a person standing a certain distance from eleven identical loudspeakers is hearing a sound level intensity of 112 db. what sound level intensity would this person hear if two are turned off? in dB

Answers

Answer 1

The person would hear a sound level intensity of 138 dB if two of the eleven identical loudspeakers are turned off.

If the person is standing at a certain distance from eleven identical loudspeakers and hearing a sound level intensity of 112 dB, we can use the inverse square law to find the sound level intensity when two loudspeakers are turned off. The inverse square law states that the sound intensity decreases in proportion to the square of the distance from the source. Let's assume that the distance between the person and the loudspeakers is d. When all eleven loudspeakers are turned on, the sound intensity at the person's location is 112 dB. If two loudspeakers are turned off, there are nine remaining loudspeakers. The new distance from the person to each of the remaining nine loudspeakers is still d, so the new sound intensity, I_2, can be calculated using the inverse square law: I_1/I_2 = (d_2/d_1)^2

where I_1 is the initial sound intensity, d_1 is the initial distance, d_2 is the new distance, and I_2 is the new sound intensity.

We can rearrange this equation to solve for I_2: I_2 = I_1 * (d_1/d_2)^2

When two loudspeakers are turned off, there are nine remaining loudspeakers. Therefore, we can calculate the new sound intensity as:

I_2 = 112 dB * (11/9)^2 = 138 dB (approximately).

For more such questions on intensity

https://brainly.com/question/4431819

#SPJ11

Answer 2

If a person is standing at a certain distance from eleven identical loudspeakers, the sound intensity they hear will depend on several factors, including the distance from the loudspeakers, the power output of the loudspeakers, and the number of loudspeakers in operation.

Assuming that all eleven loudspeakers are producing the same level of sound intensity, and the person is equidistant from each speaker, turning off two of the speakers would result in a reduction of sound intensity at the person's location.

The reduction in sound intensity would depend on the specific configuration of the loudspeakers and the distance from the person to the loudspeakers, but we can estimate the reduction in sound intensity using the inverse square law.

The inverse square law states that the sound intensity at a given distance from a point source is inversely proportional to the square of the distance from the source. Therefore, if we assume that the person is equidistant from each of the eleven loudspeakers and the sound intensity at that distance is x, then the sound intensity at the person's location with two speakers turned off would be:

I = x * (9/11)^2

where I is the new sound intensity in watts per square meter.

To convert the sound intensity into decibels (dB), we can use the following equation:

L = 10 log10(I/I0)

where L is the sound level in dB, I is the sound intensity in watts per square meter, and I0 is the reference sound intensity of 10^−12 watts per square meter.

Using this equation and assuming a sound intensity of 1 watt per square meter at the person's location with all eleven speakers turned on, we can calculate the sound level with two speakers turned off as:

L = 10 log10((1 * (9/11)^2)/10^-12) ≈ 67 dB

Therefore, with two loudspeakers turned off, the person would hear the sound at a level of approximately 67 dB.

Learn more about sound intensity, here:

brainly.com/question/14349601

#SPJ11


Related Questions

after passing a grating, the 2nd order maximum of this light forms an angle of 53.8 ∘ relative to the incident light. what is the separation d between two adjacent lines on the grating?

Answers

The separation between adjacent lines on the grating is 615 nm. where d is the separation between adjacent lines on the grating, θ is the angle between the incident light and the diffracted light, m is the order of the diffraction maximum, and λ is the wavelength of the incident light.


In this case, we know that the 2nd order maximum forms an angle of 53.8° relative to the incident light. Therefore, we can write:
d(sin θ) = mλ
d(sin 53.8°) = 2λ
We need to solve for d, so we can rearrange the equation to get:
d = 2λ / sin 53.8°


However, we don't have the value of λ, so we need to use another piece of information. We know that the light has passed through a grating, so we can assume that the incident light consists of a narrow range of wavelengths. Let's say that the incident light has a wavelength of 500 nm (which is in the visible range).
Now we can substitute this value of λ into the equation:
d = 2(500 nm) / sin 53.8°
d = 615 nm

To know more about incident light visit:-

https://brainly.com/question/29804046

#SPJ11

Aromatic molecules like those in perfume have a diffusion coefficient in air of approximately 2×10−5m2/s. Estimate, to one significant figure, how many hours it takes perfume to diffuse 2.0 m , about 5 ft , in still air.

Answers

It takes approximately 56 hours (to one significant figure) for perfume to diffuse a distance of 2.0 m (about 5 ft) in still air.

What is a diffusion coefficient?

First, we need to understand the concept of diffusion coefficient. It is a measure of how quickly a substance diffuses (spreads out) through a medium, such as air. In the case of perfume, the diffusion coefficient in air is given as 2×10−5m2/s. This means that, on average, a perfume molecule will travel a distance of √(2×10−5m^2) = 0.0045 m (about 4.5 mm) in one second.

To estimate the time required for perfume to diffuse a distance of 2.0 m in still air, we use Fick's law of diffusion, which relates the diffusion distance, diffusion coefficient, and time:

Diffusion distance = √(Diffusion coefficient × time)

Rearranging this equation, we get:

Time = (Diffusion distance)^2 / Diffusion coefficient

Substituting the given values, we get:

Time = (2.0 m)^2 / (2×10−5 m^2/s)

Time = 200000 s = 55.6 hours (approx.)

Therefore, it takes approximately 56 hours (to one significant figure) for perfume to diffuse a distance of 2.0 m (about 5 ft) in still air.

Note that this is only an estimate, as the actual time required for perfume to diffuse a certain distance in air depends on various factors, such as temperature, pressure, and air currents. Also, the actual diffusion process is more complex than what is captured by Fick's law, as it involves multiple factors such as the size, shape, and polarity of the perfume molecules, as well as interactions with air molecules. Nonetheless, the above calculation provides a rough idea of the time required for perfume to diffuse in still air.

Learn more about diffusion

brainly.com/question/20843145

#SPJ11

Two objects, P and Q, have the same momentum. Q has more kinetic energy than P if it:
A. weighs more than P
B. is moving faster than P
C. weighs the same as P
D. is moving slower than P
E. is moving at the same speed as P

Answers

Option (D). is moving slower than P .The correct answer is that Q has more kinetic energy than P when it is moving slower than P.

