Close command In multline command close multiple lines by linking the last parts to the first pieces. False O True O

Answers

Answer 1

Multiline commands are those that stretch beyond a single line. They can span over multiple lines. This is useful for code readability and is widely used in programming languages. The "Close Command" is used in Multiline commands to close multiple lines by linking the last parts to the first pieces.

The given statement is False. Multiline commands often include a closing command, that signifies the end of the multiline command. This is to make sure that the computer knows exactly when the command begins and ends. This is done for the sake of code readability as well. Multiline commands can contain variables, functions, and much more. They are an essential part of modern programming.

It is important to note that not all programming languages have Multiline commands, while others do, so it depends on which language you are programming in. In conclusion, the statement "Close command In multline command close multiple lines by linking the last parts to the first pieces" is False.

To know about programming visit:

https://brainly.com/question/14368396

#SPJ11


Related Questions

Design a connecting rod for a sewing machine so that it can be produced by sheet metal working, given that the diameter of each of the two holes is 0.5 inches (12.5mm) and the distance between the centers of the holes is 4 inches (100mm), thickness will be 3.5mm.

Answers

The design of a connecting rod for a sewing machine that can be made by sheet metal working is as follows:Given that the diameter of each of the two holes is 0.5 inches (12.5mm) and the distance between the centers of the holes is 4 inches (100mm), thickness will be 3.5mm. The following is a design that fulfills the requirements:

Connecting rods are usually made using forging or casting processes, but in this case, it is desired to make it using sheet metal working, which is a different process. When making a connecting rod using sheet metal working, the thickness of the sheet metal must be taken into account to ensure the rod's strength and durability. In this case, the thickness chosen was 3.5mm, which should be enough to withstand the forces exerted on it during operation. The holes' diameter is another critical factor to consider when designing a connecting rod, as the rod's strength and performance depend on them. The diameter of the holes in this design is 0.5 inches (12.5mm), which is appropriate for a sewing machine's requirements.

Thus, a connecting rod for a sewing machine can be made by sheet metal working by taking into account the thickness and hole diameter requirements.

To know more about sewing machine visit:
https://brainly.com/question/30433341
#SPJ11

Consider the interval (measured depth) from 10,850 to 10,860 on the Bonanza #1 wireline logs (at the end of the sheet). a) Read and record the porosity from the neutron log (dashed curve). b) Calculate the porosity from the sonic travel time, assuming that the matrix is sandstone and that the pore space is saturated with water. Compare and discuss relevant differences with the neutron porosity value from part a above. Assume travel time for water is 189.0 µs/ft.
c) Calculate the porosity from the density log (solid curve), assuming the matrix is sandstone and the pore space is saturated with water. d) Calculate the porosity from the density log assuming that the matrix is sandstone and the pore space is half filled with water (density of 1.1 g/cm³), and half filled with gas (density of 0.25 g/cm³). Discuss differences from the density porosity calculated from part c above.
e) Which of these logs (parts a-c) can be used to determine total porosity, and which can be used to determine effective porosity?

Answers

a) porosity = 31.5%.  b) Sonic travel time porosity = 67%. c)  porosity = 19%. d)  porosity calculated from the density log  = 41%.  e)  The neutron log can be used to determine total porosity.

a) The porosity from the neutron log is 31.5%.

b) Let us first define the formula for the calculation of porosity:

Porosity, Φ = (Tma - Tlog) / Tma

Where,

Tma is the travel time through the matrix

Tlog is the travel time through the formation

Here, travel time for water is 189.0 µs/ft.

The sonic log shows the reading of 62 µs/ft.

Hence, the travel time through the formation is given by;

Tlog = 62 µs/ft * 10 ft

= 620 µs

Similarly, the matrix travel time is calculated using the equation,

Tma = 189.0 µs/ft * 10 ft

= 1890 µs

Therefore,

Φ = (1890 - 620) / 1890

= 0.67 or 67%

The porosity calculated from the sonic log is much higher than that calculated from the neutron log.

c) The porosity from the density log is given by the formula;

Porosity, Φ = (ρma - ρb) / (ρma - ρf)

Where,ρma is the bulk density of the matrixρb is the bulk density of the rock formationρf is the density of the fluid

Here, matrix is sandstone and the pore space is saturated with water.

Therefore,

ρma = 2.65 g/cm³

ρf = 1.0 g/cm³

ρb = 2.3 g/cm³

Hence,

Φ = (2.65 - 2.3) / (2.65 - 1)

= 19%

d) The porosity calculated from the density log assuming that the matrix is sandstone and the pore space is half filled with water (density of 1.1 g/cm³), and half filled with gas (density of 0.25 g/cm³) is given by;

Φ = [(0.5 x (2.65 - 2.3)) + (0.5 x (2.65 - 0.25))] / (2.65 - 1)

Φ = 41%

The difference between the porosity calculated from the density logs is due to the presence of gas in the pore space. The density log cannot differentiate between gas and liquid, so it calculates the porosity based on the average density of the fluids.

e) The neutron log can be used to determine total porosity while the density and sonic logs can be used to determine effective porosity.

Know more about the porosity

https://brainly.com/question/32675003

#SPJ11

Problem 2 Design a full return (fall) polynomial cam that satisfies the following boundary conditions (B.C): At 0=0°, y= h, y'= 0,4" = 0 = At 0= 5, y = 0, y = 0,4" = 0

Answers

A full return polynomial cam that satisfies the given boundary conditions can be designed by utilizing a suitable polynomial equation. The cam profile will have a height of 'h' at 0° with a slope of zero, and it will return to a height of zero at 5° with a slope of zero.

