2] / 2^(2n)

= (2n-1)!! / (n!)^2 / 2^n

where (2n-1)!! is the double factorial of 2n-1. Note that (2n-1)!! is the product of all odd integers from 1 to 2n-1, which is always less than or equal to the product of all integers from 1 to n, which is n!. Therefore,

p(n)/p(2n) = (2n-1)!! / (n!)^2 / 2^n <= n! / (n!)^2 / 2^n = 1/(n * 2^n)

As n increases, the denominator n * 2^n grows much faster than the numerator (2n-1)!!, so the ratio p(n)/p(2n) approaches zero. This means that the probability of observing n heads relative to the most probable number of heads becomes vanishingly small as n increases, which is consistent with the intuition that the most probable number of heads becomes more and more likely as the number of tosses increases.

Learn more about heads here

https://brainly.com/question/27162317

#SPJ11

Test the claim about the differences between two population variances sd 2/1 and sd 2/2 at the given level of significance alpha using the given sample statistics. Assume that the sample statistics are from independent samples that are randomly selected and each population has a normal distribution
​Claim: σ21=σ22​, α=0.01
Sample​ statistics: s21=5.7​, n1=13​, s22=5.1​, n2=8
Find the null and alternative hypotheses.
A. H0​: σ21≠σ22 Ha​: σ21=σ22
B. H0​: σ21≥σ22 Ha​: σ21<σ22
C. H0​: σ21=σ22 Ha​: σ21≠σ22
D. H0​: σ21≤σ22 Ha​:σ21>σ22
Find the critical value.

Answers

The null and alternative hypotheses are: H0: σ21 = σ22 and Ha: σ21 ≠ σ22(C).

To find the critical value, we need to use the F-distribution with degrees of freedom (df1 = n1 - 1, df2 = n2 - 1) at a significance level of α/2 = 0.005 (since this is a two-tailed test).

Using a calculator or a table, we find that the critical values are F0.005(12,7) = 4.963 (for the left tail) and F0.995(12,7) = 0.202 (for the right tail).

The test statistic is calculated as F = s21/s22, where s21 and s22 are the sample variances and n1 and n2 are the sample sizes. Plugging in the given values, we get F = 5.7^2/5.1^2 = 1.707.

Since this value is not in the rejection region (i.e., it is between the critical values), we fail to reject the null hypothesis. Therefore, we do not have sufficient evidence to claim that the population variances are different at the 0.01 level of significance.

So C is correct option.

For more questions like Null hypothesis click the link below:

https://brainly.com/question/28920252

#SPJ11

The random variables X and Y have a joint density function given by f(x, y) = ( 2e(−2x) /x, 0 ≤ x < [infinity], 0 ≤ y ≤ x , otherwise.
(a) Compute Cov(X, Y ).
(b) Find E(Y | X).
(c) Compute Cov(X,E(Y | X)) and show that it is the same as Cov(X, Y ).
How general do you think is the identity that Cov(X,E(Y | X))=Cov(X, Y )?

Answers

(a) Cov(X, Y) = 1/2, (b) E(Y|X) = X/2, (c) Cov(X,E(Y|X)) = Cov(X, Y) = 1/2, and the identity Cov(X,E(Y|X)) = Cov(X, Y) holds true for any joint distribution of X and Y.

(a) To compute Cov(X, Y), we need to first find the marginal density of X and the marginal density of Y.

The marginal density of X is:

f_X(x) = ∫[0,x] f(x,y) dy

= ∫[0,x] 2e^(-2x) / x dy

= 2e^(-2x)

The marginal density of Y is:

f_Y(y) = ∫[y,∞] f(x,y) dx

= ∫[y,∞] 2e^(-2x) / x dx

= -2e^(-2y)

Next, we can use the formula for covariance:

Cov(X, Y) = E(XY) - E(X)E(Y)

To find E(XY), we can integrate over the joint density:

E(XY) = ∫∫ xyf(x,y) dxdy

= ∫∫ 2xye^(-2x) / x dxdy

= ∫ 2ye^(-2y) dy

= 1

To find E(X), we can integrate over the marginal density of X:

E(X) = ∫ xf_X(x) dx

= ∫ 2xe^(-2x) dx

= 1/2

To find E(Y), we can integrate over the marginal density of Y:

E(Y) = ∫ yf_Y(y) dy

= ∫ -2ye^(-2y) dy

= 1/2

Substituting these values into the formula for covariance, we get:

Cov(X, Y) = E(XY) - E(X)E(Y)

= 1 - (1/2)*(1/2)

= 3/4

Therefore, Cov(X, Y) = 3/4.

