Consider an induction motor with the following rated parameters: • Voltage 220 V • Current 30 A • Mechanical power 8.5 kW • Power factor 0.83 • Slip 0.12 In the short-circuit (locked rotor test) • Power 600 W • Power factor 0.14 • Voltage 60 V Determine: • Nominal mechanical speed in rpm (1 point) • Nominal torque (1 point) • Efficiency (1 point) • From the short-circuit test, determine the equivalent resistance and leakage reactance of the windings, neglecting magnetization effects (2 points)

Answers

Answer 1

(a) The nominal mechanical speed of the induction motor is 3000 rpm. (b) The nominal torque of the induction motor is approximately 267.95 Nm (c) The calculated efficiency is above 100%, indicating a calculation error or inaccurate data. Please verify the given values. (d) The equivalent resistance and leakage reactance of the windings can be determined from the short-circuit test by calculating the equivalent impedance (Zeq).

To determine the required values, we'll use the given information and relevant formulas:

Voltage (V) = 220 V

Current (I) = 30 A

Mechanical power (Pm) = 8.5 kW

Power factor (pf) = 0.83

Slip (s) = 0.12

Power (Psc) in short-circuit test = 600 W

Power factor (pfsc) in short-circuit test = 0.14

Voltage (Vsc) in short-circuit test = 60 V

(a) Nominal mechanical speed:

The synchronous speed of an induction motor can be calculated using the formula:

Ns = (120 * Frequency) / Number of Poles

Since the number of poles is not given, we'll assume it to be a 2-pole motor, which is commonly used in many applications. Therefore, the number of poles (P) = 2.

The frequency is usually 50 Hz in most regions, so Frequency = 50 Hz.

Substituting the values into the formula:

Ns = (120 * 50) / 2 = 3000 rpm

Therefore, the nominal mechanical speed of the induction motor is 3000 rpm.

(b) Nominal torque:

The mechanical power (Pm) is related to the torque (T) and the speed (N) of the motor using the formula:

Pm = (T * 2π * N) / 60

Rearranging the formula to solve for torque:

T = (Pm * 60) / (2π * N)

Substituting the given values:

Pm = 8.5 kW = 8500 W

N = 3000 rpm

T = (8500 * 60) / (2π * 3000) ≈ 267.95 Nm

Therefore, the nominal torque of the induction motor is approximately 267.95 Nm.

(c) Efficiency:

The efficiency (η) of the motor can be calculated using the formula:

η = (Output Power / Input Power) * 100

In an induction motor, the output power is the mechanical power (Pm), and the input power can be calculated as:

Input Power = Voltage * Current * power factor

Substituting the given values:

Input Power = 220 V * 30 A * 0.83 = 5454 W

η = (Pm / Input Power) * 100

= (8500 / 5454) * 100 ≈ 156.01%

Note: An efficiency of more than 100% indicates a calculation error or inaccurate data. Please check the given values for accuracy.

(d) Equivalent resistance and leakage reactance of windings:

In the short-circuit (locked rotor) test, the power drawn by the motor is used to determine the equivalent impedance of the motor. Since the magnetization effects are neglected, the short-circuit power is due to the copper losses (resistance) and leakage reactance of the windings.

From the short-circuit test, we have:

Power (Psc) = 600 W

Power factor (pfsc) = 0.14

Voltage (Vsc) = 60 V

The apparent power (Ssc) in the short-circuit test can be calculated as:

Ssc = Psc / pfsc = 600 W / 0.14 = 4285.71 VA

The equivalent impedance (Zeq) can be calculated as:

Zeq = Vsc^2 / Ssc = (60 V)^2 / 4285.71 VA

The equivalent resistance (Req) can be calculated as the real part of Zeq, and the leakage reactance (Xeq) can be calculated as the imaginary part of Zeq.

Therefore, the equivalent resistance and leakage reactance of the windings can be determined from the short-circuit test.

Learn more about induction motor visit:

https://brainly.com/question/32808730

#SPJ11


Related Questions

is there stress on that piece of the bike that can cause buckling especially when riding down hill?

Answers

Yes, there is stress on the piece of the bike that can cause buckling, especially when riding downhill. The stress is caused by several factors, including the rider's weight, the force of gravity, and the speed of the bike. The downhill riding puts a lot of pressure on the bike, which can cause the frame to bend, crack, or break.

The front fork and rear stays are the most likely components to experience buckling. The front fork is responsible for holding the front wheel of the bike, and it experiences the most stress during downhill riding. The rear stays connect the rear wheel to the frame and absorb the shock of bumps and other obstacles on the road.

To prevent buckling, it is essential to ensure that your bike is in good condition before heading downhill. Regular maintenance and inspections can help detect any potential issues with the frame or other components that can cause buckling. It is also recommended to avoid riding the bike beyond its intended limits and using the appropriate gears when going downhill.

Additionally, using the right posture and technique while riding can help distribute the weight evenly across the bike and reduce the stress on individual components. In conclusion, it is essential to be mindful of the stress on the bike's components while riding downhill and take precautions to prevent buckling.

To know more about including visit:

https://brainly.com/question/27900839

#SPJ11

Methane (CH) is burned with dry air. The volumetric analysis of the products on a dry basis is 5.2% CO2, 0.33% CO, 11.24% O, and 83.23% N2. Determinem the balanced reaction equation,

Answers

Methane (CH4) is burned with dry air. The volumetric analysis of the products on a dry basis is 5.2% CO2, 0.33% CO, 11.24% O2, and 83.23% N2. We can determine the balanced reaction equation for the reaction using the following steps:

Step 1: Write the unbalanced equation for the reactionCH4 + O2 → CO2 + CO + O2 + N2Step 2: Balance the carbon atoms on both sidesCH4 + O2 → CO2 + CO + O2 + N2(Carbon atoms on the left = 1, Carbon atoms on the right = 1)Step 3: Balance the hydrogen atoms on both sidesCH4 + 2O2 → CO2 + CO + O2 + N2(Hydrogen atoms on the left = 4, Hydrogen atoms on the right = 0)Step 4: Balance the oxygen atoms on both sidesCH4 + 2O2 → CO2 + CO + N2(Hydrogen atoms on the left = 4, Hydrogen atoms on the right = 0)

Step 5: Check the balance of each element on both sidesCH4 + 2O2 → CO2 + CO + N2(Balanced equation)Hence, the balanced reaction equation is CH4 + 2O2 → CO2 + CO + N2.

To know more about volumetric visit :

https://brainly.com/question/12978058

#SPJ11

Practice Service Call 8 Application: Residential conditioned air system Type of Equipment: Residential split system heat pump (See Figure 15.45.) Complaint: System heats when set to cool. Symptoms: 1. System heats adequately. 2. With thermostat fan switch on, the fan operates properly. 3. Outdoor fan motor is operating. 4. Compressor is operating. 5. System charge is correct. 6. R to O on thermostat is closed. 7. 24 volts are being supplied to reversing valve solenoid.

Answers

The problem is caused by an electrical circuit malfunctioning or a wiring issue.

In general, when an air conditioning system blows hot air when set to cool, the issue is caused by one of two reasons: the system has lost refrigerant or the electrical circuit is malfunctioning.

The following are the most likely reasons:

1. The thermostat isn't working properly.

2. The reversing valve is malfunctioning.

3. The defrost thermostat is malfunctioning.

4. The reversing valve's solenoid is malfunctioning.

5. There's a wiring issue.

6. The unit's compressor isn't functioning correctly.

7. The unit is leaking refrigerant and has insufficient refrigerant levels.

The potential cause of the air conditioning system heating when set to cool in this scenario is a wiring issue. The system is heating when it's set to cool, and the symptoms are as follows:

the system heats well, the fan operates correctly when the thermostat fan switch is turned on, the outdoor fan motor is running, the compressor is running, the system charge is correct, R to O on the thermostat is closed, and 24 volts are supplied to the reversing valve solenoid.

Since all of these parameters appear to be working properly, the issue may be caused by a wiring problem.

To know more about circuit visit:

https://brainly.com/question/12608516

#SPJ11

If you need to heat 10 liters of water from 0°C to 100 °C using kitchen natural gas system. I kg of liquefied Pressurized gas (LPG) has a useful energy value of 20.7 MJ/kg, (the ideal energy value is 34.8 MJ/kg). The energy required to heat 1 g of water from 0°C to 100 °C = 100 calories 1 kcal = 4186 J, 1 kWh = 3.16 * 10 Joule, 1000 g of water = 1 liter of water. If the cost of 1 kg natural gas (LPG) = 0.5 Jordanian Dinars, what will be the cost of heating 10 liters of water from 0°C to 100 °C in JD?

Answers

The cost of heating 10 liters of water from 0°C to 100°C using the kitchen natural gas system would be approximately 49 Jordanian Dinars (JD).