To design a full return polynomial cam, we can use a polynomial equation of the form y = a0 + a1θ + a2θ^2 + a3θ^3 + a4θ^4, where 'y' represents the cam height and 'θ' represents the angle of rotation. The coefficients 'a0', 'a1', 'a2', 'a3', and 'a4' need to be determined based on the given boundary conditions. At 0°, the cam height is 'h' and the slope is zero, which means y = h and y' = 0. Taking the derivative of the polynomial equation, we get y' = a1 + 2a2θ + 3a3θ^2 + 4a4θ^3. Setting θ = 0, we have a1 = 0. Since the slope should be zero, we can set a2 = 0 as well. At 5°, the cam height is zero and the slope is zero. Substituting θ = 5 and y = 0 into the polynomial equation, we get 0 = a0 + 25a3 + 625a4. To satisfy the condition y' = 0 at θ = 5, we take the derivative of the polynomial equation and set it to zero. This leads to a3 = -16a4. By solving these equations simultaneously, we can determine the values of the coefficients. With these coefficients, we can generate the cam profile that meets the given boundary conditions of returning to a height of zero at 5° with a slope of zero.

Learn more about polynomial equation here:

https://brainly.com/question/28947270

#SPJ11

Define the following terms in the synchronous machine (8 points): a. Load (power) angle b. Phase angle c. static stability limits d. capability curve

Answers

Here's what these terms mean and why they're so important: Load (Power) Angle: When the synchronous generator is connected to the infinite bus, the angle between the stator's voltage and the rotor's magnetic field is referred to as the load or power angle. option a

Load angle, phase angle, static stability limits, and capability curve are all significant parameters in the synchronous machine.

The power angle is affected by the mechanical torque of the machine and the electrical power being generated by the machine.

Phase Angle: The angle between two sinusoidal quantities that are of the same frequency and are separated by a given time difference is known as the phase angle.

The phase angle represents the relative position of the voltage and current waveforms on a graph.

Static Stability Limits: Static stability is determined by the synchronous generator's capacity to withstand transient power swings.

If the torque exceeds the generated power, the rotor angle increases.

The generator's rotor could be separated from the rotating magnetic field if the angle exceeds a certain limit.

This is referred to as a loss of synchronism or a blackout.

Capability Curve:

graph that demonstrates the power that a generator can produce without becoming unstable or damaging the generator is referred to as the capability curve.

It is a representation of the maximum electrical power that the machine can generate while remaining synchronized with the power grid.

the significance of the terms load angle, phase angle, static stability limits, and capability curve in the synchronous machine.

to know more about synchronous machine visit:

https://brainly.com/question/31977062

#SPJ11

How important to evaluate the lateral earth pressure?

Answers

Lateral earth pressure evaluation is important because it ensures safety and stability in geotechnical engineering.

What is lateral earth pressure?

Lateral earth pressure is the force exerted by soil on an object that impedes its movement.

The force is created as a result of the soil's resistance to being deformed laterally and is proportional to the soil's shear strength.

It's crucial to assess the lateral earth pressure in various geotechnical engineering contexts because it affects the stability of a structure's foundation.

What are the benefits of evaluating lateral earth pressure?

Here are some of the benefits of evaluating lateral earth pressure:

Safety and stabilityThe safety and stability of a structure's foundation are important factors to consider when evaluating lateral earth pressure.

Failure to assess lateral earth pressure can result in a foundation collapse that can cause significant damage to a structure and put people's lives in danger.

Cost-effectiveIt's important to evaluate lateral earth pressure because it can help save money by avoiding overdesign or under-design of a foundation. Proper evaluation of lateral earth pressure ensures that a foundation's design matches the project's requirements.

Precise foundation designA precise foundation design is one of the benefits of evaluating lateral earth pressure. Proper foundation design is crucial because it can prevent foundation failure that can lead to significant financial losses.

It's also essential to consider the lateral earth pressure when designing the foundation of tall structures to avoid lateral instability.

So, lateral earth pressure evaluation is important in ensuring safety, cost-effectiveness, and stability in geotechnical engineering.

To know more about foundation visit:

https://brainly.com/question/30790030

#SPJ11

A trapezoidal channel of bed width 10.0 m, side slope 3:2, longitudinal bed slope 10 cm/km, mean velocity 0.594 m/s, and Manning's coefficient 0.025. Determine: a) The average boundary shear stress acting on the channel wetted perimeter. b) The maximum boundary shear stress on the bed and sides. c) If the mean diameter of the material forming the channel bed and sides is 0.4 mm and the angle of repose is 35º, what is the maximum discharge that can pass in this channel without causing scour?