(b) To find E(Y | X), we can use the conditional density:

f(y | x) = f(x, y) / f_X(x)

For 0 ≤ y ≤ x, we have:

f(y | x) = (2e^(-2x) / x) / (2e^(-2x))

= 1 / x

Therefore, the conditional density of Y given X is:

f(y | x) = 1 / x, 0 ≤ y ≤ x

To find E(Y | X), we can integrate over the conditional density:

E(Y | X) = ∫ y f(y | x) dy

= ∫[0,x] y (1 / x) dy

= x/2

Therefore, E(Y | X) = x/2.

(c) To compute Cov(X,E(Y | X)), we first need to find E(Y | X) as we have done in part (b):

E(Y | X) = x/2

Next, we can use the formula for covariance:

Cov(X, E(Y | X)) = E(XE(Y | X)) - E(X)E(E(Y | X))

To find E(XE(Y | X)), we can integrate over the joint density:

E(XE(Y | X)) = ∫∫ xyf(x,y) dxdy

= ∫∫ 2xye^(-2x) / x dxdy

= ∫ x^2 e^(-2x) dx

= 1/4

To know more about joint distribution,

https://brainly.com/question/31476111

#SPJ11

evaluate exactly, using the fundamental theorem of calculus: ∫b0 (x^6/3 6x)dx

Answers

The exact value of the integral ∫b0 (x^6/3 * 6x) dx is b^8.

The Fundamental Theorem of Calculus (FTC) is a theorem that connects the two branches of calculus: differential calculus and integral calculus. It states that differentiation and integration are inverse operations of each other, which means that differentiation "undoes" integration and integration "undoes" differentiation.

The first part of the FTC (also called the evaluation theorem) states that if a function f(x) is continuous on the closed interval [a, b] and F(x) is an antiderivative of f(x) on that interval, then:

∫ab f(x) dx = F(b) - F(a)

In other words, the definite integral of a function f(x) over an interval [a, b] can be evaluated by finding any antiderivative F(x) of f(x), and then plugging in the endpoints b and a and taking their difference.

The second part of the FTC (also called the differentiation theorem) states that if a function f(x) is continuous on an open interval I, and if F(x) is any antiderivative of f(x) on I, then:

d/dx ∫u(x) v(x) f(t) dt = u(x) f(v(x)) - v(x) f(u(x))

In other words, the derivative of a definite integral of a function f(x) with respect to x can be obtained by evaluating the integrand at the upper and lower limits of integration u(x) and v(x), respectively, and then multiplying by the corresponding derivative of u(x) and v(x) and subtracting.

Both parts of the FTC are fundamental to many applications of calculus in science, engineering, and mathematics.

Let's start by finding the antiderivative of the integrand:

∫ (x^6/3 * 6x) dx = ∫ 2x^7 dx = x^8 + C

Using the Fundamental Theorem of Calculus, we have:

∫b0 (x^6/3 * 6x) dx = [x^8]b0 = b^8 - 0^8 = b^8

Therefore, the exact value of the integral ∫b0 (x^6/3 * 6x) dx is b^8.

To know more about integral visit:

brainly.com/question/30094386

#SPJ11

find the distance from the plane 10x y z=90 to the plane 10x y z=70.

Answers

The distance from the plane 10x y z=90 to the plane 10x y z=70, we need to find the distance between a point on one plane and the other plane. The distance from the plane 10x y z=90 to the plane 10x y z=70 is 10sqrt(2) units.

Take the point (0,0,9) on the plane 10x y z=90.
The distance between a point and a plane can be found using the formula:
distance = | ax + by + cz - d | / sqrt(a^2 + b^2 + c^2)
where a, b, and c are the coefficients of the x, y, and z variables in the plane equation, d is the constant term, and (x, y, z) is the coordinates of the point.
For the plane 10x y z=70, the coefficients are the same, but the constant term is different, so we have:
distance = | 10(0) + 0(0) + 10(9) - 70 | / sqrt(10^2 + 0^2 + 10^2)
distance = | 20 | / sqrt(200)
distance = 20 / 10sqrt(2)
distance = 10sqrt(2)
Therefore, the distance from the plane 10x y z=90 to the plane 10x y z=70 is 10sqrt(2) units.

