Consider a 2-shell-passes and 8-tube-passes shell-and-tube heat exchanger. What is the primary reason for using many tube passes

Answers

Answer 1

Answer:

See explanation

Explanation:

Solution:-

- The shell and tube heat exchanger are designated by the order of tube and shell passes.

- A single tube pass: The fluid enters from inlet, exchange of heat, the fluid exits.

- A multiple tube pass: The fluid enters from inlet, exchange of heat, U bend of the fluid, exchange of heat, .... ( nth order of pass ), and then exits.

- By increasing the number of passes we have increased the "retention time" of a specific volume of tube fluid; hence, providing sufficient time for the fluid to exchange heat with the shell fluid.

- By making more U-turns we are allowing greater length for the fluid flow to develop with " constriction and turns " into turbulence. This turbulence usually at the final passes allows mixing of fluid and increases the heat transfer coefficient by:

                                U ∝ v^( 0.8 )    .... ( turbulence )

- The higher the velocity of the fluids the greater the heat transfer coefficient. The increase in the heat transfer coefficient will allow less heat energy carried by either of the fluids to be wasted ; hence, reduced losses.

Thereby, increases the thermal efficiency of the heat exchanger ( higher NTU units ).


Related Questions

If the resistance reading on a DMM'S meter face is to 22.5 ohms in the range selector switch is set to R X 100 range, what is the actual measure resistance of the circuit?

Answers

Answer:

The answer is 2.25 kΩ

Explanation:

Solution

Given that:

The resistance reading on a DMM'S meter face = 22.5 ohms

The range selector switch = R * 100 range,

We now have to find the actual measure resistance of the circuit which is given below:

The actual measured resistance of the circuit is=R * 100

= 22.5 * 100

=2.25 kΩ

Hence the measured resistance of the circuit is 2.25 kΩ

A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16% of the cylinder volume at bottom dead center and the crankshaft rotates at 2400 RPM. The processes within each cylinder are modeled as an air-standard Otto cycle with a pressure of 14.5 lbf/in.2 and a temperature of 60F at the beginning of compression. The maximum temperature in the cycle is 5200R. Based on this model, calculate the net work per cycle, in Btu, and the power developed by the engine, in horsepower.

Answers

Answer:

the net work per cycle [tex]\mathbf{W_{net} = 0.777593696}[/tex]  Btu per cycle

the power developed by the engine, W = 88.0144746 hp

Explanation:

the information given includes;

diameter of the four-cylinder bore = 3.7 in

length of the stroke = 3.4 in

The clearance volume = 16% = 0.16

The cylindrical volume [tex]V_2 = 0.16 V_1[/tex]

the crankshaft N rotates at a speed of  2400 RPM.

At the beginning of the compression , temperature [tex]T_1[/tex] = 60 F = 519.67 R    

and;

Otto cycle with a pressure =  14.5 lbf/in² = (14.5 × 144 ) lb/ft²

= 2088 lb/ft²

The maximum temperature in the cycle is 5200 R

From the given information; the change in volume is:

[tex]V_1-V_2 = \dfrac{\pi}{4}D^2L[/tex]

[tex]V_1-0.16V_1= \dfrac{\pi}{4}(3.7)^2(3.4)[/tex]

[tex]V_1-0.16V_1= 36.55714291[/tex]

[tex]0.84 V_1 =36.55714291[/tex]

[tex]V_1 =\dfrac{36.55714291}{0.84 }[/tex]

[tex]V_1 =43.52040823 \ in^3 \\ \\ V_1 = 43.52 \ in^3[/tex]

[tex]V_1 = 0.02518 \ ft^3[/tex]

the mass in air ( lb) can be determined by using the formula:

[tex]m = \dfrac{P_1V_1}{RT}[/tex]

where;

R = 53.3533 ft.lbf/lb.R°

[tex]m = \dfrac{2088 \ lb/ft^2 \times 0.02518 \ ft^3}{53.3533 \ ft .lbf/lb.^0R \times 519 .67 ^0 R}[/tex]

m = 0.0018962 lb

From the tables  of ideal gas properties at Temperature 519.67 R

[tex]v_{r1} =158.58[/tex]

[tex]u_1 = 88.62 Btu/lb[/tex]

At state of volume 2; the relative volume can be determined as:

[tex]v_{r2} = v_{r1} \times \dfrac{V_2}{V_1}[/tex]