Answers

Bed width = 10.0 m Side slope = 3:2Longitudinal bed slope = 10 cm/km Mean velocity = 0.594 m/s Manning's coefficient = 0.025The formula for average boundary shear stress is:τb = (γ × R × S) / nwhere,γ = unit weight of waterR = hydraulic radius S = longitudinal bed slope n = Manning's coefficienta) The calculation of average boundary shear stress:

We can find the hydraulic radius using the given data. It is given by:R = (A / P)Where A is the cross-sectional area of the flow and P is the wetted perimeter of the channel. Here, the channel is trapezoidal. Therefore, A can be calculated using the formula:A = (b1 + b2) / 2 × ywhere b1 and b2 are the bottom widths of the trapezoidal channel and y is the depth of flow. P can be calculated using the formula:P = b1 + b2 + 2 × (y / sinθ)where θ is the angle between the horizontal and the side slope. Using the given data, we have:b1 = 10.0 mb2 = 3/2 × 10.0 = 15.0 my/s = 0.594 m/sn = 0.025S = 10 cm/kmγ = 9.81 kN/m³Now, we can use the values to calculate R as follows:Depth of flow:y = (4 / 3) × (b1 + b2) / (2 + 3) = 6.86 mCross-sectional area:A = (10.0 + 15.0) / 2 × 6.86 = 96.78 m²Wetted perimeter:P = 10.0 + 15.0 + 2 × (6.86 / sin(53.13º)) = 41.22 m Hydraulic radius:R = 96.78 / 41.22 = 2.345 mNow, we can calculate the average boundary shear stress.τb = (γ × R × S) / nτb = (9.81 × 2.345 × 0.1) / 0.025τb = 93.99 N/m²Therefore, the average boundary shear stress is 93.99 N/m².b) The calculation of the maximum boundary shear stress:We can use the following formula to calculate the maximum boundary shear stress:τmax = τb × Kcwhere Kc is the coefficient of contraction and its value is usually between 0.2 and 0.6.

To know more about hydraulic visit:-

https://brainly.com/question/33103882

#SPJ11

The below code is used to produce a PWM signal on GPIO 16 and display its frequency as well as signal ON time on the LCD. The code ran without any syntax errors yet the operation was not correct due to two code errors. Modify the below code by correcting those two errors to perform the correct operation (edit lines, add lines, remove lines, reorder lines.....etc): import RPI.GPIO as GPIO import LCD1602 as LCD import time GPIO.setmode(GPIO.BCM) GPIO.setup(16,GPIO.OUT) Sig=GPIO.PWM(16,10) LCD.write(0, 0, "Freq=10Hz") LCD.write(0, 1, "On-time=0.02s") time.sleep(10)

Answers

The corrected code is as follows:

import RPi.GPIO as GPIO

import LCD1602 as LCD

import time

GPIO.setmode(GPIO.BCM)

GPIO.setup(16, GPIO.OUT)

Sig = GPIO.PWM(16, 10)

Sig.start(50)

LCD.init_lcd()

LCD.write(0, 0, "Freq=10Hz")

LCD.write(0, 1, "On-time=0.02s")

time.sleep(10)

GPIO.cleanup()

LCD.clear_lcd()

The error in the original code was that the GPIO PWM signal was not started using the `Sig.start(50)` method. This method starts the PWM signal with a duty cycle of 50%. Additionally, the LCD initialization method `LCD.init_lcd()` was missing from the original code, which is necessary to initialize the LCD display.

By correcting these errors, the PWM signal on GPIO 16 will start with a frequency of 10Hz and a duty cycle of 50%. The LCD will display the frequency and the ON-time, and the program will wait for 10 seconds before cleaning up the GPIO settings and clearing the LCD display.

The corrected code ensures that the PWM signal is properly started with the desired frequency and duty cycle. The LCD display is also initialized, and the correct frequency and ON-time values are shown. By rectifying these errors, the code will perform the intended operation correctly.

To know more about GPIO, visit:-

https://brainly.com/question/29240962

#SPJ11

Which gate has its output equal 0 if and only if both inputs are 0 Select one: a. \( \mathrm{OR} \) b. AND c. NOT d. NAND

Answers

d. NAND gates have their output equal to 0 if and only if both inputs are 0; for all other input combinations, the output is 1.

The NAND gate, short for "NOT-AND," is a logic gate that performs the combination of an AND gate followed by a NOT gate. It has two inputs and one output. The output of a NAND gate is the logical negation of the AND operation performed on its inputs.

In the case of the NAND gate, if both inputs are 0 (logic low), the AND operation results in 0. Since the NAND gate also performs a logical negation, the output becomes 1 (logic high). However, for any other combination of inputs (either one or both inputs being 1), the AND operation results in 1, and the NAND gate's logical negation flips the output to 0.

The NAND gate has an output equal to 0 only when both of its inputs are 1. In all other cases, when at least one input is 0 or both inputs are 0, the NAND gate produces an output of 1. Therefore, the NAND gate has its output equal to 0 if and only if both inputs are 0.

To know more about NAND gates visit:

https://brainly.com/question/29437650

#SPJ11

The G Command in Moving From Point 7 to Point 8, the Tool Diameter is .375" . USE THE TOOL CENTER PROGRAMMING APPROACH
A) G01 X.8660 Y-3.1875
B) G01 X.500 Y-3.00
C) G01 X.8175 Y-3.00
D) G01 X.8157 Y-3.1875

Answers

Given that the tool diameter is 0.375". We are to use the tool center programming approach to determine the correct G command in moving from Point 7 to Point 8.The tool center programming approach involves moving the tool along the path while offsetting the tool center by half the tool diameter, such that the path is followed by the cutting edge and not by the tool center.

Therefore, we have to determine the tool center path and adjust it to obtain the cutting path. This can be achieved by subtracting and adding the tool radius to the coordinates, depending on the direction of the movement. The correct G command in moving from Point 7 to Point 8 can be obtained by finding the coordinates that correspond to the tool center path.