To calculate the cost of heating 10 liters of water from 0°C to 100°C using the kitchen natural gas system, we need to determine the energy required and then calculate the cost based on the cost of 1 kg of natural gas (LPG).

Given:

Energy required to heat 1 g of water from 0°C to 100°C = 4186 J

Energy value of 1 kg of LPG = 20.7 MJ = 20.7 * 10^6 J

Cost of 1 kg of natural gas (LPG) = 0.5 JD

1: Calculate the total energy required to heat 10 liters of water:

10 liters of water = 10 * 1000 g = 10,000 g

Energy required = Energy per gram * Mass of water = 4186 J/g * 10,000 g = 41,860,000 J

2: Convert the total energy to kilojoules (kJ):

Energy required in kJ = 41,860,000 J / 1000 = 41,860 kJ

3: Calculate the amount of LPG required in kilograms:

Amount of LPG required = Energy required in kJ / Energy value of 1 kg of LPG

Amount of LPG required = 41,860 kJ / 20.7 * 10^6 J/kg

4: Calculate the cost of the required LPG:

Cost of LPG = Amount of LPG required * Cost of 1 kg of LPG

Cost of LPG = (41,860 kJ / 20.7 * 10^6 J/kg) * 0.5 JD

5: Simplify the expression and calculate the cost in JD:

Cost of heating 10 liters of water = (41,860 * 0.5) / 20.7

Cost of heating 10 liters of water = 1,015.5 / 20.7

Cost of heating 10 liters of water ≈ 49 JD (rounded to two decimal places)

Therefore, the approximate cost of heating 10 liters of water from 0°C to 100°C using the kitchen natural gas system would be 49 Jordanian Dinars (JD).

Learn more about natural gas

brainly.com/question/12200462

#SPJ11

(6) Explain the spatial enumeration representation scheme of the CAD models. Use a table to compare its advantages and disadvantages against B-Rep representation scheme. (6 marks)

Answers

The spatial enumeration representation scheme is one of the most used schemes of representing CAD models. This type of representation scheme is used to model.

Solids and surfaces and represents geometry by the use of ordered or unordered sets of volumes or surfaces. The tables below show a comparison of the advantages and disadvantages of the spatial enumeration representation scheme of CAD models against the B-Rep representation scheme.

The Spatial Enumeration Representation Scheme is a method that is easy to learn and use. It has a fast computation time and low memory requirements. It is not suitable for modelling complex geometries and may not always be accurate.  

To know more about enumeration visit:

https://brainly.com/question/22603155

#SPJ11

A 2 DOF system has mode shapes given by Φ₁ = {1}
{-2}
and
Φ₂ =
{1}
{3}
A force vector F = {1}
{p}
sin(Ωt) is acting on the system. Find the value of P if the system steady state response is purely in mode 1.

Answers

A 2 DOF (Degree of Freedom) system has mode shapes given by Φ₁ = {1} {-2} and Φ₂ = {1} {3}. A force vector F = {1} {p} sin(Ωt) is acting on the system, where P is the value of the steady-state response in mode

1.The system response can be given by the equation,

M = M₀ + M₁ sin(Ωt + φ₁) + M₂ sin(2Ωt + φ₂)

Here,Ω = 1 (the driving frequency)

φ₁ is the phase angle of the first modeφ₂ is the phase angle of the second modeM₀ is the static deflection

M₁ is the amplitude of the first mode

M₂ is the amplitude of the second mode

So, the response of the system can be given by:

M = M₁ sin(Ωt + φ₁)

Now, substituting the values,

M = Φ₁ F = {1} {-2} {1} {p} sin(Ωt) = {1-2p sin(Ωt)}

In order for the steady-state response to be purely in mode 1, M₂ = 0

So, the equation for the response becomes,

M = M₁ sin(Ωt + φ₁) ⇒ {1-2p sin(Ωt)} = M₁ sin(Ωt + φ₁)

Comparing both sides, we get,

M₁ sin(Ωt + φ₁) = 1 and -2p sin(Ωt) = 0sin(Ωt) ≠ 0, as Ω = 1, so -2p = 0P = 0

Therefore, the value of P if the system steady-state response is purely in mode 1 is 0

In this problem, we are given a 2 DOF (Degree of Freedom) system having mode shapes Φ₁ and Φ₂.

The mode shapes of a system are the deflected shapes that result from the system vibrating in free vibration. In the absence of any external forcing, these deflected shapes are called natural modes or eigenmodes. The system is also subjected to a force vector F = {1} {p} sin(Ωt).

We have to find the value of P such that the system's steady-state response is purely in mode 1. Steady-state response refers to the long-term behavior of the system after all the transient vibrations have decayed. The steady-state response is important as it helps us predict the system's behavior over an extended period and gives us information about the system's durability and reliability.

In order to find the value of P, we first find the system's response. The response of the system can be given by the equation,

M = M₀ + M₁ sin(Ωt + φ₁) + M₂ sin(2Ωt + φ₂)

where M₀, M₁, and M₂ are constants, and φ₁ and φ₂ are the phase angles of the two modes.

In this case, we are given that Ω = 1 (the driving frequency), and we assume that the system is underdamped. Since we want the steady-state response to be purely in mode 1, we set M₂ = 0.

Hence, the equation for the response becomes,

M = M₁ sin(Ωt + φ₁)

We substitute the values of Φ₁ and F in the above equation to get,{1-2p sin(Ωt)} = M₁ sin(Ωt + φ₁)

Comparing both sides, we get,

M₁ sin(Ωt + φ₁) = 1 and -2p sin(Ωt) = 0sin(Ωt) ≠ 0, as Ω = 1, so -2p = 0P = 0

Therefore, the value of P if the system steady-state response is purely in mode 1 is 0.

The value of P such that the system steady-state response is purely in mode 1 is 0.

Learn more about Degree of Freedom here:

brainly.com/question/32093315

#SPJ11

Consider the stoichiometric overall reaction for methane in air with the global reaction rate considering only complete products is:
RR = -8.3 X 105 exp [-15098/T] [CH₂1-0.3 [0₂]¹.³ gmol/cm³.s
a) If the reactant mixture is suddenly brought to a temperature of 2000 K and 1 atmospheric pressure, what is the initial rate of reaction?
b) If the temperature held constant at 2000 K and the volume is constant, what is the rate of reaction when a 50% of the original fuel has been converted to products? The reaction rate unit is gmol/cm³ s.
c) Also calculate the time required to convert the 50% of the original fuel into products of (b) case above. (Hint: the reaction rate could be assumed as an average of above two cases).
(Note: R. = 8.314 J/(gmol.K) is the universal gas constant)

Answers

The global reaction rate, considering only complete products is given by:RR = -8.3 × 105 exp[-15098/T][CH41-0.3[O21.3]]gmol/cm³swhere, RR = reaction rate; T = temperature; CH4 = methane; O2 = oxygen.The activation energy, E = 15098 J/molThe gas constant, R = 8.314 J/mol KT = 2000 KThe pressure, P = 1 atmThe initial concentration of methane and oxygen = 1 atm.

The reaction rate equation can be rewritten by substituting the given values as follows:RR = -8.3 × 105 exp[-15098/2000][1.0 1-0.3[1.0]1.3]]RR = -8.3 × 105 exp(-25.25)RR = -8.3 × 105 × 2.68 × 10-11RR = 2.224 gmol/cm³sThe initial rate of reaction is 2.224 gmol/cm³s.b) When 50% of the original fuel has been converted to products, the remaining 50% fuel concentration = 0.5 atm The product concentration = 0.5 atm

Therefore, the reaction rate at 50% conversion,R1 = R02/2. The rate of reaction when 50% of the original fuel has been converted to products is R1 = 2.224/2 = 1.112 gmol/cm³s. Thus, the rate of reaction when 50% of the original fuel has been converted to products is 1.112 gmol/cm³s.c) To calculate the time required to convert the 50% of the original fuel into products of (b) case above substituting the given values, the time required to convert 50% of the original fuel into products is given by:t = ln(1 - 0.5) /(-1.668) = 0.2087 s (approx).

To know more about global reaction rate visit :-

https://brainly.com/question/32204063

#SPJ11

Air with mass of 16 kg is heated at constant gage pressure of 9044 hPa from -24.0 °C to 184 °C. Determine the heat required in MJ, and the change of system volume (AV=V₂- V₁).

Answers

The heat required in MJ is 0.43488 MJ. The change of system volume is 0.0718 m³.

Given,

Mass of air, m = 16 kg

Initial temperature, T₁ = -24°C

Initial pressure, P₁ = 9044 hPa

Final temperature, T₂ = 184°C

We know that the heat required is given by

Q = mCp(T₂ - T₁)

where Cp is the specific heat capacity of air at constant pressure.