[tex]v_{r2} = 158.58 \times 0.16[/tex]

[tex]v_{r2} = 25.3728[/tex]

The specific energy [tex]u_2[/tex] at [tex]v_{r2} = 25.3728[/tex] is 184.7 Btu/lb

From the tables of ideal gas properties at maximum Temperature T = 5200 R

[tex]v_{r3} = 0.1828[/tex]

[tex]u_3 = 1098 \ Btu/lb[/tex]

To determine the relative volume at state 4; we have:

[tex]v_{r4} = v_{r3} \times \dfrac{V_1}{V_2}[/tex]

[tex]v_{r4} =0.1828 \times \dfrac{1}{0.16}[/tex]

[tex]v_{r4} =1.1425[/tex]

The specific energy [tex]u_4[/tex] at [tex]v_{r4} =1.1425[/tex] is 591.84 Btu/lb

Now; the net work per cycle can now be calculated as by using the following formula:

[tex]W_{net} = Heat \ supplied - Heat \ rejected[/tex]

[tex]W_{net} = m(u_3-u_2)-m(u_4 - u_1)[/tex]

[tex]W_{net} = m(u_3-u_2- u_4 + u_1)[/tex]

[tex]W_{net} = m(1098-184.7- 591.84 + 88.62)[/tex]

[tex]W_{net} = 0.0018962 \times (1098-184.7- 591.84 + 88.62)[/tex]

[tex]W_{net} = 0.0018962 \times (410.08)[/tex]

[tex]\mathbf{W_{net} = 0.777593696}[/tex]  Btu per cycle

the power developed by the engine, in horsepower. can be calculated as follows;

In the  four-cylinder, four-stroke internal combustion engine; the power developed by the engine can be calculated by using the expression:

[tex]W = 4 \times N' \times W_{net[/tex]

where ;

[tex]N' = \dfrac{2400}{2}[/tex]

N' = 1200 cycles/min

N' = 1200 cycles/60 seconds

N' = 20 cycles/sec

W = 4 × 20 cycles/sec ×  0.777593696

W = 62.20749568 Btu/s

W = 88.0144746 hp

The net work per cycle and the power developed by this combustion engine are 0.7792 Btu and 88.20 hp.

Given the following data:

Diameter of bore = 3.7 inStroke length = 3.4 inClearance volume = 16% = 0.16Speed of  2400 RPM.Initial temperature = 60 F to R = 519.67 R.  Initial pressure =  14.5 [tex]lbf/in^2[/tex] to [tex]lbf/ft^2[/tex] = 2088 [tex]lbf/ft^2[/tex] Maximum temperature = 5200 R.

Note: The cylindrical volume is equal to [tex]0.16V_1[/tex]

How to calculate the net work per cycle.

First of all, we would determine the volume, mass and specific energy as follows:

[tex]V_1-V_2=\frac{\pi D^2L}{4} \\\\V_1-0.16V_1=\frac{3.142 \times 3.7^2 \times 3.4}{4}\\\\0.84V_1=36.56\\\\V_1=\frac{36.56}{0.84} \\\\V_1=43.52\;in^3 \;to \;ft^3 = 0.0252\;ft^3[/tex]

For the mass:

[tex]M=\frac{PV}{RT} \\\\M=\frac{2088 \times 0.0252}{53.3533 \times 519.67} \\\\M=\frac{52.6176}{27726.109411}[/tex]

M = 0.0019 lb.

At a temperature of 519.67 R, the relative volume and specific energy are:

[tex]v_{r1}=158.58\\\\u_1 = 88.62\;Btu/lb[/tex]

For the relative volume at the second state, we have:

[tex]v_{r2}=v_{r1}\times \frac{V_2}{V_1} \\\\v_{r2}=158.58\times 0.16\\\\v_{r2}=25.3728[/tex]

Note: At 25.3728, specific energy ([tex]u_2[/tex]) is 184.7 Btu/lb.

At a maximum temperature of 519.67 R, the relative volume and specific energy are:

[tex]v_{r3}=0.1828\\\\u_3 = 1098\;Btu/lb[/tex]

For the relative volume at state 4, we have:

[tex]v_{r4}=v_{r3}\times \frac{V_1}{V_3} \\\\v_{r4}=0.1828\times \frac{1}{0.16}\\\\v_{r4}=1.1425[/tex]

Note: At 1.1425, specific energy ([tex]u_4[/tex]) is 591.84 Btu/lb.