Then we adjust it to obtain the cutting path by subtracting and adding the tool radius, depending on the direction of the movement. We can use the following steps to determine the correct G command.    Step 1: Determine the tool center path coordinates. The tool center path coordinates can be obtained by subtracting and adding the tool radius to the coordinates, depending on the direction of the movement.

Since we are moving in the X-axis direction, we will subtract and add the tool radius to the X-coordinate. Therefore, the tool center path coordinates are: X = 0.8157 + 0.1875 = 1.0032 (for Point 8)X = 0.8660 + 0.1875 = 1.0535 (for Point 7)Y = -3.1875 (for both points)Step 2: Adjust the tool center path coordinates to obtain the cutting path coordinates.

To know more about offsetting visit:

https://brainly.com/question/31814372

#SPJ11

Fixture Inside Diameter = 49.29mm Air Inlet Area of Dryer = 61.65mm Elevation Difference Inlet/Outlet = 12.36mm Air exit temperature 35.15 °C Exit velocity = 4.9m/s Input Voltage = 240V Input Current=1.36A Average Temp. of Nozzle=25.5 °C Outside Diameter of Nozzle = 58.12mm Room Temperature = 23.5 °C Barometric Pressure = 101.325 Pa Length of Heated Surface = 208.70mm Density of exit air= 0.519 l/m^3 Mass flow rate=m= 0.157kg/s Change of enthalpy=317.14J This is A Simple Hairdryer Experiment to Demonstrate the First Law of Thermodynamics and the data provided are as seen above. Calculate the following A) Change of potential energy B) Change of kinetic energy C) Heat loss D) Electrical power output E) Total thermal power in F) Total thermal power out G) %error

Answers

The final answers for these values are: a) 0.00011 J, b) 0.596J, c) 1.828J, d) 326.56W, e) 150.72W, f) 148.89W, and g) 1.22%.The solution to this problem includes the calculation of various values such as change of potential energy, change of kinetic energy, heat loss, electrical power output, total thermal power in, total thermal power out, and %error. Below is the stepwise explanation for each value.



A) Change of potential energy= mgh= 0.157kg/s × 9.81m/s² × 0.01236m = 0.00011 J.

B) Change of kinetic energy= 1/2 × ρ × A × V₁² × (V₂² - V₁²) = 0.5 × 0.519 kg/m³ × 0.006406 m² × 0.076 × (4.9² - 0.076²) = 0.596 J.

C) Heat loss= m × cp × (t₁ - t₂) = 0.157 kg/s × 1.006 kJ/kg·K × (35.15 - 23.5) = 1.828 J.

D) Electrical power output= V × I = 240V × 1.36A = 326.56W.

E) Total thermal power in= m × cp × (t₂ - t_room) = 0.157 kg/s × 1.006 kJ/kg·K × (35.15 - 23.5) = 1.828 J.

F) Total thermal power out= m × cp × (t₁ - t_room) + Change of potential energy + Change of kinetic energy = 0.157 kg/s × 1.006 kJ/kg·K × (25.5 - 23.5) + 0.00011J + 0.596J = 148.89 W.

G) %error= ((Thermal power in - Thermal power out) / Thermal power in) × 100% = ((150.72W - 148.89W) / 150.72W) × 100% = 1.22%.

To learn more about kinetic energy

https://brainly.com/question/999862

#SPJ11

Safety management is critical and accident prevention is of utmost importance. a) Outline the areas covered by Occupational Health and Safety. b) What are the steps/approaches to safety management in a workplace? To combat against fraud or bribery. It is critical to exercise internal control program. Outline the requirements.

Answers

a) Areas covered by Occupational Health and SafetyThe areas covered by Occupational Health and Safety are as follows:Safety training and awareness.PPE (personal protective equipment) and its proper use.General safety procedures.

Emergency response and evacuation procedures.Workplace hazard identification and risk assessment.Workplace inspections, audits, and evaluations.

b) Steps/approaches to safety management in a workplaceThe following are the steps/approaches to safety management in a workplace:

Step 1: A Safety Management System should be established

Step 2: The Safety Management System should be documented.

Step 3: Management should demonstrate their commitment to the Safety Management System

Step 4: A competent person should be appointed to oversee safety management.

Step 5: Identify the hazards in the workplace.

Step 6: Assess the risks associated with those hazards.

Step 7: Control the risks.

Step 8: Review and revise the Safety Management System on a regular basis.

In summary, the Occupational Health and Safety Administration covers a broad range of areas that are critical to safety management in a workplace. To combat fraud or bribery, a company's internal control programme must be robust and address all risk areas.

In addition, having a safety management system in place will reduce accidents and promote a healthy workplace. Therefore, the effective implementation of Occupational Health and Safety as well as a safety management system is critical for organizations to have a safe and productive work environment.

To know more about safety management system :

brainly.com/question/29792493

#SPJ11

What is the frictional Hp acting on a collar loaded with 500 kg weight? The collar has an outside diameter of 100 mm amd an internal diameter of 40 mm. The collar rotates at 1000 rpm and the coefficient of friction between the collar and the pivot surface is 0.2.

Answers

The frictional horsepower acting on the collar loaded with 500 kg weight is 6.04 W.