Read more about distance.

https://brainly.com/question/13374349

#SPJ11

Calculate the surface area for this shape

Answers

The surface area of the rectangular prism is 18 square cm

What is the surface area of the rectangular prism?

From the question, we have the following parameters that can be used in our computation:

1 cm by 1 cm by 4 cm

The surface area of the rectangular prism is calculated as

Surface area = 2 * (Length * Width + Length * Height + Width * Height)

Substitute the known values in the above equation, so, we have the following representation

Area = 2 * (1 * 1 + 1 * 4 + 1 * 4)

Evaluate

Area = 18

Hence, the area is 18 square cm

Read more about surface area at

brainly.com/question/26403859

#SPJ1

Find the t-value such that the area left of the t-value is 0.005 with 29 degrees of freedom. A. 2.756 B. 2.763 c. - 1.699 D. -2.756

Answers

The t-value such that the area left of the t-value is 0.005 with 29 degrees of freedom is -2.756.

Since the area to the left of the t-value is given as 0.005, we are looking for a t-value that corresponds to a very small tail area in the left tail of the t-distribution.

Looking at the options, the most likely answer is:

D. -2.756

Negative t-values correspond to the left tail of the t-distribution, and -2.756 is a critical value that corresponds to a very small left tail area (0.005) for 29 degrees of freedom.

However, the exact t-value may vary slightly depending on the level of precision.

Learn more about t- value here:

https://brainly.com/question/19831049

#SPJ1

Bev had 24 pieces of candy she gave Jimmy 1/3 from the candy pieces remaining then she gave Selena 1/4 how many pieces of candy does she have left

Answers

After giving Jimmy one-third of the remaining candy pieces and Selena one-fourth of the remaining candy pieces, Bev is now down to having two-thirds as many as three-quarters as many as twenty-four pieces of candy.

Calculating how much candy is still available after each distribution is necessary if we want to establish how many pieces of candy Bev still possesses. At the beginning, Bev has twenty-four individual bits of candy. After giving Jimmy a third of the candy pieces, the number of pieces that are still remaining may be computed as (2/3) times 24, which is equal to two-thirds of the total amount.

The next thing that happens is that Bev gives Selena a quarter of the remaining candy pieces. We need to multiply the total amount that is still available by one quarter since Selena is entitled to a portion of what is left over after Jimmy has received his part. As a result, the remaining candy pieces can be approximated using the formula (3/4 * (2/3) * 24 after Selena has been given her portion.

The solution to the equation is found to be (3/4) * (2/3) * 24, which is 4 * 8, which equals 32. Therefore, after giving Jimmy one third of the remaining candy pieces and Selena one quarter of the remaining candy pieces, Bev still has 32 pieces of candy left.

Learn more about equation here:

https://brainly.com/question/10724260

#SPJ11

find the value of k for which the given function is a probability density function. f(x) = 2k on [−1, 1]

Answers

Answer:

The value of k that makes f(x) = 2k a probability density function on [−1, 1] is k = 1/4.

Step-by-step explanation:

For a function to be a probability density function, it must satisfy the following two conditions:

The integral of the function over its support must be equal to 1:

∫ f(x) dx = 1

The function must be non-negative on its support:

f(x) ≥ 0, for all x in the support of f(x)

Given f(x) = 2k on [−1, 1], we need to find the value of k such that f(x) is a probability density function.

Condition 2 is satisfied because f(x) = 2k ≥ 0 for all x in the support of f(x), which is [−1, 1].

To satisfy condition 1, we need:

∫ f(x) dx = ∫_{-1}^{1} 2k dx = 2k [x]_{-1}^{1} = 2k(1 - (-1)) = 4k = 1

Solving for k, we have:

4k = 1

k = 1/4

Therefore, the value of k that makes f(x) = 2k a probability density function on [−1, 1] is k = 1/4.

To Know more about probability refer here

brainly.com/question/30034780#

#SPJ11

evaluate the integral using the following values. integral 2 to 6 1/5x^3 dx = 320

Answers

The value of the integral ∫(2 to 6) 1/5x^3 dx is 64, which is consistent with the given value of 320.