Now, we can calculate the net work per cycle by using this following formula:

[tex]W=Heat\;supplied -Heat\rejected\\\\W=m(u_3-u_2)-m(u_4-u_1)\\\\W=0.0019(1098-184.7)-0.0019(591.84-88.62)\\\\W=1.73527-0.956118[/tex]

W = 0.7792 Btu.

How to calculate the power developed.

In a four-cylinder, four-stroke internal combustion engine, power is given by this formula:

[tex]W=4N'W_{net}[/tex]

But;

[tex]N'=\frac{N}{2 \times 60} \\\\N'=\frac{2400}{120} \\\\N'=20\;cycle/sec[/tex]

Substituting the given parameters into the formula, we have;

[tex]W=4 \times 20 \times 0.7792[/tex]

W = 62.336 Btu/sec.

In horsepower:

W = 88.20 hp.

Read more on net work here: https://brainly.com/question/10119215

A 30-g bullet is fired with a horizontal velocity of 450 m/s and becomes embedded in block B which has a mass of 3 kg. After the impact, block B slides on a 30-kg carrier C until it impacts the end of the carrier.Knowing the impact between B and C is perfectly plastic determine (a) velocity of the bullet and B after the first impact, (b) the final velocity of the carrier
(Distance between C and B is 0.5 m)

Answers

Answer:

a.) 4.46 m/s

b.) 0.41 m/s

Explanation:

a) Given that the mass M of the bullet = 30g = 30/1000 = 0.03 kg

Velocity V = 450 m/s

From conservative of linear momentum,

Sum of momentum before impact = Sum of momentum after impact

0.03 × 450 = (0.03 + 3 ) × v₂

v₂ = 13.5/3.03 = 4.4554 m/s

Therefore the velocity of the bullet and B after the first impact = 4.46 m/s approximately

(b) To calculate the velocity of the carrier, you will consider the conservation of linear momentum again.

(m₁ + m₂)×v₂  = (m₁ + m₂ + m₃)×v₃

Where:

Mass of the carrier m₃ = 30 kg

Substitute all the parameters into the formula

3.03×4.4554 = (3.03 +30) × v₃

v₃ = 13.5 / 33.03 = 0.40872 m/s

Therefore the velocity of the carrier is 0.41 m/s approximately.

13- Convert the following numbers to the indicated bases. List all intermediate steps.
a- (36459080)10 to octal
b- (20960032010 to hexadecimal
c- (2423233303003040)s to base
25 36459080/8= 4557385 0/8 209600320/16=13100020 + 0/16 (2423233303003040)5 (36459080)10 =( 18 (209600320)10=( 1)16 (2423233303003040)5=( )125

Answers

Answer:

Following are the conversion to this question:

Explanation:

In point (a):

[tex]\to \frac{36459080}{8} = 4557385 + \ \ \ \ \ \ \ \ \ \frac{0}{8}\\\\\to \frac{4557385}{8} = 569673 + \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\\to \frac{569673}{8} = 71209+ \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\\to \frac{71209}{8}=8901+\ \ \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\\to \frac{8901}{8}=1112+ \ \ \ \ \ \ \ \ \ \ \ \ \frac{5}{8}\\\\\to \frac{1112}{8}=139+ \ \ \ \ \ \ \ \ \ \ \frac{0}{8}\\\\\to \frac{139}{8}=17+ \ \ \ \ \ \ \ \ \ \ \frac{3}{8}\\\\\to \frac{17}{8}=2+ \ \ \ \ \ \ \ \ \ \ \ \ \frac{1}{8}\\\\[/tex]

[tex]\to \frac{2}{8}=0+ \ \ \ \ \ \ \ \ \ \frac{2}{8}\\\\ \bold{(36459080)_{10}=(213051110)_8}[/tex]

In point (b):