Given:Load acting on the collar, W = 500 kg

Outside diameter of collar, D = 100 mmInternal diameter of collar,

d = 40 mm

Rotational speed of collar, N = 1000 rpm

Coefficient of friction, μ = 0.2

The formula for Frictional Horsepower is given as;

FH = (Load × Coefficient of friction × RPM × 2π) / 33,000

Also, the formula for Torque is given as;

T = (Load × r) / 2

where,

r = (D + d) / 4

= (100 + 40) / 4

= 35 mm

= 0.035 m

Calculation:

Frictional Horsepower,

FH = (Load × Coefficient of friction × RPM × 2π) / 33,000

FH = (500 × 0.2 × 1000 × 2π) / 33,000

FH = 6.04 W

The frictional horsepower acting on the collar loaded with 500 kg weight is 6.04 W.

To know more about frictional horsepower, visit:

https://brainly.com/question/32342025

#SPJ11

A rigid tank contains 6 kg of saturated vapor steam at 100°C. The steam is cooled to the ambient temperature of 25°C. Determine the entropy change of the steam, in kJ/K. Use steam tables.
The entropy change of the steam is ___kJ/K

Answers

Given data are:Mass of steam m = 6kgTemperature of steam T1 = 100 °CTemperature of surrounding T2 = 25°CWe need to find entropy change of steam ∆S

.From steam table, we have:At 100°C, saturation pressure P1 = 1.013 bar Specific enthalpy of saturated vapour h1 = 2676.5 kJ/kgSpecific entropy of saturated vapour s1 = 6.828 kJ/kg KAt 25°C, saturation pressure P2 = 0.031 bar Specific enthalpy of saturated vapour h2 = 2510.1 kJ/kgSpecific entropy of saturated vapour s2 = 8.785 kJ/kg KThe entropy change of the steam is -0.116 kJ/K

In order to find the entropy change of steam, we will use the entropy formula. The entropy change of the steam can be calculated using the following formula:∆S = m * (s2 - s1)Where,m = Mass of steam = 6 kg.s1 = Specific entropy of saturated vapour at temperature T1.s2 = Specific entropy of saturated vapour at temperature T2.s1 and s2 values are obtained from steam tables.At 100°C,s1 = 6.828 kJ/kg KAt 25°C,s2 = 8.785 kJ/kg KNow, substituting the values in the formula, we get∆S = 6 * (8.785 - 6.828) = -0.116 kJ/KSo, the entropy change of the steam is -0.116 kJ/K.

To know more about steam visit:

https://brainly.com/question/16260833

#SPJ11

The entropy change of the steam is  -40.902  kJ/K

How to determine the entropy change

Using the steam tables, we have that the specific entropy values are;

At 100°C, the specific entropy of saturated vapor steam is s₁= 7.212 kJ/(kg·K).

At 25°C, the specific entropy of saturated liquid water is s₂= 0.395 kJ/(kg·K).

The formula for entropy change (Δs) is given as;

Δs = s₂ - s₁

Substitute the values from the steam table, we get;

Δs = 0.395 - 7.212

subtract the values

Δs = -6.817 kJ/(kg·K)

To calculate the total entropy change, we have;

Entropy change = Δs × mass

= -6.817 kJ/(kg·K) × 6 kg

Multiply the values

= -40.902 kJ/K

Learn more about entropy at: https://brainly.com/question/6364271

#SPJ4

URGENT. ANSWER ALL PLEASE :) WILL GIVE THUMBS UP!
Question 13 6 pts A 0.04 m³ tank contains 13.7 kg of air at a temperature of 190 K. Using the van de Waal's equation, what is the pressure inside the tank? Express your answer in kPa. Question 15 6 pts The actual Rankine cycle has an 87.03% turbine isentropic efficiency and 80.65% pump isentropic efficiency. If in the ideal Rankine cycle, the heat input in the boiler = 900 kW, the turbine work output = 392 kW, and pump work input = 19 kW, what is the actual cycle thermal efficiency if the heat input in the boiler is the same for the actual cycle? Express your answer in percent. Question 14 6 pts 3.4 kg/s of carbon dioxide undergoes a steady flow process. At the inlet state, the reduced pressure is 2 and the reduced temperature is 1.3. At the exit state, the reduced pressure is 3 and the reduced temperature is 1.7. Using the generalized compressibility and correction charts, what is the rate of change of total enthalpy for this process? Use cp = 0.978 kJ/kg K. Express your answer in kW. Question 17 6 pts In a reheat cycle with one stage of reheat, the steam leaving the high-pressure turbine is reheated before it enters the low-pressure turbine. For the ideal cycle, the heat input in the boiler is 898 kW, the high-pressure turbine work output is 142 kW, the low-pressure turbine work output is 340 kW, and the input work to the pump is 15 kW. If the efficiency of the ideal reheat cycle is 36.5%, what is the heat transfer in the condenser? Express your answer in kW.

Answers

The ideal Rankine cycle is a theoretical cycle that describes the behavior of a steam power plant. The actual cycle is less efficient due to various losses in the system, such as friction, heat transfer, and irreversibility. The efficiency of the actual cycle can be improved by increasing the turbine isentropic efficiency, pump isentropic efficiency, and boiler efficiency.