The given integral is ∫(2 to 6) 1/5x^3 dx.

To evaluate this integral, we can use the power rule of integration, which states that the integral of x^n with respect to x is (1/(n+1))x^(n+1) + C, where C is the constant of integration. Applying this rule to the integrand, we get:

∫(2 to 6) 1/5x^3 dx = (1/5) ∫(2 to 6) x^3 dx

Using the power rule of integration, we can now find the antiderivative of x^3, which is (1/4)x^4. So, we have:

(1/5) ∫(2 to 6) x^3 dx = (1/5) [(1/4)x^4] from 2 to 6

Substituting the upper and lower limits of integration, we get:

(1/5) [(1/4)6^4 - (1/4)2^4]

Simplifying this expression, we get:

(1/5) [(1/4)(1296 - 16)]

= (1/5) [(1/4)1280]

= (1/5) 320

= 64

Therefore, we have shown that the value of the integral ∫(2 to 6) 1/5x^3 dx is 64, which is consistent with the given value of 320.

In conclusion, we evaluated the integral ∫(2 to 6) 1/5x^3 dx using the power rule of integration and the given values of the upper and lower limits of integration. By substituting these values into the antiderivative of the integrand, we were able to simplify the expression and find the value of the integral as 64, which is consistent with the given value.

Learn more about integral here

https://brainly.com/question/30094386

#SPJ11

The point P is on the unit circle. If the y-coordinate of P is -3/8 , and P is in quadrant III , then x= what ?

Answers

The value of x is -sqrt(55)/8.

Let's use the Pythagorean theorem to find the value of x.

Since P is on the unit circle, we know that the distance from the origin to P is 1. Let's call the x-coordinate of P "x".

We can use the Pythagorean theorem to write:

x^2 + (-3/8)^2 = 1^2

Simplifying, we get:

x^2 + 9/64 = 1

Subtracting 9/64 from both sides, we get:

x^2 = 55/64

Taking the square root of both sides, we get:

x = ±sqrt(55)/8

Since P is in quadrant III, we know that x is negative. Therefore,

x = -sqrt(55)/8

So the value of x is -sqrt(55)/8.

To know more about Pythagorean theorem  refer here:

https://brainly.com/question/14930619

#SPJ11

Leo bought 3. 5lbs of strawberries that cost $4. 20. How many pounds could Leo buy with the same amount of money if the strawberries cost 2. 80 per pound

Answers

Leo could buy 1.5 pounds of strawberries if they cost $2.80 per pound.

How many pounds could Leo buy with the same amount of money

From the question, we have the following parameters that can be used in our computation:

3. 5lbs of strawberries that cost $4.20.

This means that

Cost = $4.20

Pounds = 3.5

For a unit rate of 2.8 we have

Pounds = 4.20/2.8

Evaluate

Pounds = 1.5

Hence, Leo could buy 1.5 pounds of strawberries if they cost $2.80 per pound.

Read more about unit rates at

https://brainly.com/question/19493296

#SPJ4

Musk's age is 2/3of abu's age the sum of their age is 30

Answers

Musk is 12 years old, Abu is 18 years old and the sum of their ages is 30.

Let's find out the current ages of Musk and Abu from the given information.

Musk's age is 2/3 of Abu's age.

We can express it as; Musk's age = 2/3 × Abu's age Also, the sum of their age is 30.

So we can express it as: Musk's age + Abu's age = 30

Substitute the first equation into the second one:2/3 × Abu's age + Abu's age = 30

Simplify the equation and solve for Abu's age:5/3 × Abu's age = 30Abu's age = 18

Substitute Abu's age into the first equation to find Musk's age:

Musk's age = 2/3 × 18Musk's age = 12

To know more about age visit

https://brainly.com/question/29963980

#SPJ11

You purchase a stock for $72. 50. Unfortunately, each day the stock is expected to DECREASE by $. 05 per day. Let x = time (in days) and P(x) = stock price (in $)

Answers

Given the stock is purchased for $72.50 and it is expected that each day the stock will decrease by $0.05.

Let x = time (in days) and

P(x) = stock price (in $).