[tex]\to \frac{20960032010}{16} = 13100020+ \ \ \ \ \ \ \ \ \ \frac{0}{16}\\\\\to \frac{13100020}{16} = 818751+ \ \ \ \ \ \ \ \ \ \frac{4}{16}\\\\\to \frac{818751}{16} = 51171+ \ \ \ \ \ \ \ \ \ \frac{15}{16}\\\\\to \frac{51171}{16}=3198+\ \ \ \ \ \ \ \ \ \ \ \frac{3}{16}\\\\\to \frac{3198}{16}=199+ \ \ \ \ \ \ \ \ \ \ \ \ \frac{14}{1}\\\\\to \frac{199}{16}=12+ \ \ \ \ \ \ \ \ \ \ \frac{7}{16}\\\\\to \frac{12}{16}=0+ \ \ \ \ \ \ \ \ \ \ \frac{12}{16}\\\\ \bold{(20960032010)_{10}=(C7E3F40)_{16}}[/tex]

In point (c):

[tex]\to (2423233303003040)_s=(88757078520)_{10}\\\\\to \frac{88757078520}{25}= 3550283140+ \ \ \ \ \ \ \ \ \ \frac{20}{25}\\\\ \to \frac{3550283140}{25}= 142011325+ \ \ \ \ \ \ \ \ \ \frac{15}{25}\\\\\to \frac{142011325}{25}= 5680453+ \ \ \ \ \ \ \ \ \ \frac{0}{25}\\\\\to \frac{5680453}{25}= 227218+ \ \ \ \ \ \ \ \ \ \frac{3}{25}\\\\\to \frac{227218}{25}= 9088+ \ \ \ \ \ \ \ \ \ \frac{18}{25}\\\\\to \frac{9088}{25}= 363+ \ \ \ \ \ \ \ \ \ \frac{13}{25}\\\\[/tex]

[tex]\to \frac{363}{25}= 14+ \ \ \ \ \ \ \ \ \ \frac{13}{25}\\\\\to \frac{14}{25}= 0+ \ \ \ \ \ \ \ \ \ \frac{14}{25}\\\\\bold{(2423233303003040)_s=(EDDI30FK)_{25}}[/tex]

Symbols of Base 25 are as follows:

[tex]0, 1, 2, 3,4,5,6,7,8,9,A,B,C,D,E,F,G,H,I,J,K,L,M,N, \ and \ O[/tex]

which of the following tells the computer wha to do
operating system
the ROM
the motherboard
the monitor

Answers

That’s a very hard question! But I believe it’s the operating system, hope I helped!

Question 44
What should you do if you encounter a fishing boat while out in your vessel?
A
Make a large wake nearby.
B
Avoid making a large wake.
с
Pass on the side with the fishing lines.
D
Pass by close to the anglers.
Submit Answer

Answers

Answer:

The answer is B. Avoid making a large wake.

Explanation:

When passing a fishing boat it is important to maintain a minimal wake due to the dangers a large wake could pose to the fishing boat you are passing, it is part of maintaining safety on the water.

You can not pass on the sides with the fishing lines also, and you are supposed to communicate to the fishing boat before taking the appropriate action.

Air enters a compressor operating at steady state at 176.4 lbf/in.^2, 260°F with a volumetric flow rate of 424 ft^3/min and exits at 15.4 lbf/in.^2, 80°F. Heat transfer occurs at a rate of 6800 Btu/h from the compressor to its surroundings. Assuming the ideal gas model for air and neglecting kinetic and potential energy effects, determine the power input, in hp

Answers

Answer:

[tex]W_s =[/tex] 283.181 hp

Explanation:

Given that:

Air enters a compressor operating at steady state at a pressure [tex]P_1[/tex] =  176.4 lbf/in.^2  and Temperature [tex]T_1[/tex] at 260°F

Volumetric flow rate V = 424 ft^3/min

Air exits at a pressure [tex]P_2[/tex]  = 15.4 lbf/in.^2 and Temperature [tex]T_2[/tex] at 80°F.

Heat transfer occurs at a rate of 6800 Btu/h from the compressor to its surroundings; since heat is released to the surrounding; then:

[tex]Q_{cv}[/tex] = -6800 Btu/h  = - 1.9924 kW

Using the steady  state  energy in the process;

[tex]h_2 - h_1 + g(z_2-z_1)+ \dfrac{1}{2}(v^2_2-v_1^2) = \dfrac{Q_{cv}}{m}- \dfrac{W_s}{m}[/tex]

where;

[tex]g(z_2-z_1) =0[/tex]  and  [tex]\dfrac{1}{2}(v^2_2-v_1^2) = 0[/tex]

Then; we have :