How can we determine the relationship between the velocities of objects ?

Kinetic energy is given by the equation KE = (1/2)mv^2, where KE represents kinetic energy, m represents mass, and v represents velocity. Since the momentum of objects P and Q is the same, we can write their momenta as p = mv, where p represents momentum.

If objects P and Q have the same momentum, their velocities (v) must be inversely proportional to their masses (m).

This means that if object Q weighs more than object P, it must be moving at a slower velocity in order to have the same momentum.

Since kinetic energy depends on both mass and velocity, when object Q is moving slower than object P, it will have less kinetic energy, contrary to the statement in the question.

We know that kinetic energy is directly proportional to the square of the velocity. In other words, as the velocity increases, the kinetic energy increases even more rapidly. Similarly, as the velocity decreases, the kinetic energy decreases at an even faster rate.

Now, let's consider the scenario where objects P and Q have the same momentum.

This means that their momenta are equal: [tex]p_P = p_Q[/tex]. We can express momentum as the product of mass and velocity: [tex]m_Pv_P = m_Qv_Q.[/tex]

Learn more about Kinetic Energy

brainly.com/question/26472013

#SPJ11

a single slit of width 0.030 mm is used to project a diffraction pattern of 500 nm light on a screen at a distance of 2.00 m from the slit. what is the width of the central maximum?

Answers

The central bright fringe on the screen will be approximately 33 mm wide. When a beam of light passes through a narrow slit, it diffracts and produces a pattern of light and dark fringes on a screen.

The width of the central maximum in this pattern can be calculated using the following formula:

w = (λL) / D

Where w is the width of the central maximum, λ is the wavelength of the light, L is the distance between the slit and the screen, and D is the width of the slit.

In this case, the width of the slit is given as 0.030 mm (or 0.00003 m), the wavelength of the light is given as 500 nm (or 0.0000005 m), and the distance between the slit and the screen is given as 2.00 m.

Plugging these values into the formula, we get:

w = (0.0000005 m x 2.00 m) / 0.00003 m
w = 0.033 m

Therefore, the width of the central maximum is 0.033 m (or 33 mm). This means that the central bright fringe on the screen will be approximately 33 mm wide.

For more such questions on light

https://brainly.com/question/10728818

#SPJ11

The width of the central maximum is determined as 0.033 m.

What is the width of the central maximum?

The width of the central maximum is calculated as follows;

w = (λL) / D

Where;

w is the width of the central maximumλ is the wavelength of the lightL is the distance between the slit and the screenD is the width of the slit.

The width of the central maximum is calculated as follows;

w = (500 x 10⁻⁹ m x 2.00 m) / (0.03 x 10⁻³ m )

w = 0.033 m

Therefore, the width of the central maximum is calculated from the equation as 0.033 m.

Learn more about width of slits here:

https://brainly.com/question/13894543

#SPJ4

Calculate the angular separation of two Sodium lines given as 580.0nm and 590.0 nm in first order spectrum. Take the number of ruled lines per unit length on the diffraction grating as 300 per mm?
(A) 0.0180
(B) 180
(C) 1.80
(D) 0.180

Answers

The angular separation of two Sodium lines is calculated as (C) 1.80.

The angular separation between the two Sodium lines can be calculated using the formula:

Δθ = λ/d

Where Δθ is the angular separation, λ is the wavelength difference between the two lines, and d is the distance between the adjacent ruled lines on the diffraction grating.

First, we need to convert the given wavelengths from nanometers to meters:

λ1 = 580.0 nm = 5.80 × 10⁻⁷ m
λ2 = 590.0 nm = 5.90 × 10⁻⁷ m

The wavelength difference is:

Δλ = λ₂ - λ₁ = 5.90 × 10⁻⁷ m - 5.80 × 10⁻⁷ m = 1.0 × 10⁻⁸ m

The distance between adjacent ruled lines on the diffraction grating is given as 300 lines per mm, which can be converted to lines per meter:

d = 300 lines/mm × 1 mm/1000 lines × 1 m/1000 mm = 3 × 10⁻⁴ m/line

Substituting the values into the formula, we get:

Δθ = Δλ/d = (1.0 × 10⁻⁸ m)/(3 × 10⁻⁴ m/line) = 0.033 radians

Finally, we convert the answer to degrees by multiplying by 180/π:

Δθ = 0.033 × 180/π = 1.89 degrees

Rounding off to two significant figures, the answer is:

(C) 1.80

To know more about angular separation, refer

https://brainly.com/question/30365113

#SPJ11

An ac voltage, whose peak value is 150 V, is across a 330 -Ω resistor.
What is the peak current in the resistor? answer in A
What is the rms current in the resistor? answer in A

Answers

Peak current in the resistor = 150 V / 330 Ω = 0.4545 A
RMS current in the resistor = Peak current / √2 ≈ 0.3215 A


The peak current in the resistor can be found using Ohm's Law (V = IR).

In this case, the peak voltage (150 V) is across a 330-Ω resistor. To find the peak current, we simply divide the peak voltage by the resistance:
Peak current = 150 V / 330 Ω = 0.4545 A (approx)
To find the RMS (Root Mean Square) current, we need to divide the peak current by the square root of 2 (√2):
RMS current = Peak current / √2 ≈ 0.4545 A / √2 ≈ 0.3215 A
So, the peak current in the resistor is approximately 0.4545 A, and the RMS current is approximately 0.3215 A.

For more such questions on current, click on:

https://brainly.com/question/1100341

#SPJ11


Your answer: The peak current in the resistor is approximately 0.4545 A, and the RMS current in the resistor is approximately 0.3215 A.

To find the peak current in the resistor, we can use Ohm's Law, which states that Voltage (V) = Current (I) × Resistance (R). We can rearrange this formula to find the current: I = V/R.

1. Peak current: Given the peak voltage (V_peak) of 150 V and the resistance (R) of 330 Ω, we can calculate the peak current (I_peak) as follows:

I_peak = V_peak / R = 150 V / 330 Ω ≈ 0.4545 A

2. RMS current: To find the RMS (root-mean-square) current, we can use the relationship between peak and RMS values: I_RMS = I_peak / √2.