To find how many days it will take for the stock price to be equal to $65, we need to solve for x such that P(x) = 65.So, the equation of the stock price is

: P(x) = 72.50 - 0.05x

We have to solve the equation P(x) = 65. We have;72.50 - 0.05

x = 65

Subtract 72.50 from both sides;-0.05

x = 65 - 72.50

Simplify;-0.05

x = -7.50

Divide by -0.05 on both sides;

X = 150

Therefore, it will take 150 days for the stock price to be equal to $65

To know more about cost estimate visit :-

https://brainly.in/question/40164367

#SPJ11

show that the rejection region is of the form {x ≤ x0} ∪ {x ≥ x1}, where x0 and x1 are determined by c.

Answers

The rejection region is given by: {F(x) ≤ c} ∪ {F(x) ≥ 1 - c} which is of the form {x ≤ x0} ∪ {x ≥ x1}, where x0 and x1 are determined by c.

To show that the rejection region is of the form {x ≤ x0} ∪ {x ≥ x1}, we can use the fact that the critical value c divides the sampling distribution of the test statistic into two parts, the rejection region and the acceptance region.

Let F(x) be the cumulative distribution function (CDF) of the test statistic. By definition, the rejection region consists of all values of the test statistic for which F(x) ≤ c or F(x) ≥ 1 - c.

Since the sampling distribution is symmetric about the mean under the null hypothesis, we have F(-x) = 1 - F(x) for all x. Therefore, if c is the critical value, then the rejection region is given by:

{F(x) ≤ c} ∪ {1 - F(x) ≤ c}

= {F(x) ≤ c} ∪ {F(-x) ≥ 1 - c}

= {F(x) ≤ c} ∪ {F(x) ≥ 1 - c}

This shows that the rejection region is of the form {x ≤ x0} ∪ {x ≥ x1}, where x0 and x1 are determined by c. Specifically, x0 is the value such that F(x0) = c, and x1 is the value such that F(x1) = 1 - c.

Know more about rejection region here:

https://brainly.com/question/31046299

#SPJ11

the composition of two rotations with the same center is a rotation. to do so, you might want to use lemma 10.3.3. it makes things muuuuuch nicer.

Answers

The composition R2(R1(x)) is a rotation about the center C with angle of rotation given by the angle between the vectors P-Q and R2(R1(P))-C.

Lemma 10.3.3 states that any rigid motion of the plane is either a translation a rotation about a fixed point or a reflection across a line.

To prove that the composition of two rotations with the same center is a rotation can use the following argument:

Let R1 and R2 be two rotations with the same center C and let theta1 and theta2 be their respective angles of rotation.

Without loss of generality can assume that R1 is applied before R2.

By Lemma 10.3.3 know that any rotation about a fixed point is a rigid motion of the plane.

R1 and R2 are both rigid motions of the plane and their composition R2(R1(x)) is also a rigid motion of the plane.

The effect of R1 followed by R2 on a point P in the plane. Let P' be the image of P under R1 and let P'' be the image of P' under R2.

Then, we have:

P'' = R2(R1(P))

= R2(P')

Let theta be the angle of rotation of the composition R2(R1(x)).

We want to show that theta is also a rotation about the center C.

To find a point Q in the plane that is fixed by the composition R2(R1(x)).

The angle of rotation theta must be the angle between the line segment CQ and its image under the composition R2(R1(x)).

Let Q be the image of C under R1, i.e., Q = R1(C).

Then, we have:

R2(Q) = R2(R1(C)) = C

This means that the center C is fixed by the composition R2(R1(x)). Moreover, for any point P in the plane, we have:

R2(R1(P)) - C = R2(R1(P) - Q)

The right-hand side of this equation is the image of the vector P-Q under the composition R2(R1(x)).

The composition R2(R1(x)) is a rotation about the center C angle of rotation given by the angle between the vectors P-Q and R2(R1(P))-C.

The composition of two rotations with the same center is a rotation about that center.

For similar questions on composition

https://brainly.com/question/9464122

#SPJ11

The safe load, L, of a wooden beam supported at both ends varies jointly as the width, w, and the square of the depth, d, and inversely as the length, l. A wooden beam 9in. Wide, 8in. Deep, and 7ft long holds up 26542lb. What load would a beam 6in. Wide, 4in. Deep, and 19ft. Long, of the same material, support? Round your answer to the nearest integer if necessary.

Answers

The load that a beam 6in. Wide, 4in. Deep, and 19ft. Long, of the same material, support is 2436 lb (nearest integer).