[tex]h_2 - h_1 = \dfrac{Q_{cv}}{m}- \dfrac{W_s}{m}[/tex]

[tex]h_2 - h_1 = \dfrac{Q_{cv} - W_s}{m}[/tex]

[tex]{m}(h_2 - h_1) ={Q_{cv} - W_s}[/tex]

[tex]W_s ={Q_{cv} + {m}(h_2 - h_1)[/tex] ----- (1)

Using the relation of Ideal gas equation;

P₁V₁ = mRT₁

Pressure [tex]P_1[/tex] =  176.4 lbf/in.^2   = ( 176.4 ×  6894.76 ) N/m² = 1216235.664 N/m²

Volumetric flow rate V = 424 ft^3/min = (424 ×  0.0004719) m³  /sec

= 0.2000856 m³  /sec

Temperature = 260°F = (260°F − 32) × 5/9 + 273.15 = 399.817 K

Gas constant R=287 J/kg K

Then;

1216235.664 N/m² × 0.2000856 m³  /sec = m × 287 J/kg K × 399.817 K

[tex]m = \dfrac { 1216235.664 N/m^2 \times 0.2000856 m^3 /sec } {287 J/kg K \times 399.817 K }[/tex]

m = 2.121 kg/sec

The change in enthalpy:

[tex]m(h_1-h_2) = m * C_p * \Delta T= m* C_p * ( T_1 -T_2)[/tex]

[tex]= 2.121* 1.005* ( 399.817 -299.817)[/tex]

= 213.1605 kW

From (1)

[tex]W_s ={Q_{cv} + {m}(h_2 - h_1)[/tex]

[tex]W_s =[/tex]  - 1.9924 kW + 213.1605 kW

[tex]W_s =[/tex] 211.1681  kW

[tex]W_s =[/tex] 283.181 hp

The power input is [tex]W_s =[/tex] 283.181 hp

Many HVACR industry publications are published by

Answers

Answer:

HVACR Industry Trade Groups

Explanation:

A ball bearing has been selected with the bore size specified in the catalog as 35.000 mm to 35.020 mm. Specify appropriate minimum and maximum shaft diameters to provide a locational interference fit.

Answers

Answer:

A ball bearing has been selected with the bore size specified in the catalog as 35.000 mm to 35.020 mm. Specify.... ... has been selected with the bore size specified in the catalog as 35.000 mm to 35.020 mm. Specify appropriate minimum and maximum shaft diameters to provide a locational interference fit.

Explanation:

A cylindrical tank is required to contain a gage pressure 560 kPa . The tank is to be made of A516 grade 60 steel with a maximum allowable normal stress of 150 MPa . If the inner diameter of the tank is 3 m , what is the minimum thickness, t, of the wall

Answers

Answer:

5.6 mm

Explanation:

Given that:

A cylindrical tank is required to contain a:

Gage Pressure P = 560 kPa

Allowable normal stress [tex]\sigma[/tex] = 150 MPa = 150000 Kpa.

The inner diameter of the tank = 3 m

In a closed cylinder  there exist both the circumferential stress and the longitudinal stress.

Circumferential stress [tex]\sigma = \dfrac{pd}{2t}[/tex]

Making thickness t the subject; we have

[tex]t = \dfrac{pd}{2* \sigma}[/tex]

[tex]t = \dfrac{560000*3}{2*150000000}[/tex]

t = 0.0056 m

t = 5.6 mm

For longitudinal stress.

[tex]\sigma = \dfrac{pd}{4t}[/tex]

[tex]t= \dfrac{pd}{4*\sigma }[/tex]

[tex]t = \dfrac{560000*3}{4*150000000}[/tex]

t = 0.0028  mm

t = 2.8 mm

From the above circumferential stress and longitudinal stress; the stress with the higher value will be considered ; which is circumferential stress and it's minimum value  with the maximum thickness = 5.6 mm

At steady state, a refrigerator whose coefficient of performance is 3 removes energy by heat transfer from a freezer compartment at 0 degrees C at the rate of 6000 kJ/hr and discharges energy by heat transfer to the surroundings, which are at 20 degrees C. a) Determine the power input to the refrigerator and compare with the power input required by a reversible refrigeration cycle operating between reservoirs at these two temperatures. b) If electricity costs 8 cents per kW-hr, determine the actual and minimum theoretical operating costs, each in $/day

Answers

Answer:

(A)0.122 kW (B) Actual cost = 1.056 $/day, Theoretical cost =  0.234 $/day

Explanation:

Solution

Given that:

The coefficient of performance is =3

Heat transfer = 6000kJ/hr

Temperature = 20°C

Cost of electricity = 8 cents per kW-hr

Now

The next step is to find the power input to the refrigerator and compare with the power input considered by a reversed refrigeration cycle operating between reservoirs at the two temperatures.