The change in volume, AV is given by

AV = V₂ - V₁

We know that for an ideal gas,

PV = mRT

where P is the pressure of the gas,

V is the volume of the gas,

m is the mass of the gas,

R is the universal gas constant and

T is the temperature of the gas.

We can write the above equation as

PV = nRT

where n is the number of moles of gas. We can write n in terms of mass as

n = m / MM

where MM is the molar mass of the gas.

For air,

MM = 28.97 g/mol

= 0.02897 kg/mol

Therefore,

n = m / 0.02897

The ideal gas law can be written as

PV = (m / MM)RT

or

PV = nRT

Also,

P / T = constant

Therefore,

P₁ / T₁ = P₂ / T₂

or

P₂ = (P₁ / T₁) x T₂

Therefore,

P₂ = (9044 / (273 - 24)) x (184 + 273)

= 123531.24 Pa

The volume of the gas can be found using the ideal gas law:

V₁ = (mRT₁) / P₁= (16 x 8.314 x (273 - 24)) / (9044 x 100)

V₁ = 0.1554 m³

V₂ = (mRT₂) / P₂= (16 x 8.314 x (184 + 273)) / (123531.24)

V₂ = 0.2272 m³

Therefore,

AV = V₂ - V₁

= 0.2272 - 0.1554

= 0.0718 m³

We know that

Cp = 1005 J/kg K

Therefore,

Q = mCp(T₂ - T₁)

= 16 x 1005 x (184 + 24)

= 434880 J

= 434.88 kJ

= 0.43488 MJ

Know more about the specific heat capacity

https://brainly.com/question/27991746

#SPJ11

Design a circuit which counts seconds, minutes and hours and displays them on the 7-segement display in 24 hour format. The clock frequency available is 36 KHz. Assume that Binary to BCD converter and BCD to 7-Segement display is already available for the design.

Answers

The 24-hour clock has two digits for hours, two digits for minutes, and two digits for seconds. Binary Coded Decimal (BCD) is a technique for representing decimal numbers using four digits in which each decimal digit is represented by a 4-bit binary number.

A 7-segment display is used to display the digits from 0 to 9.
Here is the circuit that counts seconds, minutes, and hours and displays them on the 7-segment display in 24-hour format:

Given the clock frequency of 36 KHz, the number of pulses per second is 36000. The seconds counter requires 6 digits, or 24 bits, to count up to 59. The minutes counter requires 6 digits, or 24 bits, to count up to 59. The hours counter requires 5 digits, or 20 bits, to count up to 23.The clock signal is fed into a frequency divider that produces a 1 Hz signal. The 1 Hz signal is then fed into a seconds counter, minutes counter, and hours counter. The counters are reset to zero when they reach their maximum value.

When the seconds counter reaches 59, it generates a carry signal that increments the minutes counter. Similarly, when the minutes counter reaches 59, it generates a carry signal that increments the hours counter.

The outputs of the seconds, minutes, and hours counters are then converted to BCD format using a binary to BCD converter. Finally, the BCD digits are fed into a BCD to 7-segment display decoder to produce the display on the 7-segment display.Here's a block diagram of the circuit: Block diagram of the circuit

To know more about frequency  visit:

https://brainly.com/question/29739263
#SPJ11

A 230 V D.C. shunt motor takes 32 A at full load. Find the back e.m.f. full load if the resistance of motor armature and shunt field winding are 0.2 and 115 1 respectively

Answers

The back e.m.f. of the motor at full load is -3468.2 V.

Given: Voltage of DC motor, V = 230 V Current taken by DC motor at full load, I = 32 A

Resistance of motor armature, Ra = 0.2 ΩResistance of shunt field winding, Rs = 115.1 Ω

Formula Used: Back e.m.f. of DC motor, E = V - I (Ra + Rs) Where, V = Voltage of DC motor I = Current taken by DC motor at full load Ra = Resistance of motor armature Rs = Resistance of shunt field winding

Calculation: The back e.m.f. of the motor is given by the equation

E = V - I (Ra + Rs)

Substituting the given values we get,

E = 230 - 32 (0.2 + 115.1)

E = 230 - 3698.2

E = -3468.2 V (negative sign shows that the motor acts as a generator)

Therefore, the back e.m.f. of the motor at full load is -3468.2 V.

Shunt motors are constant speed motors. These motors are also known as self-regulating motors. The motor is connected in parallel with the armature circuit through a switch called the shunt. A shunt motor will maintain a nearly constant speed over a wide range of loads. In this motor, the field winding is connected in parallel with the armature. This means that the voltage across the field is always constant. Therefore, the magnetic field produced by the field winding remains constant.

As we know, the back EMF of a motor is the voltage induced in the armature winding due to rotation of the motor. The magnitude of the back EMF is proportional to the speed of the motor. At no load condition, when there is no load on the motor, the speed of the motor is maximum. So, the back EMF of the motor at no load is also maximum. As the load increases, the speed of the motor decreases. As the speed of the motor decreases, the magnitude of the back EMF also decreases. At full load condition, the speed of the motor is minimum. So, the back EMF of the motor at full load is also minimum.

To know more about Shunt motors visit:

https://brainly.com/question/33222870

#SPJ11

Calculate the number of salient pole pairs on the rotor of the synchronous machine. with rated power of 4000 hp, 200 rpm, 6.9 kV, 50 Hz. Submit your numerical answer below.

Answers

The number of salient pole pairs on the rotor of the synchronous machine is determined to be 374.

A synchronous machine, also known as a generator or alternator, is a device that converts mechanical energy into electrical energy. The power output of a synchronous machine is generated by the magnetic field on its rotor. To determine the machine's performance parameters, such as synchronous reactance, the number of salient pole pairs on the rotor needs to be calculated.

Here are the given parameters:

- Rated power (P): 4000 hp

- Speed (n): 200 rpm

- Voltage (V): 6.9 kV

- Frequency (f): 50 Hz

The synchronous speed (Ns) of the machine is given by the formula: Ns = (120 × f)/p, where p represents the number of pole pairs.

In this case, Ns = 6000/p.

The rotor speed (N) can be calculated using the slip (s) equation: N = n = (1 - slip)Ns.

The slip is determined by the formula: s = (Ns - n)/Ns.

By substituting the values, we find s = 0.967.

Therefore, N = n = (1 - s)Ns = (1 - 0.967) × (6000/p) = 195.6/p volts.

The induced voltage in each phase (E) is given by: E = V/Sqrt(3) = 6.9/Sqrt(3) kV = 3.99 kV.

The voltage per phase (Vph) is E/2 = 1.995 kV.

The flux per pole (Øp) can be determined using the equation: Øp = Vph/N = 1.995 × 10³/195.6/p = 10.19/p Webers.

The synchronous reactance (Xs) is calculated as: Xs = (Øp)/(3 × E/2) = (10.19/p)/(3 × 1.995 × 10³/2) = 1.61/(p × 10³) Ω.

The impedance (Zs) is given by jXs = j1.61/p kΩ.

From the above expression, we find that the number of salient pole pairs on the rotor, p, is approximately 374.91. However, p must be a whole number as it represents the actual number of poles on the rotor. Therefore, rounding the nearest whole number to 374, we conclude that the number of salient pole pairs on the rotor of the synchronous machine with a rated power of 4000 hp, a speed of 200 rpm, a voltage of 6.9 kV, and a frequency of 50 Hz is 374.

In summary, the number of salient pole pairs on the rotor of the synchronous machine is determined to be 374.

Learn more about salient pole

https://brainly.com/question/31676341

#SPJ11

The spacecraft has 4 solar panels. Each panel has the dimension of 2m x 1m x 20mm with a density of 7830 kg/m3 and is connected to the body by aluminum rods of a length of 0.4 m and a diameter of 20mm. Determine the natural frequency of vibration of each panel about the axis of the connecting rod. Use G = 26GPa. Im= m (w2 + h2)/12 =

Answers

The spacecraft has four solar panels, and each of them has a dimension of 2m x 1m x 20mm. These panels have a density of 7830 kg/m³. The solar panels are connected to the body by aluminum rods that have a length of 0.4m and a diameter of 20mm.

We are required to find the natural frequency of vibration of each panel about the axis of the connecting rod. We use

[tex]G = 26 GPa and Im = m(w² + h²)/12[/tex]

to solve this problem. The first step is to calculate the mass of each solar panel. Mass of each

s[tex ]olar panel = density x volume = 7830 x 2 x 1 x 0.02 = 313.2 kg.[/tex]

The next step is to calculate the moment of inertia of the solar panel.

[tex]Im = m(w² + h²)/12 = 313.2(2² + 1²)/12 = 9.224 kgm².[/tex]

Now we can find the natural frequency of vibration of each panel about the axis of the connecting rod.The formula for the natural frequency of vibration is:f = (1/2π) √(k/m)where k is the spring constant, and m is the mass of the solar panel.To find the spring constant, we use the formula:k = (G x A)/Lwhere A is the cross-sectional area of the rod, and L is the length of the rod.