Question 13A 0.04 m³ tank contains 13.7 kg of air at a temperature of 190 K. Using the van de Waal's equation, the pressure inside the tank can be calculated as follows:

Given data,Volume = 0.04 m³n = ?R = 8.31 J/K.molT = 190 Km = 13.7 kgMolar mass of air = 28.97 g/mol = 0.02897 kg/molVan der Waals equation isP = (nRT) / (V-nb) - a(n/V)²For air, a = 0.1385 Pa.m³/mol, and b = 0.0000385 m³/molWe need to calculate n = m / M = 13.7 kg / 0.02897 kg/mol = 473.06 mol.Now calculate pressure P = ?P = (nRT) / (V-nb) - a(n/V)²Putting the values we getP = ((473.06 mol) x (8.31 J/mol.K) x (190 K)) / ((0.04 m³)-(473.06 mol x 0.0000385 m³/mol)) - 0.1385 Pa.m³/mol x ((473.06 mol) / (0.04 m³))²= 19024 Pa, rounded to 19.0 kPaTherefore, the pressure inside the tank is 19.0 kPa.

ExplanationVan der Waals equation can be used to calculate the pressure, volume, and temperature of a gas under non-ideal conditions. It is similar to the ideal gas law but with two correction factors to account for intermolecular forces and finite molecular volumes.Question 15

The ideal Rankine cycle can be represented on a temperature-entropy diagram as follows:

Given data,Heat input in the boiler = 900 kWTurbine work output = 392 kWPump work input = 19 kWEfficiency of the actual cycle = 87.03%Efficiency of the pump = 80.65%Efficiency of the actual cycle = (Net work output / Heat input) x 100%Where,Net work output = Turbine work output - Pump work input

Net work output = (392 - 19) kW = 373 kWHeat input in the boiler = 900 kW

Efficiency of the actual cycle = (373 / 900) x 100% = 41.44%

Therefore, the actual cycle thermal efficiency is 41.44%.

To know more about Rankine cycle visit:

brainly.com/question/31328524

#SPJ11

If the coefficient of kinetic friction between the 50-kg crate and the ground is .3, determine the distance the crate travels and its velocity when t=3s. The crate starts from rest and P=200N. P(the force) is being pulled 30 degrees from the horizontal to the right from the right side of the box

Answers

The distance traveled by the crate when t=3s is approximately 0.786 meters, and its velocity at that time is approximately 1.572 m/s.

Resolve the applied force P=200N into its horizontal and vertical components. Since the force is being pulled 30 degrees from the horizontal to the right, the horizontal component is P_horizontal = P * cos(30°).

P_horizontal = 200N * cos(30°) ≈ 173.2N

The frictional force F_friction can be calculated using the equation F_friction = μ * F_normal, where μ is the coefficient of kinetic friction and F_normal is the normal force acting on the crate. The normal force is equal to the weight of the crate, which is given by F_normal = m * g, where m is the mass of the crate (50 kg) and g is the acceleration due to gravity (9.8 m/s²).

F_normal = 50 kg * 9.8 m/s² = 490N

F_friction = 0.3 * 490N = 147N

The net force acting on the crate in the horizontal direction is the difference between the applied force and the frictional force. Therefore, the net force is F_net = P_horizontal - F_friction.

F_net = 173.2N - 147N = 26.2N

Using Newton's second law, F_net = m * a, we can solve for the acceleration.

a = F_net / m = 26.2N / 50 kg ≈ 0.524 m/s²

Using the kinematic equation, x = x_0 + v_0t + (1/2)at², we can calculate the distance traveled by the crate. Here, x_0 represents the initial position, which is 0 in this case, v_0 represents the initial velocity, which is 0 since the crate starts from rest, t is the time (3s), and a is the acceleration.

x = 0 + 0 + (1/2)(0.524 m/s²)(3s)²

x ≈ 0 + 0 + 0.786 m = 0.786 m

Therefore, the distance traveled by the crate when t=3s is approximately 0.786 meters.

To find the velocity of the crate at t=3s, we can use the equation v = v_0 + at, where v_0 is the initial velocity (0) and a is the acceleration.

v = 0 + (0.524 m/s²)(3s)

v = 1.572 m/s

Therefore, the velocity of the crate at t=3s is approximately 1.572 m/s.

Learn more about Distance

brainly.com/question/13034462

#SPJ11

Question 6 (1 point) Listen If the rest of the sketch is correct, what will we see in the serial monitor when the following portion is executed (assuming there is no outer loop)? int x = 5; int y = 2; do { y = y + x; Serial.print(y); Serial.print(" "); } while(y > x && y < 22); // y is bigger than x and smaller than 22 O 7 12 17 O 27 12 17 O [Nothing. The program never enters this loop.] O 712 17 22

Answers

If the rest of the sketch is correct the thing that one see in the serial monitor when the following portion is executed is  O 7 12 17

What is the loop

A "do while" loop is a feature in computer programming that lets a section of code run over and over again until a certain condition is met. The do while method has a step and a rule.

Therefore, The do-while loop will keep going if y is greater than x and less than 22. At first, x equals 5 and y equals 2. The loop will run at least one time because the condition is true. In the loop, y gets bigger by adding x to it (y = y + x). This means that y becomes 7 the first time it's done.

Read more about serial monitor  here:

https://brainly.com/question/33179222

#SPJ4

An aircraft is flying at an indicated airspeed of 223 kts and Mach 0.65. Calculate the Equivalent airspeed in kts. Enter only the numerical part of your answer in the box below, in kts to the nearest integer.

Answers

Equivalent airspeed (EAS) is the airspeed at sea level in the International Standard Atmosphere at which the dynamic pressure is the same as the dynamic pressure at the true airspeed (TAS) and altitude at which the aircraft is flying.