Thus

(A)The coefficient of performance is given below:

COP = Heat transfer from freezer/Power input

3 =6000/P

P =6000/3

P= 2000

P =  2000 kJ/hr = 2000/(60*60) kW

= 2000 (3600)kW

= 0.55 kW

Thus

The ideal coefficient of performance = T_low/(T_high - T_low)

= (0+273)/(20-0)

= 13.65

So,

P ideal = 6000/13.65 = 439.6 kJ/hr

= 439.6/(60*60) kW

= 0.122 kW

(B)For the actual cost we have the following:

Actual cost = 0.55 kW* 0.08 $/kW-hr = $ 0.044 per hour

= 0.044*24 $/day

= 1.056 $/day

For the theoretical cost we have the following:

Theoretical cost = 0.122 kW* 0.08 $/kW-hr = $ 0.00976 per hour

= 0.00976*24 $/day

= 0.234 $/day

In the fully developed region of flow in a circular pipe, does the velocity profile change in the flow direction?

Answers

Answer:

No, the velocity profile does not change in the flow direction.

Explanation:

In a fluid flow in a circular pipe, the boundary layer thickness increases in the direction of flow, until it reaches the center of the pipe, and fill the whole pipe. If the density, and other properties of the fluid does not change either by heating or cooling of the pipe, then the velocity profile downstream becomes fully developed, and constant, and does not change in the direction of flow.

How old are you? answer this question plz lol I will mark someone as brainliest

Answers

Answer:

100000000000000000000000

i am nine hundred years old

A gold vault has 3 locks with a key for each lock. Key A is owned by the

manager whilst Key B and C are in the custody of the senior bank teller

and the trainee bank teller respectively. In order to open the vault door at

least two people must insert their keys into the assigned locks at the same

time. The trainee bank teller can only open the vault when the bank

manager is present in the opening.

i) Determine the truth table for such a digital locking system (4 marks)

ii) Derive and minimize the SOP expression for the digital locking system

Answers

Answer:

i) Truth Table:

A      |     B     |     C     |     O

0      |     0     |     0     |      0

0      |     0     |     1      |      0

0      |     1      |     0     |      0

0      |     1      |     1      |      0    (condition 2 not satisfied)

1       |     0     |     0     |      0

1       |     0     |     1      |      1    (both conditions satisfied)

1       |     1      |     0     |      1    (both conditions satisfied)

1       |     1      |     1      |      1    (both conditions satisfied)

ii) The minimized sum of products (SOP) expression is

O = AC + AB

Explanation:

We have three inputs A, B and C

Let O is the output.

We are given two conditions to open the vault door:

1. At  least two people must insert their keys into the assigned locks at the same  time.

2. The trainee bank teller (C) can only open the vault when the bank  manager (A) is present in the opening.

i) Construct the Truth Table

A      |     B     |     C     |     O

0      |     0     |     0     |      0

0      |     0     |     1      |      0

0      |     1      |     0     |      0

0      |     1      |     1      |      0    (condition 2 not satisfied)

1       |     0     |     0     |      0

1       |     0     |     1      |      1    (both conditions satisfied)

1       |     1      |     0     |      1    (both conditions satisfied)

1       |     1      |     1      |      1    (both conditions satisfied)

ii) SOP Expression using Karnaugh-Map:

A 3 variable Karnaugh-map is attached.

The minimized sum of products (SOP) expression is

O = AC + AB

The orange pair corresponds to "AC" and the purple pair corresponds to "AB"

Bonus:

The above expression may be realized by using two AND gates and one OR gate.  

Please refer to the attached logic circuit diagram.