[tex]k = (26 x 10⁹ x π x 0.02²)/0.4 = 83616.7 N/m[/tex]

Now we can find the natural frequency of vibration:

[tex]f = (1/2π) √(k/m) = (1/2π) √(83616.7/313.2) = 5.246 Hz[/tex]

Therefore, the natural frequency of vibration of each panel about the axis of the connecting rod is 5.246 Hz.

To know more about connected visit:

https://brainly.com/question/32592046

#SPJ11

please help solve the following
10. Determine the general solution to: xy- dy dx -= 4x² + y²

Answers

The general solution of the given differential equation is(1/2) x² - (1/2) y² = (1/2) x³ + C1x + C2.

From the question above, differential equation is

xy - dy/dx = 4x² + y²

To find the general solution of the given differential equation

Rearrange the terms,xy - y²= dy/dx + 4x² -------------------------(1)

Use partial fraction for left side of the equation. It becomes,1/y - 1/x = (dy/dx + 4x²)/xy -----------------------(2)

Integrate both sides of the equation (2) with respect to x.

xdx - ydy = [ x²y' + 4/3 x³] dx + C1 ---------(3)

where C1 is the constant of integration.On integrating the equation (3) we get,

(1/2) x² - (1/2) y² = (1/2) x³ + C1x + C2 --------------(4)

where C2 is the constant of integration

Hence, the general solution of the given differential equation is(1/2) x² - (1/2) y² = (1/2) x³ + C1x + C2.

Learn more about differential equation at

https://brainly.com/question/30425955

#SPJ11

a) What is difference between potential flow and free shear flow b) A double wedged aerofoil is placed in an air stream of Mach number 3 at an angle of attack of 200. Find its lift coefficient and drag coefficient. c) A stream lined body is placed in an airstream of Mach number 3 and static conditions 100 kPa and 300K. The perturbations caused in perpendicular direction to the flow ate 1% of the free stream flow velocity. Calculate perturbation in the direction of flow and the pressure coefficient.

Answers

The main difference between potential flow and free shear flow is that potential flow is an ideal flow model that assumes the fluid as an inviscid and incompressible fluid, which means the fluid has no viscosity and is incompressible.

Given data:
Mach number, M = 3
Angle of attack, α = 20°

Lift coefficient:
The lift coefficient is given by

CL = 2πα/180 = π/9

CL = π/9 ≈ 0.35


where γ is the ratio of specific heats.

γ = 1.4 for air

V'/V = 0.01

To know more about potential visit:

https://brainly.com/question/28300184

#SPJ11

Draw the block diagram for an AM transmitter with high level modulation. Add as much detail as possible. Write the name of each block inside the block and use arrows to indicate the direction of the signal (input/output).

Answers

I can provide you with a textual description of the block diagram for an AM transmitter with high-level modulation. You can create the block diagram based on this description:

Audio Input: Represents the audio signal source, such as a microphone or audio player. This block provides the modulating signal.

Low Pass Filter: Filters the audio signal to remove any unwanted high-frequency components.

Audio Amplifier: Amplifies the filtered audio signal to a suitable level for modulation.

Balanced Modulator: Combines the amplified audio signal with the carrier signal to perform amplitude modulation.

Carrier Oscillator: Generates a high-frequency carrier signal, typically in the radio frequency range.

RF Amplifier: Amplifies the modulated RF signal to a higher power level.

Bandpass Filter: Filters out any unwanted frequency components from the amplified RF signal.

Antenna: Transmits the modulated RF signal into the air for wireless transmission.

Please note that this is a simplified representation, and in practical implementations, there may be additional blocks such as mixers, frequency multipliers, pre-amplifiers, and filters for signal conditioning and control.

Know more about AM transmitter here:

https://brainly.com/question/2084370

#SPJ11

You are instructed by the plant Operations Manager to install a pump to lift 30L/s of water at 22degC from a sump to a tank. The tank pressure is 200Kpag. The water level in the tank is 20m above the pump centerline and the pump is 4m above the water level in the sump. The suction pipe is 100mm in diameter, 7m long, and contains 2 elbows and a foot valve. While the discharge pipe to the tank has 75mm diameter and is 120m long with 5pcs 90deg elbow, a check valve and a gate valve. The head loss from the suction line and discharge line is 5 times the suction velocity head and 15 times the discharge velocity head, respectively. for a mechanical efficiency of 80%. Determine the required motor output power (kW).

Answers

By determining the required induction motor output power for the pump, we need to consider the total head required and the efficiency of the pump.

First, let's calculate the total head required for the pump:

1. Suction Side:

  - Convert the flow rate to m³/s: 30 L/s = 0.03 m³/s.

  - Calculate the suction velocity head (Hv_suction) using the diameter and velocity: Hv_suction = (V_suction)² / (2g), where V_suction = (0.03 m³/s) / (π * (0.1 m)² / 4).

  - Calculate the total suction head (H_suction) by adding the elevation difference and head loss: H_suction = 4 m + Hv_suction + 5 * Hv_suction.

2. Discharge Side:

  - Calculate the discharge velocity head (Hv_discharge) using the diameter and velocity: Hv_discharge = (V_discharge)² / (2g), where V_discharge = (0.03 m³/s) / (π * (0.075 m)² / 4).

  - Calculate the total discharge head (H_discharge) by adding the elevation difference and head loss: H_discharge = 20 m + Hv_discharge + 15 * Hv_discharge.

3. Total Head Required: H_total = H_suction + H_discharge.

Next, we can calculate the pump power using the following formula:

Pump Power = (Q * H_total) / (ρ * η * g), where Q is the flow rate, ρ is the density of water, g is the acceleration due to gravity, and η is the mechanical efficiency.

Substituting the given values and solving for the pump power will give us the required motor output power in kilowatts (kW).

Please note that the density of water at 22°C can be considered approximately 1000 kg/m³.

To know more about induction motor visit:

https://brainly.com/question/25543272

#SPJ11

Short answer questions (6-points) a. What are the two possible reasons for aliaing distortion? (2-points) b. The value of input resistince, Ri, in an ideal amplifier is? (1-point) c. The value of output resistince, R., in an ideal amplifier is? (1-point) d. What is the principle advantge of differencial amplifier? (1-point) e. The value of the Common Mode Reduction Ration CMRR of an ideal (1- ampifier is?

Answers

a. Two possible reasons for aliaing distortion are: Unbalanced transistor or tube amplifiers Signal asymmetry

b. The value of input resistance, Ri, in an ideal amplifier is 0.

c. The value of output resistance, Ro, in an ideal amplifier is 0.

d. Differential amplifiers have a number of advantages, including: They can eliminate any signal that is common to both inputs while amplifying the difference between them. They're also less affected by noise and interference than single-ended amplifiers. This makes them an ideal option for high-gain applications where distortion is a problem.

e. The value of the Common Mode Reduction Ratio CMRR of an ideal amplifier is infinite. An ideal differential amplifier will have an infinite Common Mode Reduction Ratio (CMRR). This implies that the amplifier will be able to completely eliminate any input signal that is present on both inputs while amplifying the difference between them.

An amplifier is an electronic device that can increase the voltage, current, or power of a signal. Amplifiers are used in a variety of applications, including audio systems, communication systems, and industrial equipment. Amplifiers can be classified in several ways, including according to their input/output characteristics, frequency response, and amplifier circuitry. Distortion is a common problem in amplifier circuits. It can be caused by a variety of factors, including nonlinearities in the amplifier's input or output stage, component drift, and thermal effects. One common type of distortion is known as aliaing distortion, which is caused by the inability of the amplifier to accurately reproduce signals with high-frequency components.

To know more about amplifier visit:

https://brainly.com/question/33224744

#SPJ11

The power jmput P to a centrifugal pump is assumed to be a function of volume flow Q, the pressure p delivered, the impeller diameter D, the rotational speed is L, and the mass density rho and dynamic viscosity μ of the fluid. Use Buckingham's method to obtain dimensionless groups applicable to the situation. Show that the groups are indeed dimensionless. Use D,rhoQ as the repeated variables.

Answers

Answer:

Explanation:

To apply Buckingham's Pi theorem and obtain dimensionless groups applicable to the situation, we start by identifying the variables involved and their dimensions:

Variables:

Power input, P [ML^2T^-3]

Volume flow rate, Q [L^3T^-1]

Pressure delivered, p [ML^-1T^-2]

Impeller diameter, D [L]

Rotational speed, Ω [T^-1]

Mass density of fluid, ρ [ML^-3]

Dynamic viscosity of fluid, μ [ML^-1T^-1]

Dimensions:

M: Mass

L: Length

T: Time

We have 7 variables and 3 fundamental dimensions. Therefore, according to Buckingham's Pi theorem, we can form 7 - 3 = 4 dimensionless groups.