I_RMS = 0.4545 A / √2 ≈ 0.3215 A

To learn more about RMS current : brainly.com/question/29347502

#SPJ11

a local fm radio station broadcasts at a frequency of 95.6 mhz. calculate the wavelngth

Answers

The wavelength of the radio wave is approximately 3.14 meters (rounded to two decimal places). This means that the distance between successive crests or troughs of the wave is 3.14 meters.

The speed of light is constant at approximately 3.0 x [tex]10^{8}[/tex] meters per second (m/s). The frequency of the radio wave is 95.6 MHz, which is equivalent to 95,600,000 Hz.

To find the wavelength, we can use the formula: wavelength = speed of light / frequency. Substituting the values we get: wavelength = 3.0 x [tex]10^{8}[/tex] m/s / 95,600,000 Hz

After calculation, the wavelength of the radio wave is approximately 3.14 meters (rounded to two decimal places). This means that the distance between successive crests or troughs of the wave is 3.14 meters.

Understanding the wavelength of radio waves is important in radio broadcasting as it determines the range of the radio signal.

Longer wavelengths allow the radio waves to travel greater distances with less energy loss, making them ideal for long-range broadcasting.

On the other hand, shorter wavelengths are more suitable for local broadcasting as they have a limited range but can carry more information due to their higher frequency.

To know more about radio waves, refer here:

https://brainly.com/question/28874040#

#SPJ11

Please please help!!




3. ) A frustrated tennis star hits a ball straight up into the air at 22. 8 m/s.


How long before the ball hits the ground? How high did the ball go?


4. ) What is the velocity of the ball in #3 right before it hits the ground?

Answers

To calculate the time (t) taken for the ball to hit the ground: Using the kinematic equation,v = u + at0 = 22.8 - 9.8t9.8t = 22.8t = 22.8/9.8t = 2.33 s. Therefore, it will take 2.33 s for the ball to hit the ground.

To calculate the maximum height reached by the ball: Using the kinematic equation,s = ut + (1/2)at², Where,s = maximum height reached by the ball t = time taken to reach the maximum height, u = initial velocity of the ball, a = acceleration of the ball 0 = 22.8t - (1/2)(9.8)t²22.8t = (1/2)(9.8)t²4.9t² = 22.8tt² = 22.8/4.9t ≈ 1.20s.

Hence, at a time of 1.20 s, the ball reaches the maximum height.

Using the kinematic equation,v² = u² + 2asHere, v = final velocity = 0, u = initial velocity, a = acceleration = -9.8s = maximum height reached by the ball0 = (22.8)² + 2(-9.8)s515.84 = 19.6s.

The ball reaches a maximum height of approximately 26.3 m above the ground.

To calculate the velocity of the ball just before it hits the ground: Using the kinematic equation,v = u + atv = 22.8 - 9.8(2.33)v = -4.86 m/s.

Hence, the velocity of the ball just before it hits the ground is -4.86 m/s.

Learn more about kinematic equation here ;

https://brainly.com/question/28980475

#SPJ11

10–41. determine the moment of inertia for the beam’s cross-sectional area about the y axis

Answers

To determine the moment of inertia for the beam's cross-sectional area about the y-axis, we need to use the formula: Iy = ∫ y^2 dA

where Iy is the moment of inertia about the y-axis, y is the perpendicular distance from the y-axis to an infinitesimal area element dA, and the integral is taken over the entire cross-sectional area.

The actual calculation of the moment of inertia depends on the shape of the cross-sectional area of the beam. For example, if the cross-section is rectangular, we have:

Iy = (1/12)bh^3

where b is the width of the rectangle and h is the height.

If the cross-section is circular, we have:

Iy = (π/4)r^4

where r is the radius of the circle.

If the cross-section is more complex, we need to divide it into simpler shapes and use the parallel axis theorem to find the moment of inertia about the y-axis.

Once we have determined the moment of inertia, we can use it to calculate the beam's resistance to bending about the y-axis.

For more such questions on moment of inertia

https://brainly.com/question/3406242

#SPJ11

An object has a height of 0.064 m and is held 0.240 m in front of a converging lens with a focal length of 0.140 m. (Include the sign of the value in your answers.)
(a) What is the magnification?
(b) What is the image height?
m

Answers

(a) To find the magnification, we first need to determine the image distance (q). We can use the lens formula:
1/f = 1/p + 1/q


where f is the focal length (0.140 m), p is the object distance (0.240 m), and q is the image distance. Rearranging the formula to solve for q:
1/q = 1/f - 1/p
1/q = 1/0.140 - 1/0.240
1/q = 0.00714
q = 1/0.00714 ≈ 0.280 m
Now, we can find the magnification (M) using the formula:
M = -q/p
M = -0.280/0.240
M = -1.17
The magnification is -1.17.
(b) To find the image height (h'), we can use the magnification formula:
h' = M × h
where h is the object height (0.064 m). Plugging in the values:
h' = -1.17 × 0.064
h' ≈ -0.075 m
The image height is approximately -0.075 meters. The negative sign indicates that the image is inverted.

To know more about magnification visit:

https://brainly.com/question/21370207

#SPJ11

an otto cycle with air as the working fluid has a compression ratio of 7.9. under cold air standard conditions, what is the thermal efficiency of this cycle expressed as a percent?

Answers

The thermal efficiency of the Otto cycle with air as the working fluid and a compression ratio of 7.9, under cold air standard conditions, is approximately 57.1%.

To find the thermal efficiency of an Otto cycle with air as the working fluid, we first need to know the specific heat ratio of air, which is 1.4.

Then, we can use the formula for thermal efficiency:

Thermal efficiency = 1 - [tex](1-compression ratio)^{specific heat ratio -1}[/tex]

Plugging in the given compression ratio of 7.9 and the specific heat ratio of 1.4, we get:

Thermal efficiency = 1 - [tex](1/7.9)^{1.4-1}[/tex] = 0.5715 or 57.15%

Therefore, the thermal efficiency of the Otto cycle with air as the working fluid and a compression ratio of 7.9, under cold air standard conditions, is approximately 57.15%.



know more about thermal efficiency here:

https://brainly.com/question/24244642

#SPJ11

. an electron in a hydrogen atom is in the n=5 , l=4 state. find the smallest angle the magnetic moment makes with the z-axis. (express your answer in terms of μb. )

Answers

The magnetic moment in terms of μB, which is the Bohr magneton, a physical constant with the value of  -0.942μB when an electron in a hydrogen atom is in the n=5 , l=4 state.