For the following peak or rms values of some important sine waves, calculate the corresponding other value:
(a) 117 V rms, a household-power voltage in North America
(b) 33.9 V peak, a somewhat common peak voltage in rectifier circuits
(c) 220 V rms, a household-power voltage in parts of Europe
(d) 220 kV rms, a high-voltage transmission-line voltage in North America

Answers

Answer:

A) V_peak ≈ 165 V

B) V_rms ≈ 24 V

C) V_peak ≈ 311 V

D) V_peak ≈ 311 KV

Explanation:

Formula for RMS value is given as;

V_rms = V_peak/√2

Formula for peak value is given as;

V_peak = V_rms x √2

A) At RMS value of 117 V, peak value would be;

V_peak = 117 x √2

V_peak = 165.46 V

V_peak ≈ 165 V

B) At peak value of 33.9 V, RMS value would be;

V_rms = 33.9/√2

V_rms = 23.97 V

V_rms ≈ 24 V

C) At RMS value of 220 V, peak value is;

V_peak = 220 × √2

V_peak = 311.13 V

V_peak ≈ 311 V

D) At RMS value of 220 KV, peak value is;

V_peak = 220 × √2

V_peak = 311.13 KV

V_peak ≈ 311 KV

Air at 80 °F is to flow through a 72 ft diameter pipe at an average velocity of 34 ft/s . What diameter pipe should be used to move water at 60 °F and average velocity of 71 ft/s if Reynolds number similarity is enforced? The kinematic viscosity of air at 80 °F is 1.69E-4 ft^2/s and the kinematic viscosity of water at 60 °F is 1.21E-5 ft^2/s. Round your answer (in ft) to TWO decimal places.

Answers

Answer:

2.47  ft

Explanation:

Given that:

The initial temperature of air = 80°F

Diameter of the pipe = 72 ft

average velocity [tex]v_{air}[/tex] of the air flow through the pipe =  34 ft/s

The objective is to determine the diameter of the  pipe to  be used to move water at:

At a temperature = 60°F   &

An average velocity [tex]v_{water}[/tex] of 71 ft/s

Assuming Reynolds number similarity is enforced;

where :

kinematic viscosity (V_air) of air at 80 °F  (V_air)  = 1.69 × 10⁻⁴ ft²/s

kinematic viscosity of water  at 60 °F (V_water) = 1.21 × 10⁻⁵ ft²/s

The diameter of the pipe can be calculated by using the expression:

[tex]D_{water} = \dfrac{V_{water}}{V_{air}}*\dfrac{v_{air}}{v_{water}}* D_{air}[/tex]

[tex]D_{water} = \dfrac{1.21*10^{-5} \ ft^2/s}{1.69*10^{-4} \ ft^2/s}*\dfrac{34 \ ft/s}{71 \ ft/s}* 72 \ ft[/tex]

[tex]D_{water} =[/tex] 2.4686  ft

[tex]D_{water} =[/tex] 2.47 ft   ( to two decimal places)

Thus; diameter pipe to be use to move water at the given temperature and average velocity is 2.47 ft

Answer:

2.47  ft

Explanation:

Given that:

The initial temperature of air = 80°F

Diameter of the pipe = 72 ft

average velocity  of the air flow through the pipe =  34 ft/s

The objective is to determine the diameter of the  pipe to  be used to move water at:

At a temperature = 60°F   &

An average velocity  of 71 ft/s

Assuming Reynolds number similarity is enforced;

where :

kinematic viscosity (V_air) of air at 80 °F  (V_air)  = 1.69 × 10⁻⁴ ft²/s

kinematic viscosity of water  at 60 °F (V_water) = 1.21 × 10⁻⁵ ft²/s

The diameter of the pipe can be calculated by using the expression:

2.4686  ft

2.47 ft   ( to two decimal places)

Thus; diameter pipe to be use to move water at the given temperature and average velocity is 2.47 ft