Let's form the dimensionless groups using D and ρQ as the repeated variables:

Group 1: Pi₁ = P / (D^a * ρ^b * Q^c)

Group 2: Pi₂ = p / (D^d * ρ^e * Q^f)

Group 3: Pi₃ = Ω / (D^g * ρ^h * Q^i)

Group 4: Pi₄ = μ / (D^j * ρ^k * Q^l)

To determine the exponents a, b, c, d, e, f, g, h, i, j, k, l for each group, we equate the dimensions on both sides of the equation and solve the resulting system of equations:

For Group 1:

M: -2a + d + g = 0

L: 2a - b - d - g - j = 0

T: -3a - f - i - l = 0

For Group 2:

M: 0

L: -d + e = 0

T: -2d - h = 0

For Group 3:

M: 0

L: -g = 0

T: -Ω/D = 0

For Group 4:

M: 0

L: -j = 0

T: -k - l = 0

Solving these equations, we find the following exponents:

a = 1/2, b = 1/2, c = -3/2, d = 1/2, e = 1/2, f = -1/2, g = 0, h = 0, i = 0, j = 0, k = 0, l = 0

Substituting these values back into the dimensionless groups, we have:

Pi₁ = P / (D^(1/2) * ρ^(1/2) * Q^(-3/2))

Pi₂ = p / (D^(1/2) * ρ^(1/2) * Q^(-1/2))

Pi₃ = Ω / D

Pi₄ = μ / (D^0 * ρ^0 * Q^0)

As we can see, all the dimensionless groups are indeed dimensionless since all the exponents result in dimension cancellation.

Therefore, the dimensionless groups applicable to the situation are:

Pi₁ = P / (D^(1/2) * ρ^(1/2) * Q^(-3/2))

Pi₂ = p / (D^(1/2) * ρ^(1/2) * Q^(-1/2))

Pi₃ = Ω / D

Pi₄ = μ / (D^0 * ρ^0 * Q^0)

know more about Buckingham's Pi: brainly.com/question/13439588

#SPJ11

Answer:

To apply Buckingham's Pi theorem and obtain dimensionless groups applicable to the situation, we start by identifying the variables involved and their dimensions:

Variables:

Power input, P [ML^2T^-3]

Volume flow rate, Q [L^3T^-1]

Pressure delivered, p [ML^-1T^-2]

Impeller diameter, D [L]

Rotational speed, Ω [T^-1]

Mass density of fluid, ρ [ML^-3]

Dynamic viscosity of fluid, μ [ML^-1T^-1]

Dimensions:

M: Mass

L: Length

T: Time

We have 7 variables and 3 fundamental dimensions. Therefore, according to Buckingham's Pi theorem, we can form 7 - 3 = 4 dimensionless groups.

Let's form the dimensionless groups using D and ρQ as the repeated variables:

Group 1: Pi₁ = P / (D^a * ρ^b * Q^c)

Group 2: Pi₂ = p / (D^d * ρ^e * Q^f)

Group 3: Pi₃ = Ω / (D^g * ρ^h * Q^i)

Group 4: Pi₄ = μ / (D^j * ρ^k * Q^l)

To determine the exponents a, b, c, d, e, f, g, h, i, j, k, l for each group, we equate the dimensions on both sides of the equation and solve the resulting system of equations:

For Group 1:

M: -2a + d + g = 0

L: 2a - b - d - g - j = 0

T: -3a - f - i - l = 0

For Group 2:

M: 0

L: -d + e = 0

T: -2d - h = 0

For Group 3:

M: 0

L: -g = 0

T: -Ω/D = 0

For Group 4:

M: 0

L: -j = 0

T: -k - l = 0

Solving these equations, we find the following exponents:

a = 1/2, b = 1/2, c = -3/2, d = 1/2, e = 1/2, f = -1/2, g = 0, h = 0, i = 0, j = 0, k = 0, l = 0

Substituting these values back into the dimensionless groups, we have:

Pi₁ = P / (D^(1/2) * ρ^(1/2) * Q^(-3/2))

Pi₂ = p / (D^(1/2) * ρ^(1/2) * Q^(-1/2))

Pi₃ = Ω / D

Pi₄ = μ / (D^0 * ρ^0 * Q^0)

As we can see, all the dimensionless groups are indeed dimensionless since all the exponents result in dimension cancellation.

Therefore, the dimensionless groups applicable to the situation are:

Pi₁ = P / (D^(1/2) * ρ^(1/2) * Q^(-3/2))

Pi₂ = p / (D^(1/2) * ρ^(1/2) * Q^(-1/2))

Pi₃ = Ω / D

Pi₄ = μ / (D^0 * ρ^0 * Q^0)

know more about Buckingham's Pi: brainly.com/question/13439588

#SPJ11

What are some reasons why a designer might select a 10-bit A/D converter instead of a 12-bit or higher resolution converter?

Answers

A designer may choose to use a 10-bit ADC instead of a 12-bit or higher resolution converter for various reasons. The first reason could be related to cost and power.

Because a 10-bit ADC has fewer bits than a 12-bit or higher resolution converter, it typically consumes less power and is less expensive to implement.Secondly, a 10-bit ADC may be preferable when speed is required over resolution. The number of bits in an ADC determines its resolution, which is the smallest signal change that can be measured accurately. While higher resolution ADCs can produce more precise measurements, they can take longer to complete the conversion process.

Finally, another reason a designer might choose a 10-bit ADC is when the signal being measured has a limited dynamic range. The dynamic range refers to the range of signal amplitudes that can be accurately measured by the ADC. If the signal being measured has a limited dynamic range, then a higher resolution ADC may not be necessary. In such cases, a 10-bit ADC may be sufficient and can provide a more cost-effective solution.

Learn more about 10-bit ADC: https://brainly.com/question/30719751

#SPJ11

A concrete-coated steel gas pipeline is to be laid between two offshore platforms in 100 m water depth where the maximum environmental conditions include waves of 20 m wave height and 14 s period. The pipeline outside diameter is 46 cm, and the clay bottom slope is 1 on 100. Determine the submerged unit weight of the pipe. Assume linear wave theory is valid and that the bottom current is negligible.

Answers

Diameter of the pipeline (d) = 46 cm = 0.46 mDepth of water (h) = 100 mMaximum wave height (H) = 20 mWave period (T) = 14 sBottom slope (S) = 1/100Formula Used.

Submerged weight = (pi * d² / 4) * (1 - ρ/γ)Where, pi = 3.14d = diameter of the pipelineρ = density of water = 1000 kg/m³γ = specific weight of the material of the pipeCalculation:Given, d = 0.46 mρ = 1000 kg/m³γ = ?We need to find the specific weight (γ)Submerged weight = (pi * d² / 4) * (1 - ρ/γ)

The formula for finding submerged weight can be rewritten as:γ = (pi * d² / 4) / (1 - ρ/γ)Substituting the values of pi, d and ρ in the above formula, we get:γ = (3.14 * 0.46² / 4) / (1 - 1000/γ)Simplifying the above equation, we get:γ = 9325.56 N/m³Thus, the submerged unit weight of the pipe is 9325.56 N/m³. Hence, the detailed explanation of the submerged unit weight of the pipe has been provided.

To know more about diameter visit:

brainly.com/question/33279161

#SPJ11

What is the net entropy change per second of a 1 m^2 solar
panel absorbing 1000 W/m^2 of sunlight (T = 5800 K) and radiating "waste" heat into
the environment at a temperature of T = 70 C into an environment at 25 C?

Answers

The net entropy change per second of a 1 m² solar panel absorbing 1000 W/m² of sunlight (T = 5800 K) and radiating "waste" heat into the environment at a temperature of T = 70°C into an environment at 25°C is 2.67 J/Ks.

What is entropy change?

The entropy change of a thermodynamic system is the difference between its final and initial entropy values. The entropy of a system increases as its disorderliness grows.

The entropy change in a process is positive when the disorderliness of the system rises, and negative when the disorderliness of the system falls. It is always non-negative.

The equation for entropy change is-

∆S = Sfinal – Sinitial

Now, the given values are;

Area of the panel,

A = 1 m²

Power absorbed, P = 1000 W/m²

Temperature of sun, Ts = 5800 K

Temperature of the panel, Tp = 70°C

= 343 K.

Temperature of the environment,

Te = 25°C

= 298 K.

The entropy change in the system can be found using the formula:

∆S = Sfinal – Sinitial

Here, the final state is the panel emitting waste heat into the environment and reaching thermal equilibrium with the surroundings. The initial state is the panel receiving sunlight and not yet emitting any heat.

Therefore,

∆S = Sfinal – Sinitial

= Spanel + Senvironment – Spanel, initial

Where Senvironment is the entropy of the environment and Spanel, initial is the entropy of the panel before absorbing sunlight.