The magnetic moment of an electron in an atom is given by the equation:

μ = -g(l) * μB * √(j(j+1)),

where g(l) is the Landé g-factor for the specific orbital angular momentum quantum number (l), μB is the Bohr magneton, and j is the total angular momentum quantum number.

For an electron in the n=5, l=4 state, the total angular momentum quantum number can take on the values j = l + 1/2 or j = l - 1/2. Therefore, the two possible values of the magnetic moment for this electron are:

μ = -g(4) * μB * √(4(4+1)) = -2 * μB * √(20) = -4μB

μ = -g(4) * μB * √t(3(3+1)) = -2/3 * μB * √(12) = -0.942μB

We are asked to find the smallest angle the magnetic moment makes with the z-axis. This angle is given by the equation:

cosθ = μz/μ,

where θ is the angle between the magnetic moment and the z-axis, μz is the z-component of the magnetic moment, and μ is the magnitude of the magnetic moment.

For the first value of μ (-4μB), μz = -4μB * cos(θ), and for the second value of μ (-0.942μB), μz = -0.942μB * cos(θ).

To find the smallest angle θ, we need to find the maximum value of cos(θ), which occurs when θ = 0 (i.e., when the magnetic moment is aligned with the z-axis). Therefore, the smallest angle θ is:

θ = cos⁻¹(1) = 0 degrees

So the answer is:

θ = 0 degrees

That we expressed the magnetic moment in terms of μB, which would be the Bohr magneton, a physical constant with the value of 9.2740100783 × 10⁻²⁴J/T.

To know more about hydrogen atom

https://brainly.com/question/14327925

#SPJ4

use the relationship between resistance, resistivity, length, and cross-sectional area to estimate the resistance of a membrane segment Rmem using the following order-of-magnitude values.the diameter of the axon ~10 µm the membrane thickness ~10 nmthe resistivity of the axoplasm ~1 Ω .mthe average resistivity ol the membrane 10^ Ω.m the segment length ~1 mm

Answers

The estimated resistance of the membrane segment is approximately 1.27 x 10^11 Ω.

To estimate the resistance of a membrane segment (Rmem), we can use the formula:

R = (ρ * L) / A

Where R is resistance, ρ is resistivity, L is length, and A is the cross-sectional area. In this case, we have the following values:

- Diameter of the axon (d) = 10 µm
- Membrane thickness (t) = 10 nm
- Resistivity of the axoplasm (ρaxo) = 1 Ω.m
- Average resistivity of the membrane (ρmem) = 10^7 Ω.m
- Segment length (L) = 1 mm

First, we need to calculate the cross-sectional area of the membrane segment (A):

A = π * (d/2)^2

A = π * (10 µm / 2)^2
A ≈ 78.5 µm^2

Now, we can estimate the resistance of the membrane segment (Rmem):

Rmem = (ρmem * L) / A

Rmem = (10^7 Ω.m * 1 mm) / 78.5 µm^2
Rmem ≈ 1.27 x 10^11 Ω

So, the estimated resistance of the membrane segment is approximately 1.27 x 10^11 Ω.

To learn more about area, refer below:

https://brainly.com/question/27683633

#SPJ11

what does the very small value of k_w indicate about the autoionization of water?

Answers

The small value of the equilibrium constant for the autoionization of water (k_w = 1.0 x 10^-14) indicates that water molecules only dissociate to a very small extent.

The autoionization of water refers to the reaction in which water molecules break apart into hydronium and hydroxide ions, represented by the equation H2O(l) ⇌ H+(aq) + OH-(aq). This reaction is essential for many chemical and biological processes, including acid-base chemistry and pH regulation.

The small value of k_w indicates that the concentration of hydronium and hydroxide ions in pure water is very low, around 1 x 10^-7 M. This corresponds to a pH of 7, which is considered neutral. At this concentration, the autoionization of water is in a state of dynamic equilibrium, with the rate of the forward reaction equal to the rate of the reverse reaction.

Learn more about autoionization of water here;

https://brainly.com/question/31798325

#SPJ11

A converging lens produces an enlarged virtual image when the object is placed just beyond its focal point.a. Trueb. False

Answers

A converging lens produces an enlarged virtual image when the object is placed just beyond its focal point. The answer is: a. True.

Step-by-step explanation:

1. A converging lens, also known as a convex lens, has the ability to converge light rays that pass through it.


2. The focal point of a converging lens is the point where parallel rays of light converge after passing through the lens.


3. When an object is placed just beyond the focal point of a converging lens, the light rays from the object that pass through the lens will diverge.


4. Due to the diverging rays, an enlarged virtual image will be formed on the same side of the lens as the object.


5. This virtual image is upright, magnified, and can only be seen by looking through the lens, as it cannot be projected onto a screen.



In summary, it is true that a converging lens produces an enlarged virtual image when the object is placed just beyond its focal point.

To know more about focal point refer here

https://brainly.com/question/16188698#

#SPJ11

Q11. What fraction is:
(a) 4 months of 2 years?
(c) 15 cm of 1 m?
(b) 76 c of $4.00?
(d) 7 mm of 2 cm?

Answers

Answer:

a)[tex]\frac{4}{24}[/tex]

b)[tex]\frac{15}{100}[/tex]

c)[tex]\frac{76}{400}[/tex]

d)[tex]\frac{7}{20}[/tex]

If the vertex of a parabola is the point (−3,0) and the directrix is the line x+5=0, then find its equation.

Answers

The equation of the parabola having vertex at (-3,0) and the directrix (x+5=0) is y² = 8(x + 3).

Since the vertex of the parabola is at (-3,0), we know that the axis of symmetry is a vertical line passing through this point, which has the equation x = -3.

The directrix is a horizontal line, so the parabola must open downwards. The distance from the vertex to the directrix is the same as the distance from the vertex to any point on the parabola. Let's call this distance a.

The distance from any point (x,y) on the parabola to the directrix x + 5 = 0 is given by the vertical distance between the point and the line, which is |x + 5|.