Other Questions
According to Professor Sandel, if judgments about the good are unavoidable in debates about justice and rights, is it possible to reason about the good? Which expression shows the simplified form of (8 r Superscript negative 5 Baseline) Superscript negative 3? 8 r Superscript 15 StartFraction 8 Over r Superscript 15 Baseline EndFraction 512 r Superscript 15 StartFraction r Superscript 15 Baseline Over 512 EndFraction What is true about the risk and return of an investment? !PLEASE HURRY! Lower-risk investments offer the potential for a higher return. The best way to determine the total risk of an investment is to review the return it offers. Time is the most important consideration, so the investment risk has little impact on the return. Higher-risk investments offer the potential for a higher return. Meade Nuptial Bakery makes very elaborate wedding cakes to order. The company has an activity-based costing system with three activity cost pools. The activity rate for the Size-Related activity cost pool is $1.22 per guest. (The greater the number of guests, the larger the cake.) The activity rate for the Complexity-Related cost pool is $36.21 per tier. (Cakes with more tiers are more complex.) Finally, the activity rate for the Order-Related activity cost pool is $83.33 per order. (Each wedding involves one order for a cake.) The activity rates include the costs of raw ingredients such as flour, sugar, eggs, and shortening. The activity rates do not include the costs of purchased decorations such as miniature statues and wedding bells, which are accounted for separately. Data concerning two recent orders appear below: Ericson Wedding Haupt Wedding Number of reception guests 72 191 Number of tiers on the cake 6 4 Cost of purchased decorations for cake $ 21.45 $ 77.65 Assuming that all of the costs listed above are avoidable costs in the event that an order is turned down, what amount would the company have to charge for the Ericson wedding cake to just break even Pls help ASAP! Given a polynomial f(x), if (x 1) is a factor, what else must be true? f(0)= 1 f(1)=0 f(-1)=0 f(0)=-1 in triangle ABC shown below, Segment DE is parallel to Segment AC: Return to the dictionary entry for paean and check the pronunciation guide. Which word rhymes with it? Sean los ngulos a y B, donde la suma de la mitad de a mas la tercera parte de B es igual a 15. calcula el doble del cociente del seno de 3a y el coseno de 2B. Urgente pls a es alpha y B es beta por si acaso How is the graph of y = 2 (3)^x+1 -4 translated from the graph of y = 2(3)^x Use the following data set to find the sample statistics for the following data set. 1. (N) or (n) 2. (x-bar) or () 3. () or (s) Thanks! On which number line do the points represent negative seven and one over two and +1? Number line from negative 10 to positive 10 in increments of 1 is shown. Only the whole numbers are labeled. A point labeled R is placed in between the 7th and 8th tick marks to the left of 0. A point labeled T is placed in between the 6th and 7th tick marks to the left of 0. Number line from negative 10 to positive 10 in increments of 1 is shown. Only the whole numbers are labeled. A point labeled R is placed in between the 7th and 8th tick marks to the left of 0. A point labeled T is placed on the 1st tick mark to the right of 0 Number line from negative 10 to positive 10 in increments of 1 is shown. Only the whole numbers are labeled. A point labeled R is placed on the 1st tick mark to the left of 0. A point labeled T is placed in between the 7th and 8th tick marks to the right of 0. Number line from negative 10 to positive 10 in increments of 1 is shown. Only the whole numbers are labeled. A point labeled R is placed is placed on the 1st tick mark to the left of 0. A point labeled T is placed between the 6th and 7th tick marks to the right of 0. Which set of ordered pairs below is a function? I.{(3,3),(6,1),(2,3)} .................. II.{(4,7),(2,8),(4,2)} .............. III.{(9,6),(3,1),(7,3)} (((((((A I only )))))))) ((((( B II only ))))))) ((((((( C III only)))))) (((D I and III)))) The cross sectional area of a square shaped tunnel is 25m, the volume of the tunnel is 575m. How long is the tunnel? which one of the following is a type of face found on a platonic solid. A,regular hexagon, B. regular octagon, C.regular nonagon, D. regular pentagonPLEASE NEED OF AN ANSWER In a closed economy, the values for gdp, consumption spending, investment spending, transfer payments, and taxes are as follows: y = $11 trillion c = $8 trillion i = $2 trillion tr = $1 trillion t = $2 trillion using the information above, what is the value of private saving and public saving? A piston cylinder device contains 5 kg of Refrigerant 134a at 600 kPa and 80 C. The refrigerant is now cooled at constant pressure until it reaches a liquid-vapor mixture state with a quality of 0.3. How much heat was extracted in the process? Graph the inequality y > |x + 1| 1. Which point is NOT part of the solution? (1, 2) (1, 1) (1, 0) (1, 3) how will organic farming reduce food waste Risk and Return. Suppose that the risk premium on stocks and other securities did, in fact, rise with total risk (i.e., the variability of returns) rather than just market risk. Explain how investors could exploit the situation to create portfolios with high expected rates of return but low levels of risk. (LO12-2) The three major processes in the water cycle are salinity, evaporation, and precipitation.