The value of Spanel, initial is zero since the panel has not yet absorbed any energy.

We can calculate the other two entropies using the formulas:

S environment = Q/Te

= P/A Te

Spanel = Q/Tp

= P/A Ts Tp

Where Q is the waste heat emitted by the panel and A is its area.

Substituting the given values, we get;

Senvironment = (1000 W/m²)/(1 m²)(298 K)

= 3.35 J/KSpanel

= (1000 W/m²)/(1 m²)(5800 K)

= 1.72 × 10⁻⁵ J/Ks

∆S = 1.72 × 10⁻⁵ J/Ks + 3.35 J/Ks

= 3.35 J/Ks (approx).

Thus, the net entropy change per second of the 1 m² solar panel absorbing 1000 W/m² of sunlight (T = 5800 K) and radiating "waste" heat into the environment at a temperature of T = 70°C into an environment at 25°C is 2.67 J/Ks.

To know more on entropy visit:

https://brainly.com/question/20166134

#SPJ11

3. This question requires you to demonstrate your knowledge and understanding of rocket engines. An end-burning composite solid rocket motor is designed to produce an optimal thrust of 5 kN at an altitude of 5 km where the ambient pressure is 54 kPa. The propellant properties are given in Table Q3. a) Draw a process diagram for this engine showing your stage notation. [2 marks] b) Assuming an ideal rocket, determine: (i) the nozzle exit velocity; [8 marks] (ii) the nozzle exit diameter; [4 marks] (iii) the throat velocity; [3 marks] (iv) the propellant grain diameter; [3 marks] [3 marks] (v) the burning time if the propellant charge length is 1.4 m; the thrust if the altitude of the rocket increases to 7 km where the ambient pressure is 41 kPa. (vi) [2 marks] Propellant grain density 1,820 kg/m³ Vielle's law burning rate indices; n = 0.4 and k = 3.6 Combustion temperature 2,800 K Combustion pressure 12 MPa Exhaust gas constants Y 1.2 R 290 J/(kg-K) Table Q3: Rocket engine performance data.

Answers

The propellant properties, such as Vielle's law burning rate indices, combustion temperature, combustion pressure, and exhaust gas constants, are provided in Table Q3. By solving these calculations and utilizing the given data, we can determine the required parameters for the rocket engine and gain insights into its performance characteristics.

a) The process diagram for the engine can be represented using stage notation, which indicates the different stages or components of the rocket engine, such as the combustion chamber, nozzle, and propellant grain. The diagram should illustrate the flow of gases and the expansion of exhaust gases through the nozzle.

b) To determine the required parameters, we assume the rocket engine operates ideally.

(i) The nozzle exit velocity can be calculated using the ideal rocket equation, which relates the exhaust velocity to the specific impulse and the gravitational constant.

(ii) The nozzle exit diameter can be determined using the area ratio between the throat and the exit.

(iii) The throat velocity can be calculated using the specific impulse and the exhaust gas constants.

(iv) The propellant grain diameter is not directly provided in the question, so additional information or assumptions are needed to determine this parameter.

(v) The burning time can be calculated using the propellant charge length and the burning rate of the propellant. The thrust at a different altitude can be estimated by adjusting for the change in ambient pressure.

(vi) Additional information is not provided in the question to calculate the propellant grain density.

Learn more about gravitational constant here:

https://brainly.com/question/17239197

#SPJ11

If the production of a material increases by r% every year, show
that the doubling time is given by 70/r.

Answers

When the production of a material increases at the rate of r% every year, the doubling time is given by 70/r.  Assume that the initial production rate is P₀ at the start of the year, and after t years, it will be P.

After the first year, the production rate will be

P₁ = P₀ + (r/100)P₀

P₁ = (1 + r/100)P₀.

In general, the production rate after t years is given by the formula

P = (1 + r/100)ᵗP₀.

when the production of a material is doubled, the following equation is satisfied:

2P₀ = (1 + r/100)ᵗP₀

Applying the logarithm to both sides of the equation, we obtain:

log 2 = tlog(1 + r/100)

Dividing both sides by log(1 + r/100), we get:

t = log 2 / log(1 + r/100)

This expression shows the number of years required for the production of a material to double at a constant rate of r% per year. Using the logarithm property, we can rewrite the above equation as:

t = 70/ln(1 + r/100)

In the above expression, ln is the natural logarithm.

By substituting ln(2) = 0.693 into the equation, we can obtain:

t = 0.693 / ln(1 + r/100)

To know about logarithm visit:

https://brainly.com/question/30226560

#SPJ11

A 5-stage Marx impulse generator has individual and load condensers of 0.27μF and 0.04μF. The circuit's wavefront and wavetail resistances were observed to be 30.223Ω and 2004.817Ω. i. Find the front and the tail times of the waveform generated by the generator. ii. Calculate the time taken to reach the impulse generator's peak value (t max ​
). iii. Determine the nominal energy storage if the charging voltage is 170kV.

Answers

i) The front time is 0.178 microseconds and the tail time is 17.717 microseconds.

ii) The time taken to reach the peak value is 17.895 microseconds.

iii) The nominal energy storage is: 0.693 J

What is the Nominal Energy Storage?

The given parameters are:

Individual capacitor (C₁) = 0.27 μF

Load capacitor (C₂) = 0.04 μF

Wave front resistance (R₁) = 30.223 Ω

Wave tail resistance (R₂) = 2004.817 Ω

Charging voltage (V) = 170 kV

i) The front time (t_f) and tail time (t_t) can be calculated using the following formulas:

t_f = 2.2 × R₁ × C₁

t_t = 2.2 × R₂ × C₂

Plugging in the relevant  values, we have:

t_f = 2.2 × 30.223 Ω × 0.27 μF

t_t = 2.2 × 2004.817 Ω × 0.04 μF

Calculating the values:

t_f = 0.178 microseconds

t_t = 17.717 microseconds

ii) The time taken to reach the peak value (t_max) can be calculated as:

t_max = t_f + t_t

Plugging in the values we calculated earlier:

t_max = 0.178 microseconds + 17.717 microseconds

Calculating the value:

t_max = 17.895 microseconds

iii) The nominal energy storage (E) can be calculated using the formula:

E = 0.5 × (C₁ + C₂) × V²

Plugging in the given values:

E = 0.5 × (0.27 μF + 0.04 μF) × (170 kV)²

Converting the units to the appropriate form:

E = 0.5 × (0.27 × 10⁻⁶ F + 0.04 × 10⁻⁶ F) × (170 × 10³ V)²

Calculating the value:

E ≈ 0.693 Joules

Read more about Nominal Energy Storage at: https://brainly.com/question/16119496

#SPJ4

A steam generator with economizer and air heater has an overall draft loss of 21.78 cmWG. If the stack gases are at 117°C and if the atmosphere is at 101.3 kPa and 26°C, what theoretical height of stack in meters is needed when no draft fans are used? Assume that the gas constant for the flue gases is the same as that for air.
580 m
560 m
570 m
550 m

Answers

The theoretical height of the stack in meters needed when no draft fans are used is 575 m (approx). The correct option is option(c).

Given that the overall draft loss of the steam generator with economizer and air heater is 21.78 cmWG. The stack gases are at 117°C and the atmosphere is at 101.3 kPa and 26°C.

The theoretical height of the stack in meters when no draft fans are used is to be calculated. Assuming that the gas constant for the flue gases is the same as that for air, we have:

We know that:

Total draft loss = Hf + Hc + Hi + H o

Hf = Frictional losses in the fuel bed

Hc = Frictional losses in the fuel passages

Hi = Loss of draft in the chimney caused by the change of temperature of the flue gases

H o = Loss of draft in the chimney due to the wind pressure

Let's assume that there is no wind pressure, then the total draft loss =

Hf + Hc + Hi

Putting the values in the above equation:

21.78 = Hf + Hc + Hi

We know that the loss of draft Hi due to a change in temperature is given by:

Hi = Ht (t1 - t2)/t2

Ht = Total height of the chimney from fuel bed to atmosphere

= Hf + Hc + Hch + Hah1

= Temperature of flue gases leaving the chimney in K = (117 + 273) K

= 390 K

h2 = Temperature of the atmospheric air in K = (26 + 273) K

= 299 KK

= Gas constant

= R/M = 0.287/29 kg/mol

= 0.00989 kg/mol

Hch = Height of the chimney from the point of exit of flue gases to the top of the chimney

Hah = Height of the air heater above the point of exit of the flue gases

Let's assume Hah = 0

We know that,

Hc = l ρV²/2g

where

l = Length of flue passages

ρ = Density of flue gases

V = Velocity of flue gases

g = Acceleration due to gravity

Substituting the given values, we get

Hc = 0.7 ρV² .......... (1)

We also know that,

Hf = l ρV²/2g

where l = Length of the fuel bed

ρ = Density of fuel

V = Velocity of fuel

g = Acceleration due to gravity

Substituting the given values, we get

Hf = 1.2 ρV² .......... (2)

Now, combining equation (1) and (2), we get:

21.78 = Hf + Hc + Hi1.2 ρV² + 0.7 ρV² + Ht (t1 - t2)/t2 = 21.78

Let's assume that V = 10 m/s

We know that, ρ = p/RT

where

p = Pressure of flue gases in Pa

R = Gas constant of the flue gases

T = Temperature of flue gases in K

Substituting the given values, we get

ρ = 101.3 × 10³/ (0.287 × 390) = 8.44 kg/m³

Substituting the given values in the equation

21.78 = 1.2 ρV² + 0.7 ρV² + Ht (t1 - t2)/t2, we get:

Ht = 574.68 m

The theoretical height of the stack in meters needed when no draft fans are used is 575 m (approx). Therefore, the correct option is 570 m.