Given directrix is x + 5

i.e., x + 5 − 3=0

              x+2=0

               ∴ a=2

The equation of the parabola in vertex form is:

(y - k)² = 4a(x - h)

where (h,k) is the vertex.

Substituting the values h = -3, k = 0, and a = 2, we get:

(y - 0)² = 4×2 {x - (-3)}

Simplifying, we get:

y² = 8(x + 3)

Therefore, the equation of the parabola is y² = 8(x + 3).

Learn more about parabola here

brainly.com/question/21685473

#SPJ4

Block A is on the ground. Ignore all friction forces, and assume the two blocks are released from rest. Choose the correct statements. B 30° А Total mechanical energy - kinetic plus potential -- (of A and B combined) is conserved. The reaction forces from A to B and B to A both do work. The reaction force between A and B is a conservative force. The reaction force from the ground on A does work.

Answers

The correct statements are: "Total mechanical energy - kinetic plus potential -- (of A and B combined) is conserved" and "The reaction force between A and B is a conservative force."

When we ignore all friction forces, the only forces acting on the blocks are gravity, normal force, and the reaction force between the two blocks. In this case, the total mechanical energy, which includes both kinetic and potential energy, is conserved for the system of blocks A and B. This means that the sum of kinetic and potential energy remains constant throughout the motion of the blocks.

The reaction force between A and B is a conservative force. Conservative forces are those that do not depend on the path taken by an object, and their work is recoverable as mechanical energy. Since friction is ignored in this scenario, the reaction force between the two blocks does not dissipate any energy, which allows the total mechanical energy of the system to be conserved.

The reaction forces from A to B and B to A do not perform work in this case, as they act perpendicular to the direction of motion of the blocks. The reaction force from the ground on A also does not perform work, because it acts perpendicular to the motion of block A.

To know more about the conservative force, click here;

https://brainly.com/question/31849659

#SPJ11

Aluminum has a resistivity of 2.65 10-8 Qm What is the resistance of 15 m of aluminum wire of cross-sectional area 1.0 mm?? A. 1.6 Q B. 0.40 Q C. 0.13 Q D. 1.3 > 102 Q E.56 Q

Answers

The resistance of a wire can be calculated using the formula:

R = (ρ * L) / A,

where R is the resistance, ρ is the resistivity, L is the length of the wire, and A is the cross-sectional area of the wire.

Given:

ρ (resistivity of aluminum) = 2.65 x 10^(-8) Ωm,

L (length of aluminum wire) = 15 m,

A (cross-sectional area of aluminum wire) = 1.0 mm².

We need to convert the cross-sectional area from mm² to m²:

1 mm² = 1 x 10^(-6) m².

Substituting the given values into the formula, we have:

R = (2.65 x 10^(-8) Ωm * 15 m) / (1 x 10^(-6) m²).

Simplifying the expression:

R = 2.65 x 10^(-8) Ωm * 15 m * 10^6 m².

R = 3.975 Ω.

Therefore, the resistance of 15 m of aluminum wire with a cross-sectional area of 1.0 mm² is approximately 3.975 Ω.

The closest answer choice is B. 0.40 Ω.

To know more about resistance refer here

https://brainly.com/question/32301085#

#SPJ11

Calculate the angular velocity of Jupiter and the distance a satellite needs to be from Jupiter to attain a geostationary orbit around Jupiter; Jupiter's period around its own axis is 9 hours, 55 minutes, and 29. 69 seconds. Jupiter's mass is 1. 898 × 10^27 kg

Answers

The angular velocity of Jupiter is approximately 0.001753 radians per second. For a satellite to attain a geostationary orbit around Jupiter, it would need to be at a distance of approximately 1,178,000 kilometers from the planet.

To calculate the angular velocity, we use the formula:

Angular velocity (ω) = (2π) / Time period

Converting Jupiter's period to seconds:

9 hours = 9 * 60 * 60 = 32,400 seconds

55 minutes = 55 * 60 = 3,300 seconds

29.69 seconds = 29.69 seconds

Total time period = 32,400 + 3,300 + 29.69 = 35,729.69 seconds

Substituting values into the formula:

ω = (2π) / 35,729.69 ≈ 0.001753 radians per second

To calculate the distance for a geostationary orbit, we use the formula:

Distance = √(G * M / ω²)

Where G is the gravitational constant, M is the mass of Jupiter, and ω is the angular velocity.

Substituting the values:

Distance = √((6.67430 × 10^-11) * (1.898 × 10^27) / (0.001753)²)

≈ 1,178,000 kilometers

learn more about velocity here:

https://brainly.com/question/30559316

#SPJ11

You are standing on the roadside watching a bus passing by. A clock is on the Bus. Both you and a passenger on the bus are looking at the clock on the bus, and measure the length of the bus. Who measures the proper time of the clock on the bus and who measures the proper length of the bus?

Answers

The passenger on the bus measures the proper time of the clock on the bus because they are in the same frame of reference as the clock.

You, standing on the roadside, measure the proper length of the bus since you are observing it from a stationary position relative to the moving bus.

Proper time refers to the time interval measured by an observer who is in the same frame of reference as the moving object or event being observed. It is the time measured by a clock that is at rest relative to the observer.

In this case, the passenger on the bus is in the same frame of reference as the clock on the bus, and therefore, they measure the proper time of the clock.

On the other hand, proper length refers to the length of an object as measured by an observer who is at rest relative to the object being measured.

It is the length measured when the object is at rest in the observer's frame of reference. In this scenario, you, standing on the roadside, are stationary relative to the bus, and thus you measure the proper length of the bus.

The concept of proper time and proper length is significant because special relativity introduces the idea that measurements of time and distance are relative to the observer's frame of reference.

When two observers are in relative motion, they will measure different time intervals and lengths for the same event or object.

The theory of special relativity also predicts that time can dilate or "slow down" for objects or events that are moving relative to an observer.

This effect, known as time dilation, means that the passenger on the moving bus will measure a different elapsed time compared to your measurement from the stationary position.

To learn more about relativity, refer below:

https://brainly.com/question/31293268

#SPJ11

The magnetic field inside an air-filled solenoid 34 cm long and 2.0 cm in diameter is 0.75 T. Approximately how much energy is stored in this field? Express your answer to two significant figures and include the appropriate units.