The safe load, L, of a wooden beam supported at both ends varies jointly as the width, w, and the square of the depth, d, and inversely as the length, l.

To find:

What load would a beam 6in. Wide, 4in. Deep, and 19ft. Long, of the same material, support?

Formula used:

L = k (w d²)/ l

where k is a constant of variation.

Let k be the constant of variation.Then, the safe load L of a wooden beam can be written as:

L = k (w d²)/ l

Now, using the given values, we have:

L₁ = k (9 × 8²)/ 7 and

L₂ = k (6 × 4²)/ 19

Also, L₁ = 26542 lb (given)

Thus, k = L₁ l / w d²k = (26542 lb × 7 ft) / (9 in × 8²)k

= 1364.54 lb-ft/in²

Substituting the value of k in the equation of L₂, we get:

L₂ = 1364.54 (6 × 4²)/ 19L₂

= 2436 lb (nearest integer)

To know more about  integer, visit:

https://brainly.com/question/490943

#SPJ11

A 6 ounce contaier of greek yogurt contains 150 calories . Find rate of calories per ounce

Answers

Answer:

the answer is B 25 calories/1 ounce

explanation:

6 ounce/150 calories = X/ 1 calories

= 25/1

the crocodile skeleton found had a head length of 62 cm and a body length of 380 cm. which species do you think it was? explain why.

Answers

Based on the crocodile skeleton found with a head length of 62 cm and a body length of 380 cm, it is likely that the species was a Saltwater Crocodile (Crocodylus porosus).

According to the given measurements, it is likely that the species was a Saltwater Crocodile (Crocodylus porosus).  This is because Saltwater Crocodiles are known to have larger sizes compared to other species.

To explain why, let's consider the following steps:

1. Compare the head length and body length to average sizes of different crocodile species.
2. Identify the species whose average size is closest to the given measurements.

Saltwater Crocodiles are the largest living species of crocodiles, with males reaching lengths of over 6 meters (20 feet). The head length of 62 cm and body length of 380 cm (3.8 meters) would likely be within the size range for an adult male Saltwater Crocodile. Other species, such as the Nile Crocodile or the American Alligator, typically do not reach such large sizes, making the Saltwater Crocodile a more plausible candidate based on the given measurements.

To learn more about crocodiles visit : https://brainly.com/question/11777341

#SPJ11

A rectangular parallelepiped has sides 3 cm, 4 cm, and 5 cm, measured to the nearest centimeter.a. What are the best upper and lower bounds for the volume of this parallelepiped?b. What are the best upper and lower bounds for the surface area?

Answers

The best lower bound for the volume is 24 cm³, and the best upper bound is 120 cm³ and the best lower bound for the surface area is 52 cm², and the best upper bound is 148 cm².

a. To determine the best upper and lower bounds for the volume of the rectangular parallelepiped, we can consider the extreme cases by rounding each side to the nearest centimeter.

Lower bound: If we round each side down to the nearest centimeter, we get a rectangular parallelepiped with sides 2 cm, 3 cm, and 4 cm. The volume of this parallelepiped is 2 cm * 3 cm * 4 cm = 24 cm³.

Upper bound: If we round each side up to the nearest centimeter, we get a rectangular parallelepiped with sides 4 cm, 5 cm, and 6 cm. The volume of this parallelepiped is 4 cm * 5 cm * 6 cm = 120 cm³.

Therefore, the best lower bound for the volume is 24 cm³, and the best upper bound is 120 cm³.

b. Similar to the volume, we can determine the best upper and lower bounds for the surface area of the parallelepiped by considering the extreme cases.

Lower bound: If we round each side down to the nearest centimeter, the dimensions of the parallelepiped become 2 cm, 3 cm, and 4 cm. The surface area is calculated as follows:

2 * (2 cm * 3 cm + 3 cm * 4 cm + 4 cm * 2 cm) = 2 * (6 cm² + 12 cm² + 8 cm²) = 2 * 26 cm² = 52 cm².

Upper bound: If we round each side up to the nearest centimeter, the dimensions become 4 cm, 5 cm, and 6 cm. The surface area is calculated as follows:

2 * (4 cm * 5 cm + 5 cm * 6 cm + 6 cm * 4 cm) = 2 * (20 cm² + 30 cm² + 24 cm²) = 2 * 74 cm² = 148 cm².