To know more about Steam generators visit:

https://brainly.com/question/18153506

#SPJ11

A double threaded right-handed worm gear transmits 15 hp at 1150 rpm. The pitch of the worm is 0.75 inches and pitch diameter of 3 inches. The pressure angle is 14.5 deg and the coefficient of friction is 0.12. Determine the following: a) the normal diametral pitch b) the power output of gear c) the diametral pitch d) the pitch line velocity of worm e) the expected value of the tangential force on worm f) the expected value of the separating force.

Answers

The normal diametral pitch is 0.2123 inches, the pitch line velocity of the worm is 899.55 inches per minute, the expected value of the tangential force on the worm is 1681.33 pounds, and the expected value of the separating force is 201.76 pounds.

What are the values for the normal diametral pitch, pitch line velocity of the worm, expected value of the tangential force on the worm, and expected value of the separating force in a double threaded right-handed worm gear system transmitting 15 hp at 1150 rpm, with a worm pitch of 0.75 inches, pitch diameter of 3 inches, pressure angle of 14.5 deg, and coefficient of friction of 0.12?

To calculate the required values, we can use the given information and formulas related to worm gear systems. Here are the calculations and explanations for each part:

The normal diametral pitch (Pn) can be calculated using the formula:

  Pn = 1 / (pi * module)

  where module = (pitch diameter of worm) / (number of threads)

  In this case, the pitch diameter of the worm is 3 inches and it is a double-threaded worm gear. So the number of threads is 2.

  Pn = 1 / (pi * (3 / 2))

  Pn ≈ 0.2123 inches

b) The power output of the gear (Pout) can be calculated using the formula:

  Pout = Pin * (efficiency)

  where Pin is the power input and efficiency is the efficiency of the gear system.

  In this case, the power input (Pin) is given as 15 hp and there is no information provided about the efficiency. Without the efficiency value, we cannot calculate the power output accurately.

The diametral pitch (P) is calculated as the reciprocal of the circular pitch (Pc).

  P = 1 / Pc

  The circular pitch (Pc) is calculated as the circumference of the pitch circle divided by the number of teeth on the gear.

  Unfortunately, we don't have information about the number of teeth on the gear, so we cannot calculate the diametral pitch accurately.

The pitch line velocity of the worm (V) can be calculated using the formula:

  V = pi * pitch diameter of worm * RPM / 12

  where RPM is the revolutions per minute.

  In this case, the pitch diameter of the worm is 3 inches and the RPM is given as 1150.

  V = pi * 3 * 1150 / 12

  V ≈ 899.55 inches per minute

The expected value of the tangential force on the worm can be calculated using the formula:

  Ft = (Pn * P * W) / (2 * tan(pressure angle))

  where W is the transmitted power in pound-inches.

  In this case, the transmitted power (W) is calculated as:

  W = (Pin * 63025) / (RPM)

  where Pin is the power input in horsepower and RPM is the revolutions per minute.

  Given Pin = 15 hp and RPM = 1150, we can calculate W:

  W = (15 * 63025) / 1150

  W ≈ 822.5 pound-inches

  Now, we can calculate the expected value of the tangential force (Ft):

  Ft = (0.2123 * P * 822.5) / (2 * tan(14.5 deg))

  Ft ≈ 1681.33 pounds

The expected value of the separating force (Fs) can be calculated using the formula:

  Fs = Ft * friction coefficient

  where the friction coefficient is given as 0.12.

  Using the calculated Ft ≈ 1681.33 pounds, we can calculate Fs:

  Fs = 1681.33 * 0.12

  Fs ≈ 201.76 pounds

Therefore, we have calculated values for a), d), e), and f) based on the provided information and applicable formulas. However, b) and c) cannot be accurately determined without additional information.

Learn more about diametral pitch

brainly.com/question/31426143

#SPJ11

Why does polysilicon etch prefer chlorine instead of fluorine as the main etchant?

Answers

Polysilicon etches prefer chlorine instead of fluorine as the main etchant because of the nature of silicon. Polysilicon is a type of silicon used in the semiconductor industry to make microprocessors, solar cells, and other electronics. It is made up of a large number of silicon atoms arranged in a repeating pattern, hence the name polysilicon.

Polysilicon etches are chemicals that are used to remove or etch away certain parts of the polysilicon layer during the manufacturing process. Chlorine and fluorine are two of the most common etchants used for this purpose, but they differ in their effectiveness.
Chlorine is a better etchant for polysilicon than fluorine because chlorine reacts more readily with silicon than fluorine does. Chlorine has a larger atomic radius and a higher electronegativity than fluorine, which means that it is better able to form bonds with the silicon atoms in polysilicon.

Furthermore, chlorine is more reactive and more volatile than fluorine, which makes it easier to handle in the manufacturing process. It also has a lower etch rate than fluorine, which means that it etches more uniformly and is less likely to cause damage to the underlying substrate.
In summary, polysilicon etches prefer chlorine over fluorine as the main etchant because it is more reactive, has a larger atomic radius and a higher electronegativity, and is more volatile and easier to handle in the manufacturing process.

To know more about polysilicon visit:

https://brainly.com/question/31412381

#SPJ11

Design a excel file of an hydropower turgo turbine in Sizing and Material selection.
Excel file must calculate the velocity of the nozel, diameter of the nozel jet, nozzle angle, the runner size of the turgo turbine, turbine blade size, hub size, fastner, angular velocity,efficiency,generator selection,frequnecy,flowrate, head and etc.
(Note: File must be in execl file with clearly formulars typed with all descriptions in the sheet)

Answers

Designing an excel file for a hydropower turbine (Turgo turbine) involves calculating different values that are essential for its operation. These values include the velocity of the nozzle, diameter of the nozzle jet, nozzle angle, runner size of the turbine, turbine blade size, hub size, fastener, angular velocity, efficiency, generator selection, frequency, flow rate, head, etc.

To create an excel file for a hydropower turbine, follow these steps:Step 1: Open Microsoft Excel and create a new workbook.Step 2: Add different sheets to the workbook. One sheet can be used for calculations, while the others can be used for data input, output, and charts.Step 3: On the calculation sheet, enter the formulas for calculating different values. For instance, the formula for calculating the velocity of the nozzle can be given as:V = (2 * g * H) / (√(1 - sin²(θ / 2)))Where V is the velocity of the nozzle, g is the acceleration due to gravity, H is the head, θ is the nozzle angle.Step 4: After entering the formula, label each column and row accordingly. For example, the velocity of the nozzle formula can be labeled under column A and given a name, such as "Nozzle Velocity Formula".Step 5: Add a description for each formula entered in the sheet.

The explanation should be clear, concise, and easy to understand. For example, a description for the nozzle velocity formula can be given as: "This formula is used to calculate the velocity of the nozzle in a hydropower turbine. It takes into account the head, nozzle angle, and acceleration due to gravity."Step 6: Repeat the same process for other values that need to be calculated. For example, the formula for calculating the diameter of the nozzle jet can be given as:d = (Q / V) * 4 / πWhere d is the diameter of the nozzle jet, Q is the flow rate, and V is the velocity of the nozzle. The formula should be labeled, given a name, and described accordingly.Step 7: Once all the formulas have been entered, use the data input sheet to enter the required data for calculation. For example, the data input sheet can contain fields for flow rate, head, nozzle angle, etc.Step 8: Finally, use the data output sheet to display the calculated values. You can also use charts to display the data graphically. For instance, you can use a pie chart to display the percentage efficiency of the turbine. All the sheets should be linked correctly to ensure that the data input reflects on the calculation sheet and output sheet.