Answers

The energy stored in the magnetic field of the solenoid is 1.9 × 10^-4 J, to two significant figures.

The energy stored in a magnetic field can be calculated using the equation:

E = (1/2) L I^2

where E is the energy, L is the inductance of the solenoid, and I is the current flowing through it. In this case, we are given the magnetic field inside the solenoid, but we need to find the current and inductance.

The inductance of a solenoid can be calculated using the equation:

L = (μ₀ N^2 A)/l

where L is the inductance, μ₀ is the permeability of free space (4π × 10^-7 T m/A), N is the number of turns in the solenoid, A is the cross-sectional area, and l is the length of the solenoid. In this case, N = 1 (since there is only one coil), A = πr^2 = π(0.01 m)^2 = 3.14 × 10^-4 m^2, and l = 0.34 m. Therefore:

L = (4π × 10^-7 T m/A)(1^2)(3.14 × 10^-4 m^2)/(0.34 m) = 3.7 × 10^-4 H

Now we can use the equation for energy:

E = (1/2) L I^2

to find the current. Rearranging the equation gives:

I = √(2E/L)

Substituting the values we know:

0.75 T = μ₀NI/l

I = √(2E/L) = √(2(0.75 T)(3.7 × 10^-4 H)/(4π × 10^-7 T m/A)) = 1.6 A

Finally, we can calculate the energy:

E = (1/2) L I^2 = (1/2)(3.7 × 10^-4 H)(1.6 A)^2 = 1.9 × 10^-4 J

To know more about magnetic field visit:-

https://brainly.com/question/23096032

#SPJ11

Consider the problem of the solid sphere rolling down an incline without slipping. The incline has an angle θ, the sphere's length up the incline is l, and its height is h. At the beginning, the sphere of mass M and radius R rests on the very top of the incline. What is the minimum coefficient of friction such that the sphere rolls without slipping?1. μ=2/7tanθ
2. μ=3/5cosθ
3. μ=5/7tanθ
4. μ=5/7cosθ
5. μ=3/7sinθ
6. μ=2/7sinθ
7. μ=3/7tanθ
8. μ=2/7cosθ

Answers

The minimum coefficient of friction such that the sphere rolls without slipping is μ = 5/7tanθ. So, the answer is option 3: μ=5/7tanθ.

The minimum coefficient of friction for the solid sphere to roll down the incline without slipping can be found using the condition that the torque due to friction is equal to the torque due to gravity.
The torque due to gravity is given by the component of the weight of the sphere perpendicular to the incline, which is Mgh sinθ, where g is the acceleration due to gravity and h is the height of the sphere up the incline.
The torque due to friction is given by the product of the coefficient of friction μ and the normal force N on the sphere, which is equal to the weight of the sphere since it is in equilibrium. The normal force is given by the component of the weight of the sphere parallel to the incline, which is Mg cosθ.
Therefore, the torque due to friction is μMgcosθR, where R is the radius of the sphere.
Setting the two torques equal, we get:
μMgcosθR = Mgh sinθ
Simplifying and solving for μ, we get:
μ = (h/R) tanθ
Substituting the given values, we get:
μ = (h/R) tanθ = (h/l) (l/R) tanθ = (5/7) tanθ
Therefore, the minimum coefficient of friction such that the sphere rolls without slipping is μ = 5/7tanθ.
So, the answer is option 3: μ=5/7tanθ.

For more such questions on friction , Visit:

https://brainly.com/question/24338873

#SPJ11

To determine the minimum coefficient of friction (μ) such that the sphere rolls without slipping

1. Calculate the gravitational force acting on the sphere along the incline: F = M * g * sinθ
2. Determine the moment of inertia of a solid sphere: I = (2/5) * M * R^2
3. Apply the equation for rolling without slipping: a = R * α, where a is the linear acceleration and α is the angular acceleration.
4. Apply Newton's second law: F - f = M * a, where f is the frictional force.
5. Apply the torque equation: f * R = I * α
6. Substitute the expressions for I, F, and a into the equations in steps 4 and 5.
7. Solve the system of equations for μ.

μ = 2/7 * tanθ

So the correct answer is:

1. μ = 2/7 * tanθ

Learn more about Newton's second law here : brainly.com/question/13447525

#SPJ11

two speakers play identical tones of frequency 250 hz. the speed of sound is 400 m/s. if r1=8.5 m and r2=11.7 m, at the point indicated, what kind of interference is there?

Answers

Assuming the speakers are located at point sources, we can use the equation for the path difference between two points in terms of wavelength:

Δr = r2 - r1

where Δr is the path difference and λ is the wavelength of the sound wave. If the path difference is an integer multiple of the wavelength, constructive interference occurs, while if it is a half-integer multiple, destructive interference occurs.

To find the wavelength of the sound wave, we can use the formula:

v = fλ

where v is the speed of sound, f is the frequency of the tone, and λ is the wavelength.

Plugging in the given values, we get:

λ = v/f = 400/250 = 1.6 m

The path difference between r1 and r2 is:

Δr = r2 - r1 = 11.7 - 8.5 = 3.2 m

To determine the type of interference, we need to see if the path difference is an integer or half-integer multiple of the wavelength.

Δr/λ = 3.2/1.6 = 2

Since the path difference is an integer multiple of the wavelength, we have constructive interference. At the point indicated, the two waves will add together to produce a sound that is louder than the original tones.

To know more about speakers refer here

https://brainly.com/question/12291555#

determine the number of ground connections for a wire bonded packaging structure

Answers

The number of ground connections for a wire bonded packaging structure will depend on the design and requirements of the specific packaging. Generally, a wire bonded packaging structure will have at least one ground connection to ensure proper electrical grounding.

However, some designs may require multiple ground connections for added stability and functionality. It is important to carefully review the specifications and requirements of the packaging to determine the appropriate number of ground connections needed. A package assembly for an integrated circuit die includes a base having a cavity formed therein for receiving an integrated circuit die. The base has a ground-reference conductor. A number of bonding wires are each connected between respective die-bonding pads on the integrated circuit die and corresponding bonding pads formed on the base.

So, The number of ground connections for a wire bonded packaging structure will depend on the design and requirements of the specific packaging.