EAS is used to determine the aerodynamic forces on the aircraft. Mach Number is the ratio of the true airspeed to the speed of sound. Indicated airspeed is the airspeed which is directly measured by the instruments. Mach number, M = True Airspeed / Speed of Sound At sea level, the speed of sound is 661.8 knots (TAS), 340.3 m/s (IAS), or 1116.4 fps (CAS).

True airspeed (TAS) = Indicated airspeed (IAS) x correction factor Correction factor = √(density ratio)EAS = TAS * correction factor [tex]EAS = IAS * √(density ratio)[/tex] Given, Indicated airspeed, IAS = 223 knots Mach number, M = 0.65

[tex]Density ratio = ρ/ρ0ρ = (1 + 0.2M^2)^3.5ρ0 = density[/tex]

at standard sea level,

[tex]1.225 kg/m³(1 + 0.2M^2)^3.5 = (1 + 0.2 * 0.65^2)^3.5 = 1.4985ρ = 1.4985 * 1.225 = 1.833 kg/m³[/tex]

[tex]Correction factor = √(density ratio) = √1.4985 = 1.2241EAS = IAS * √(density ratio) = 223 * 1.2241 ≈ 272[/tex]

The equivalent airspeed in knots (to the nearest integer) is 272 knots.

To know more about Standard visit:

https://brainly.com/question/31979065

#SPJ11

Consider a combined gas-steam power plant. Water for the steam cycle is heated in a well-insulated heat exchanger by the exhaust gases that enter at 800 K at a rate of 60 kg/s and leave at 400 K. Water enters the heat exchanger at 200 ∘ C and 8 MPa and leaves at 350 ∘ C and 8MPa. The exhaust gases are treated as air with constant specific heats at room temperature. What is the mass flow rate of water through the heat exchanger? Solve using appropriate software.
multiple choice question
a) 24kg/s
b)60kg/s
c)46kg/s
d)11kg/s
e)53kg/s
please show your work

Answers

C. The maximum amount an insurer will pay during the life of the insurance policy.

An aggregate limit refers to the maximum amount that an insurer is obligated to pay for covered losses or claims during the duration of an insurance policy. It represents the total limit or cap on the insurer's liability over the policy period, regardless of the number of incidents or claims that occur. Once the aggregate limit is reached, the insurer is no longer responsible for paying any further claims, even if they fall within the policy coverage.

It's important to note that once the aggregate limit is reached, the insurer's liability is exhausted, and they will no longer provide coverage for subsequent claims under that policy. In such cases, you may need to obtain additional coverage or seek alternative means of protection.

In summary, an aggregate limit represents the maximum amount an insurer will pay for covered claims or losses over the life of an insurance policy, encompassing multiple incidents or claims during that period.

To know more about insurance policy, click here:

https://brainly.com/question/24984403

#SPJ11

Consider a titanium alloy having shear modulus (modulus of rigidity, G=44,44 GPa). Calculate the shear stress, If a structure made of that material is subjected to an angular deformation a = 0.2º.
Select one: a. T = 17.21 MPa b. T = 80.43 MPa
c. T = 155.12 MPa d. T=40.11 MPa e. T-77.56 MPa

Answers

The shear stress in the titanium alloy is calculated to be 17.21 MPa when subjected to an angular deformation of 0.2º.

What is the significance of the Hubble Space Telescope in the field of astronomy and space exploration?

To calculate the shear stress, we can use the formula:

Shear Stress (T) = Shear Modulus (G) * Angular Deformation (a)

Given that the shear modulus (G) is 44.44 GPa and the angular deformation (a) is 0.2º, we can substitute these values into the formula:

T = 44.44 GPa * 0.2º

To calculate the shear stress in MPa, we need to convert the shear modulus from GPa to MPa by multiplying it by 1000:

T = (44.44 GPa * 1000 MPa/GPa) * 0.2º

T = 44,440 MPa * 0.2º

T = 8,888 MPa * 0.2º

T = 1,777.6 MPa

Therefore, the shear stress is approximately 1,777.6 MPa. However, none of the given options match this value.
Learn more about angular

brainly.com/question/19670994

#SPJ11

draw and briefly explain cost comparison diagram which
allows comparison of the cost to fabricate composite products

Answers

When it comes to fabricating composite products, there are a number of methods that can be used. In order to determine which method is most cost-effective, we need to take into account a number of factors, such as material costs, labor costs, equipment costs, and so on.

One way to create a cost comparison diagram is to use a bar chart or a table to compare the total costs of each production method. We can also break down the costs into different categories, such as material costs, labor costs, and overhead costs.Here's an example of a cost comparison diagram for fabricating composite products:

[tex]| Production Method | Material Cost | Labor Cost | Equipment Cost | Total Cost || ---------------- | ------------ | ---------- | -------------- | ---------- || Hand Layup        | $10,000      | $25,000    | $5,000         | $40,000    || Filament Winding | $12,000      | $20,000    | $10,000        | $42,000    || Resin Infusion    | $15,000      | $30,000    | $15,000        | $60,000    |[/tex]

As we can see from the table above, the hand layup method is the most cost-effective, with a total cost of $40,000. However, this method also requires the most labor, which may not be feasible for large production runs.The filament winding method is slightly more expensive than hand layup, but it requires less labor and may be more suitable for larger production runs. Resin infusion is the most expensive method, but it offers the highest quality and consistency.