Therefore, the best lower bound for the surface area is 52 cm², and the best upper bound is 148 cm².

To know more about surface area refer to-

https://brainly.com/question/29298005

#SPJ11

Other Questions
The arrival rate for a certain waiting-line system obeys a Poisson distribution with a mean of 0.5 unit per period. It is required that the probability of one or more units in the system not exceed 0.20. What is the minimum service rate that must be provided if the service duration is to be distributed exponentially? Rewrite each of the following expressions by replacing the index operator[] with the indirection operator(*). a. Num[4] b. Score[7] 14. Which of the following functions does not contain any errors? void printnumint x print(%d, x): return x; } (b) int cube(int s) int s; return(s *s *s): (c) char triplefloat n) return (3*n ): ddouble circumferenceint r return (5.14 *2 * r ): 15.(10 pointsFor a list of numbers entered by the user and terminated by 0,find the sum of the positive number and the sum of the negative numbers 16.20 points Write a function that verifies if a given number exists in an array of floats The function is supposed to return the first position in where the number is encountered. If the given number does not exist, the function returns --1. Then write a program that asks the user to enter an array of floats and calls the function. The prototype of the function should be like: int Searchfloats a[,int n,float number) Example: Consider the following array of floats 2.1 1 1 9 2 -14 17.3 5.9 9 3 4 5 6 0 7 If the number to be searched is 5.4 the function returns --1 If the number to be searched is 9 the function returns 2 You may need to use the appropriate appendix table or technology to answer this question. Find the critical F value with 2 numerator and 40 denominator degrees of freedom at a = 0.05. 3.15 3.23 3.32 19.47 Find the distance between u and v. u = (0, 2, 1), v = (-1, 4, 1) d(u, v) = Need Help? Read It Talk to a Tutor 3. 0.36/1.81 points previous Answers LARLINALG8 5.1.023. Find u v.v.v, ||0|| 2. (u.v), and u. (5v). u - (2, 4), v = (-3, 3) (a) uv (-6,12) (b) v.v. (9,9) M12 (c) 20 (d) (u.v) (18,36) (e) u. (Sv) (-30,60) write a full python program that asks the user to type in 10 words using a loop, prompting the user for each word with a number. the program then should display the longest word. A company has two manufacturing plants with daily production levels of 5x+14 items and 3x-7 items, respectively. The first plant produces how many more items daily than the second plant?how many items daily does the first plant produce more than the second plant 2. (a) analyze explain how the poet uses both metaphor andpersonification in lines 6-7 of "courage." (b) interpret what is the purposeand effect of that language? explain,i How are the chief justice and the other judges of suphreme courts appointed mention it A rancher wants to study two breeds of cattle to see whether or not the mean weights of the breeds are the same. Working with a random sample of each breed, he computes the following statistics . a person standing a certain distance from eleven identical loudspeakers is hearing a sound level intensity of 112 db. what sound level intensity would this person hear if two are turned off? in dB establishing common routines and operating procedures that apply uniformly to everyone is called ________. Of the following, which choices most likely have low NDVI values? Select all that apply.a. tropical rainforests b. blooming alfalfa fields c. a lack of biomass d. diseased vegetation What type of entries would close the budgetary and actual accounts? explain why large organizations typically have systems send logs to a central logging server. the movement of substances from the nephron tubule back into the bloodstream is referred to as____ A flat plate of width 1 m and length 0. 2 m is maintained at a temperature of 32C. Ambient fluid at 22C flows across the top of the plate in parallel flow. Determine the average heat transfer coefficient, the convection heat transfer rate from the top of the plate, and the drag force on the plate. HELP ME PLEASE!!Explain "education is the most powerful tool to combat poverty and cridicate social injustice" how many spring tides occur in the time it takes the moon to make one complete orbit around earth? Debris avalanches caused by flank collapse have happened in the Hawaiian Islands have never occurred in the Ring of Fire are the primary cause of phreatomagmatic eruptions O produce thick fall deposits are typical in mid-ocean ridge spreading centers The most important consequence of segmentation in animals, from an evolutionary perspective, is that it A. allows organisms to grow much larger than would be possible without segmentation OB. allows body parts to be eaten by predators without killing the organism. o C has allowed organisms to alter their body forms in complex ways since evolution can alter the easily duplicated segments D. increases the mobility of an organism. E. reduces the surface area to volume ratio.