Learn more about packaging structure at

brainly.com/question/1085000

#SPJ11

Describing a wave what causes a disturbance that results in a wave?

Answers

A wave is a disturbance that travels through a medium, transferring energy without permanently displacing the medium itself.

There are many different types of waves, including sound waves, light waves, water waves, and seismic waves.

The cause of a wave is typically a disturbance or vibration that is introduced to the medium. For example, when you drop a stone into a pond, it creates ripples that travel outward from the point of impact. The disturbance caused by the stone creates a wave that propagates through the water.

Similarly, in the case of a sound wave, the vibration of an object (such as a guitar string or a speaker cone) creates disturbances in the air molecules around it, which then propagate outward as sound waves. In the case of a light wave, the oscillation of electric and magnetic fields create disturbances that propagate through space.

In summary, any disturbance or vibration introduced to a medium can create a wave, which then travels outward and carries energy without permanently displacing the medium itself.

Know more about transferring here https://brainly.com/question/31666597#

#SPJ11

The diffraction grating uses the principle of interference to separate the patterns of light with different wavelengths. We know that interference maxima occur when the path length difference from adjacent slits is an integral number of the wavelengths: d sin = m i, sin = mild sin = y/(L2 + y2)1/2 = mild d is the slit spacing, is the direction from the beam axis to the bright spot at perpendicular distance y, 1 is the wavelength of light, L is the distance from the grating to the scale, m is the order of the diffracted light. Using the instrument we built above we see that we can measure the following: y, L, and d. For this Entire activity, we are only going to evaluate the first order, that is at all times m=1 a) Using the equations above, find an equation for the wavelength of light in terms of quantities we can measure. b) Our diffraction grating is made of lines such that there are 600 lines per millimeter. Knowing this, find the separation (d) between the slits (made by these lines) d=

Answers

The separation (d) between the slits is approximately 1.67 x 10^(-6) meters.

a) To find an equation for the wavelength of light (λ) in terms of measurable quantities, we need to manipulate the given equation:

d sin(θ) = mλ

Since m = 1 (first order), we can write it as:

d sin(θ) = λ

Now, substitute the expression for sin(θ):

λ = d (y / (L^2 + y^2)^(1/2))

This equation gives the wavelength of light in terms of the measurable quantities y, L, and d.

b) Our diffraction grating has 600 lines per millimeter. To find the separation (d) between the slits, we need to convert this into meters and find the distance between each line:

600 lines/mm = 600,000 lines/m

Now, to find the separation (d), we take the inverse of this value:

d = 1 / 600,000 lines/m

d ≈ 1.67 x 10^(-6) m

To know more about diffraction grating, click here;

https://brainly.com/question/10709914

#SPJ11

A simple Atwood's machine uses two masses, m1 and m2. Starting from rest, the speed of the two masses is 4.0 m/s at the end of 5.0 s. At that instant, the kinetic energy of the system is 70 J and each mass has moved a distance of 10.0 m. Determine the values of m1 and m2.m1 = ____ kgm2 = _____ kg

Answers

Answer: The value of mass m₁ is 7.4 kg and m₂ is  8.8 kg.

Explanation: In Atwood's machine, two masses are connected by a string that passes over a pulley, and the two masses accelerate in opposite directions. The acceleration of the system can be determined from the difference in the weights of the masses:

a = (m₂ - m₁)g / (m₁ + m₂)

where a is the acceleration, m₁, and m₂ are the masses, and g is the acceleration due to gravity.

The final speed of the masses can be determined from the distance they have moved and the time it took:

v = d/t

where v is the final speed, d is the distance, and t is the time.

The kinetic energy of the system can be determined from the sum of the kinetic energies of the two masses:

KE = (1/2)m₁v₁² + (1/2)m₂v₂²

where KE is the kinetic energy, v₁ and v₂are the speeds of the masses, and m₁ and m₂ are the masses.

From the given information, we can write two equations:

v = 4.0 m/s

d = 10.0 m

t = 5.0 s

KE = 70 J

Using the equation for final speed, we can determine the acceleration of the system:

a = v/t = 4.0 m/s / 5.0 s = 0.8 m/s²

Using the equation for kinetic energy, we can solve for the ratio of the masses:

KE = (1/2)m₁v₁² + (1/2)m₂v₂²

70 J = (1/2)m₁(4.0 m/s)² + (1/2)m₂(-4.0 m/s)²

70 J = 8m₁ + 8m₂

m₂/m₁ = (70 J - 8m₁) / (8m₁)

Using the equation for acceleration, we can solve for m₂ in terms of m1:

a = (m₂- m₁)g / (m₁+ m₂)

0.8 m/s² = (m₂ - m₁)(9.81 m/s²) / (m₁ + m₂)

0.8(m₁ + m₂) = (m₂ - m₁)(9.81)

0.8m₁ + 0.8m₂ = 9.81m₂ - 9.81m₁

10.61m₁ = 9.01m₂

m₂/m₁ = 10.61/9.01

Substituting this ratio into the equation for m₂/m₁from the kinetic energy equation, we can solve for m1:

m₂/m₁ = (70 J - 8m₁) / (8m₁)

10.61/9.01 = (70 J - 8m₁) / (8m₁)

8(10.61)m₁ = 9.01(70 J - 8m₁)

85.28m₁ = 630.7 J

m₁ = 7.4 kg

Substituting this value of m₁ into the ratio of the masses, we can solve for m₂:

m₂/m₁ = 10.61/9.01

m₂ = (10.61/9.01)m₁

m₂ = 8.8 kg

Therefore, m₁= 7.4 kg and m₂ = 8.8 kg.

To learn more about kinetic energy visit: https://brainly.com/question/8101588

#SPJ11

a toroid has 250 turns of wire and carries a current of 20 a. its inner and outer radii are 8.0 and 9.0 cm. what are the values of its magnetic field at r = 8.1, 8.5, and 8.9 cm?

Answers

A toroid has 250 turns of wire and carries a current of 20 a. its inner and outer radii are 8.0 and 9.0 cm. The magnetic field at radii of 8.1 cm, 8.5 cm, and 8.9 cm are 0.501 T, 0.525 T, and 0.550 T, respectively.

