Sure. Here are the main advantages and disadvantages of SSB modulation compared to AM:
Advantages
SSB requires less power than AM, which can lead to longer battery life in portable radios.SSB occupies a narrower bandwidth than AM, which can allow more stations to be transmitted on the same frequency band.SSB is less susceptible to interference from other signals than AM.Disadvantages
SSB is more difficult to transmit and receive than AM.SSB requires a higher-quality audio signal than AM.SSB does not transmit the carrier signal, which can make it difficult to distinguish between stations that are transmitting on the same frequency.Strict stationary random process
A strict stationary random process is a random process whose statistical properties are invariant with time. This means that the probability distribution of the process does not change over time.
Generalized random process
A generalized random process is a random process whose statistical properties are invariant with respect to a shift in time. This means that the probability distribution of the process is the same for any two time instants that are separated by a constant time interval.
Ergodic stationary random process
An ergodic stationary random process is a random process that is both strict stationary and ergodic. This means that the process has the same statistical properties when averaged over time as it does when averaged over space.
To decide whether a random process is ergodic or not, we can use the following test:
1. Take a sample of the process and average it over time.
2. Take another sample of the process and average it over space.
3. If the two averages are equal, then the process is ergodic. If the two averages are not equal, then the process is not ergodic.
Learn more about random processes and their properties here:
https://brainly.com/question/33315679
#SPJ11
AB-52 bomber is flying at 11,000 m. It has eight turbojet engines. For each, the outlet port diameter is 70% of the widest engine diameter, 990mm. The pressure ratio is 2 at the current state. The exhaust velocity is 750 m/s. If the L/D ratio is 11 and the weight is 125,000 kg, what total mass flow rate is required through the engines to maintain a velocity of 500mph? Answer in kg/s
The total mass flow rate required is determined by the equation: Total mass flow rate = Total thrust / exhaust velocity.
To calculate the total mass flow rate required through the engines to maintain a velocity of 500 mph, we need to consider the thrust generated by the engines and the drag experienced by the bomber.
First, let's calculate the thrust produced by each engine. The thrust generated by a turbojet engine can be determined using the following equation:
Thrust = (mass flow rate) × (exit velocity) + (exit pressure - ambient pressure) × (exit area)
We are given the following information:
Outlet port diameter = 70% of the widest engine diameter = 0.7 × 990 mm = 693 mm = 0.693 m
Pressure ratio = 2
Exhaust velocity = 750 m/s
The exit area of each engine can be calculated using the formula for the area of a circle:
Exit area = π × (exit diameter/2)^2
Exit area = π × (0.693/2)^2 = π × 0.17325^2
Now we can calculate the thrust generated by each engine:
Thrust = (mass flow rate) × (exit velocity) + (exit pressure - ambient pressure) × (exit area)
Since we have eight turbojet engines, the total thrust generated by all engines will be eight times the thrust of a single engine.
Next, let's calculate the drag force experienced by the bomber. The drag force can be determined using the drag equation:
Drag = (0.5) × (density of air) × (velocity^2) × (drag coefficient) × (reference area)
We are given the following information:
Velocity = 500 mph
L/D ratio = 11
Weight = 125,000 kg
The reference area is the frontal area of the bomber, which we do not have. However, we can approximate it using the weight and the L/D ratio:
Reference area = (weight) / (L/D ratio)
Now we can calculate the drag force.
Finally, for the bomber to maintain a constant velocity, the thrust generated by the engines must be equal to the drag force experienced by the bomber. Therefore, the total thrust produced by the engines should be equal to the total drag force:
Total thrust = Total drag
By equating these two values, we can solve for the total mass flow rate required through the engines.
Total mass flow rate = Total thrust / (exit velocity)
This will give us the total mass flow rate required to maintain a velocity of 500 mph.
In summary, to find the total mass flow rate required through the engines to maintain a velocity of 500 mph, we need to calculate the thrust generated by each engine using the thrust equation and sum them up for all eight engines. We also need to calculate the drag force experienced by the bomber using the drag equation. Finally, we equate the total thrust to the total drag and solve for the total mass flow rate.
Learn more aboutMass Flow Rate
brainly.com/question/18724089
#SPJ11
Which of the followings is true? Given an RC circuit: resistor-capacitor C in series. The output voltage is measured across C, an input voltage supplies power to this circuit. For the transfer function of the RC circuit with respect to input voltage: O A. Its phase response is -90 degrees. O B. Its phase response is negative. O C. Its phase response is 90 degrees. O D. Its phase response is positive.
In an RC circuit with a resistor-capacitor in series and the output voltage measured across C while an input voltage supplies power to this circuit, the phase response of the transfer function of the RC circuit with respect to input voltage is -90 degrees.
Hence, the correct answer is option A. A transfer function is a mathematical representation of a system that maps input signals to output signals.The transfer function of an RC circuit refers to the voltage across the capacitor with respect to the input voltage. The transfer function represents the system's response to the input signals.
The transfer function H(s) of the RC circuit with respect to input voltage V(s) is given by the equation where R is the resistance, C is the capacitance, and s is the Laplace operator. In the frequency domain, the transfer function H(jω) is obtained by substituting s = jω where j is the imaginary number and ω is the angular frequency.A phase response refers to the behavior of a system with respect to the input signal's phase angle. The phase response of the transfer function H(jω) for an RC circuit is given by the expression.
To know more about resistor-capacitor visit :
https://brainly.com/question/31080064
#SPJ11
Prove that a Schmitt oscillator trigger can work as a VCO.
Step 1:
A Schmitt oscillator trigger can work as a VCO (Voltage Controlled Oscillator).
Step 2:
A Schmitt oscillator trigger, also known as a Schmitt trigger, is a circuit that converts an input signal with varying voltage levels into a digital output with well-defined high and low voltage levels. It is commonly used for signal conditioning and noise filtering purposes. On the other hand, a Voltage Controlled Oscillator (VCO) is a circuit that generates an output signal with a frequency that is directly proportional to the input voltage applied to it.
By incorporating a voltage control mechanism into the Schmitt trigger circuit, it can be transformed into a VCO. This can be achieved by introducing a variable voltage input to the reference voltage level of the Schmitt trigger. As the input voltage changes, it will cause the switching thresholds of the Schmitt trigger to vary, resulting in a change in the output frequency.
The VCO functionality of the modified Schmitt trigger circuit allows it to generate a continuous output signal with a frequency that can be controlled by the applied voltage. This makes it suitable for various applications such as frequency modulation, clock generation, and signal synthesis.
Step 3:
Learn more about : frequency
Describe frequency, relative frequency, and cumulative relative frequency.
#SPJ11