To know more about turbines visit:

https://brainly.com/question/25105919

#SPJ11

Q.7 Consider the unity-feedback system illustrated below, design a PD controller Gc(s) = Kp + Kds, and obtain the controller's parameters so that the steady-state error is 10% to a unit-ramp signal, the maximum overshoot is 17.55% to a unit-step signal. (Assume that the closed-loop zeros' influence on overshoot could be neglected if zeros are located on the left half of the s-plane and the ratio of zeros to poles' real parts exceeds 5). R(S) + C(s) Gds) s(s+5)

Answers

Given the unity feedback system illustrated below:R(S) + C(s) Gds) s(s+5)The transfer function of the system is given by: G(s)= \frac{C(s)Gds}{1 + C(s)Gds)}To obtain the controller parameters, we will use the following relations: the damping ratio and natural frequency of the system, respectively. K_v is the velocity constant of the system, K_v=1.We know that steady-state error is 10% to a unit ramp signal.

Also, we know that the maximum overshoot is 17.55% to a unit step signal. Therefore, we can calculate the damping ratio of the system as:

we can calculate the value of the proportional gain K_p and derivative gain K_d.

The controller parameters are:K_p=0.7071 and K_d=1.4142.

To know about parameters visit:

https://brainly.com/question/28249912

#SPJ11

a) Describe the following: i. Encoder ii. Decoder iii. RAM iv. ROM
b) Describe the operation of: i. Write and read ii. Basic binary decoder

Answers

a) i. Encoder: An encoder is an electronic device or circuit that is used to convert the data signal into a coded format that has a different format than the initial data signal.

ii. Decoder: A decoder is an electronic circuit that is used to convert a coded signal into a different format. It is the inverse of an encoder and is used to decode the coded data signal back to its original format.

iii. RAM: Random Access Memory (RAM) is a type of volatile memory that stores data temporarily. It is volatile because the data stored in RAM is lost when the computer is switched off or restarted. RAM is used by the computer's processor to store data that is required to run programs and applications.


iv. ROM: Read-Only Memory (ROM) is a type of non-volatile memory that stores data permanently. The data stored in ROM cannot be modified or changed by the user. ROM is used to store data that is required by the computer's operating system to boot up and start running.

b) i. Write and read: The write operation is used to store data in a memory location. The data is written to the memory location by applying a write signal to the memory chip. The read operation is used to retrieve data from a memory location. The data is retrieved by applying a read signal to the memory chip.

ii. Basic binary decoder: A basic binary decoder is a logic circuit that is used to decode a binary code into a more complex output code. The binary decoder takes a binary input code and produces a more complex output code that is based on the input code. The output code can be used to control other circuits or devices.

To know more about decoder visit:

https://brainly.com/question/31064511

#SPJ11

Other Questions
B/ Put the following program in matrix standard form Min (z) = 10x+11x2 S.T. X+2x 150 3x+4x 200 36x+x 175 X and x non nagative with State whether each is an oxidation [O], reduction [H] or neither (N) by writing the appropriate symbol in the blank (type O, H or N NOT type the bracket symbol) blank 1 O-H blank 4 H CH4 blank 2 what body cavity show in the red and blue star The lift and drag coefficients for a plane are CL = 0.45 and CD=0.06, both based on the planform area, Ap=9 m. If the plane flies at 4 km (see table C.2 for air properties) with a maximum engine thrust is 1.2 kN : (a) what is the maximum plane mass for steady flight? ;(b) what is the engine power required ? ;(c) what is the steady plane speed at this maximum thrust? Approx. Ans (a) M - 1100 kg;(b))P-60 kW;(c) V~55 m/s; Compare and contrast physical and cultural pest controlmethods. 7.22 An NMOS differential pair is biased by a current . source I = 0.2 mA having an output resistance Rs = 100 k. The amplifier has drain resistances RD = 10 k using transistors with kW/L = 3 mA/V, and r, that is large. (a) If the output is taken single-endedly, find |Ad|, |Acm|, and CMRR. (b) If the output is taken differentially and there is a 1% mis- match between the drain resistances, find |Ad|, |Acm|, and CMRR. Subtract 5x3 + 4x 3 de 2x3 5x + x2 + 6 Functional restoration in the elderly should be considered: In a patient who is motivated to work; otherwise you will waste your time Only in a patient who has had a recent acute health care event In a patient with chronic illness After a patient is evaluated by a physician Statin drugs must be monitored carefully regarding liver function. The FDA currently recommends checking at baseline and: For symptoms only Every 3 pronths Every 6 months After one year of therapy Both A and D A 76 y/o woman has intense paroxysms of unilateral electric-shock like pain in the face that is usually triegered by brushing her teeth or washing her face. Which of the following is the best initial manamment? Administration of Carbamazepine Microvascular decompression of the trigeminal nerve root Radiofrequency severing of the gasserian ganglion Trigeminal nerve block Administration of Baclofen Which of the following patients with active TB is being treated appropriately lassuming that each patient does not hove mult-drug resistantTB)? 35 y/o man with HIV is placed on INH + RIF + EMB + Pyrazinamide for 6 months 36 y/o male with TB is placed on INH+ RIF for one year 36 y/o male whose symptoms are unchanged at 3 months into therapy is being treated with INH + RIF + EMB + Pyrazinamide for 2 months, then INH + RIF for 4 months 36 y/o male is placed on INH + RIF + EMB + Pyrazinamide for 2 months, then INH+R for 4 months 100090Solute per 100 g of HO (g)8070ADB6050403020100 0 10 20 30 40 50 60 70 80 90 100 A. unsaturatedTemperature (C)30 g of B hasbeen added toC100 g HO at75 C. Whattype of solutionis this?B. saturatedC. supersaturated Describe the difference between engineering stress-strain and true stress-strain relationships. Why analysis of true stress - true strain relationships is important? Select which halide is the most reactive to oxidative addition with Pd(0) species? what is the excecutive summary for candles? 1. For the medical image given apply the smoothing for 3x3sized image matrix x with the kernel h of size 33, shown below in Figure 1. and compute the pixel value of the output image applying padding Original 1 2 3 5 6 4 7 8 9 IMAGE 3*3 figure 1 0 1 0 1 0 1 0 1 0 KERNAL 3*3 A fluid flows through a horizontal 01-in.- diameter pipe. When the Reynolds number is 1500, the head loss over a 20-ft length of the pipe is 6.4 ft. Determine the fluid velocity. (g=32.2 ft/s^2) Identify the following as inductive or deductive reasoning. Explain-The detective surveyed the murder scene. A bloody knife lay next to the body. Fingerprints were on it. Bloody footprints led away from the body towards the window. The window was open. The detective concluded that the victim had in all probability been killed with a knife, and the murderer had escaped through the window.What is the inference in the following sentence?-Data shows that over 50,000 car accidents happen in parking lots. Comparing the Confederacy to the American colonies and their justifications for seceding from the British Empire in the firstinstance and the United States in the second, both groups have respect claims that are comparable to the Confederacy's. To what extent do you think southerners were correct in viewing the Civil War as a second American Revolution and to what extent were they wrong? 3 or more paragraphs He referred to this phenomenon an the law or principle of segregation. Mendel did not know about genes and DNA, so we will now leave his story for another time and move forward t into modern genetica. Genes are the segments of DNA on a chromo- some responsible for producing a particular trait, such as hair color. However, not all hair color genes are identical. Each variety of a gene for a particu- lar trait is called an allele. For example, everyone has hair color genes, but some have blond alleles for that gene, some have brown alleles, and so on. ga bo all of m st er 01 W b T t The phenotype is the observable trait expressed, such as blue or brown eyes. The geno- type describes the alleles present in the offspring. For example, people can have freckles because they have two identical alleles of the freckles gene (FF). Or they may have no freckles because they have two identical alleles of the nonfreckles gene (ff). There is a third possibility: people can have freckles because they have one of each allele (Ff). Because having freckles is dominant, they only need to have one freckles allele to display that phe- notype. Because we bring two of these alleles to- gether to form a single cell or "zygote," the suffix zygous is used to describe the genotype. When de- scribing genotype in words (not letters as in "FF," "Ff," or "ff"), the terms homozygous (same alleles) or heterozygous (different alleles) are used to de- scribe purebred and mixed alleles respectively. For example, "FF" means homozygous dominant (with freckles); "Ff" means heterozygous dominant (with freckles); and "ff" means homozygous recessive (without freckles). How would you describe the genotype of Mendel's pea plants that had purple flowers, but had one purple allele and one white allele (Pp)? How would you describe the white flowering plant that had two white alleles (ww)? A full report of an experiment to test the effect of gravity onthe growth of stems and roots. Relate with geotropism. marketing questionthis question is regarding a propelled roboticsnowblower1. Why the target market(s) is/are attractive? Based on the 5 descriptive criteria mentioned in STEP 3 of the segmentation, targeting and positioning process described in the text, explain why you sel 28. Gel electrophoresis a. operates on the principle of sedimentation. b. can be used to separate molecules on the basis of size. c. is both an analytical and a preparative technique. d all of the abo