The magnetic field inside a toroid can be calculated using the equation

B = μ₀nI

Where B is the magnetic field, μ₀ is the permeability of free space, n is the number of turns per unit length, and I is the current.

For a toroid with inner radius R₁ and outer radius R₂, the number of turns per unit length is

n = N / (2π(R₂ - R₁))

Where N is the total number of turns.

Substituting the given values, we get

n = 250 / (2π(0.09 - 0.08)) = 198.94 turns/m

Using this value of n and the given current, we can calculate the magnetic field at the specified radii

At r = 8.1 cm:

B = μ₀nI = (4π×10⁻⁷ Tm/A)(198.94 turns/m)(20 A) = 0.501 T

At r = 8.5 cm

B = μ₀nI = (4π×10⁻⁷ Tm/A)(198.94 turns/m)(20 A) = 0.525 T

At r = 8.9 cm

B = μ₀nI = (4π×10⁻⁷ Tm/A)(198.94 turns/m)(20 A) = 0.550 T

Therefore, the magnetic field at radii of 8.1 cm, 8.5 cm, and 8.9 cm are 0.501 T, 0.525 T, and 0.550 T, respectively.

To know more about magnetic field here

https://brainly.com/question/15144434

#SPJ4

is the reflex magnitude inhibited or enhanced by voluntary muscle activity in the quadriceps

Answers

Voluntary muscle activity enhances the reflex magnitude in the quadriceps.

Does voluntary muscle activity increase or decrease reflex magnitude in the quadriceps?

When a muscle is stretched, it elicits a reflex contraction known as the stretch reflex. This reflex is modulated by the brain and can be influenced by voluntary muscle activity. In the case of the quadriceps, voluntary muscle activity has been shown to enhance the reflex magnitude. This means that when a person voluntarily contracts their quadriceps muscles, the resulting reflex contraction will be stronger compared to when the person is at rest.

The mechanism behind this enhancement is thought to involve an increased sensitivity of the muscle spindles, which are sensory receptors within the muscle that detect changes in muscle length. When a muscle is actively contracting, the muscle spindles are more sensitive to changes in length and can therefore elicit a stronger reflex response.

Learn more about Stretch reflex

brainly.com/question/9043637

#SPJ11

Other Questions
Calculate the Gibbs free-energy change at 298 K for 2 KClO3(s) 2 KCl(s) + 3 O2(g).Determine the temperature range in which the reaction is spontaneous. a particular person's pupil is 5.0 mm in diameter, and the person's normalsighted eye is most sensitive at a wavelength of 558 nm. what is angular resolution r of the person's eye, in radians? Which one of the following is the risk that market rates may increase causing the price of a bond to decline? A. yield risk B. interest rate risk C. reinvestment risk D. inflation risk a) Explain why the acetamido group is an ortho, para-directing group. Why should it be less effective in activating the aromatic ring toward further substitution than an amino group? 6) 0-Nitroaniline is more soluble in ethanol than p-nitroaniline. Propose a flow scheme by which a pure sample of 0-nitroaniline might be obtained from this reaction' Is 5/2 x proportional if so what is the Constant of proportionality if or is it no proportional. will give brainliest if right which organism would have had to evolve a homeostatic mechanism to cope with the greatest amount of solutes? Consider that we want to lift a block that weighs mg = 100N up 10m. We can make this easier by using a ramp. If the ramp has an angle =30 with the ground then the force needed to push the box up the ramp is mg x sin(30) = mg/2, but the distance up the ramp must be twice the height. How does the width of the central maximum of a circular diffraction pattern produced by a circular aperture change with apertur size for a given distance between the viewing screen? the width of the central maximum increases as the aperture size increases the width of the central maximum does not depend on the aperture size the width of the central maximum decreases as the aperture size decreases the width of the central maximum decreases as the aperture size increases Vygotsky's term for composition of skills that a person can learn only with assistance, but does not yet have independently, is Determine whether the geometric series is convergent or divergent. 10 - 6 + 18/5 - 54/25 + . . .a. convergentb. divergent the following table lists the ages (in years) and the prices (in thousands of dollars) for a sample of six houses.Age 27 15 3 35 14 18Price 165 182 205 178 180 161 The standard deviation of errors for the regression of y on x, rounded to three decimal places, is: how do you think this tax law change affected ex-dividend stock prices? Any investment expenditure by a government is part of this expenditures approach for calculating the GDP.Responsesgross importsgross importssum of all the country's businesses spending on capitalsum of all the country's businesses spending on capitalgross exportsgross exportsconsumer spendingconsumer spendingsum of government spendingsum of government spending Socks come in a pack of 6 pairs for $9.49. What is its unit price? how much energy is stored in a 2.60-cm-diameter, 14.0-cm-long solenoid that has 150 turns of wire and carries a current of 0.780 a How does the concept of asset forfeiture reflect the 8th amendment? 5-7 sentences.i swear to god if one more of you gives me something unhelpful i will personally insert your catheter. what is the percent composition by mass of carbon in a 2.55 g sample of propanol, ch3ch2ch2oh? the molar mass of propanol is 60.09 gmol1. MEMC supplied BP Solar with silicon powder used in manufacturing solar panels under a long-standing relationship. Seeking to get a long-term contract, BP Solar emailed MEMC to ask for a quote for 300 tons for three years. MEMC said it could commit to 150 tons for the next three years at $3.50/kg for the next year and the price for the fol- lowing two years to be negotiated. Thereafter, they talked by phone. An internal memo was circulated, with a copy to BP, stating that it was anticipated that a larger quantity would be available and that pricing would be determined later. BP emailed the next day, "I agree with (the) comments below." After a few moro email exchanges, MEMC shipped 224 tons. It then discontinued its shipments and BP Solar sued for breach of contract. MEMC argued there was no contract because the parties were still negotiating, particularly regarding the price, and that there was no signed writing from BP Solar Was there sufficient evidence of a contract to satisfy the UCC statute of frauds? Why? As shown in the figure below, may form parallel to slope surfaces in granite and become a failure surface. Slide block A. bedding planes B. exfoliation joints C. foliation planes D.uplift planes An investor purchased 200 Intel put options for $1.46 each in June, with an expiration date in September and a strike price of $133. What is the maximum profit the investor can make (in $)? At what stock price on the expiration date does the investor break even?