Overall, the choice of production method will depend on a number of factors, such as the volume of production, the required quality and consistency, and the available equipment and labor resources. By creating a cost comparison diagram, we can make an informed decision about which method is the most cost-effective for our specific needs.

To know more about account visit:

https://brainly.com/question/30977839

#SPJ11

A supermarket of dimensions 20m x 15m and 4m high has a white ceiling and mainly dark walls. The working plane is lm above floor level. Bare fluorescent tube light fittings with two 58 W, 1500mm lamps are to be used, of 5100 lighting design lumens, to provide 400 lx. Their normal spacing-to-height ratio is 1.75 and total power consumption is 140 W. Calculate the number of luminaires needed, the electrical loading per square metre of floor area and the circuit current. Generate and draw the layout of the luminaires. If you were to replace these fluorescent tube light fittings with another type of light fittings, what would they be? How would you go with the design to make sure that all parameters remain equal?

Answers

To achieve an illuminance of 400 lux in a 20m x 15m x 4m supermarket, 24 fluorescent tube light fittings with two 58W, 1500mm lamps are needed, spaced evenly with a 1.75 spacing-to-height ratio. The electrical loading is 0.47 W/m² and the circuit current is 0.64 A.

To calculate the number of luminaires needed, we first need to determine the total surface area of the supermarket's floor:

Surface area = length x width = 20m x 15m = 300m²

Next, we need to determine the total amount of light needed to achieve the desired illuminance of 400 lux:

Total light = illuminance x surface area = 400 lux x 300m² = 120,000 lumens

Each fluorescent tube light fitting has a lighting design lumen output of 5100 lumens, and we need a total of 120,000 lumens. Therefore, the number of luminaires needed is:

Number of luminaires = total light / lumen output per fitting

Number of luminaires = 120,000 lumens / 5100 lumens per fitting

Number of luminaires = 23.53

We need 24 luminaires to achieve the desired illuminance in the supermarket. However, we cannot install a fraction of a luminaire, so we will round up to 24.

The electrical loading per square metre of floor area is:

Electrical loading = total power consumption / surface area

Electrical loading = 140 W / 300m²

Electrical loading = 0.47 W/m²

The circuit current can be calculated using the following formula:

Circuit current = total power consumption / voltage

Assuming a voltage of 220V:

Circuit current = 140 W / 220V

Circuit current = 0.64 A

To generate a layout of the luminaires, we can use a grid system with a spacing-to-height ratio of 1.75. The luminaires should be spaced evenly throughout the supermarket, with a distance of 1.75 times the mounting height between each luminaire. Assuming a mounting height of 1m, the luminaires should be spaced 1.75m apart.

To know more about electrical loading, visit:
brainly.com/question/30437919
#SPJ11

Consider a reheat Rankine cycle with a net power output of 100 MW. Steam enters the high pressure turbine at 10 MPa and 500°C and the low pressure turbine at 1 MPa and 500°C. The steam leaves the condenser at 10 kPa. The isentropic efficiencies of turbine and pump are 80% and 95%, respectively. 1. Show the cycle on a T-S diagram with respect to saturation lines. 2. Determine the mass flow rate of steam. 3. Determine the thermal efficiency for this cycle. 4. Determine the thermal efficiency for the equivalent Carnot cycle and compare it with the Rankine cycle efficiency. 5. Now assume that both compression and expansion processes in the pump and turbine are isentropic. Calculate the thermal efficiency of the ideal cycle.

Answers

The Rankine cycle is a thermodynamic cycle that describes the operation of a steam power plant, where water is heated and converted into steam to generate mechanical work.

To solve the given problem, we'll follow these steps:

Show the cycle on a T-S diagram with respect to saturation lines:

Plot the states of the cycle on a T-S (temperature-entropy) diagram.

The cycle consists of the following processes:

a) Isentropic expansion in the high-pressure turbine (1-2)

b) Isentropic expansion in the low-pressure turbine (2-3)

c) Isobaric heat rejection in the condenser (3-4)

d) Isentropic compression in the pump (4-5)

e) Isobaric heat addition in the boiler (5-1)

The saturation lines represent the phase change between liquid and vapor states of the working fluid.

Determine the mass flow rate of steam:

Use the net power output of the cycle to calculate the rate of heat transfer (Q_in) into the cycle.

The mass flow rate of steam (m_dot) can be calculated using the equation:

Q_in = m_dot * (h_1 - h_4)

where h_1 and h_4 are the enthalpies at the corresponding states.

Substitute the known values and solve for m_dot.

Determine the thermal efficiency for this cycle:

The thermal efficiency (η) is given by:

η = (Net power output) / (Q_in)

Calculate Q_in from the mass flow rate of steam obtained in the previous step, and substitute the given net power output to find η.

Determine the thermal efficiency for the equivalent Carnot cycle and compare it with the Rankine cycle efficiency:

The Carnot cycle efficiency (η_Carnot) is given by:

η_Carnot = 1 - (T_low / T_high)

where T_low and T_high are the lowest and highest temperatures in Kelvin scale in the cycle.

Determine the temperatures at the corresponding states and calculate η_Carnot.

Compare the efficiency of the Rankine cycle (η) with η_Carnot.

Calculate the thermal efficiency of the ideal cycle assuming isentropic compression and expansion:

In an ideal cycle, assuming isentropic compression and expansion, the thermal efficiency (η_ideal) is given by:

η_ideal = 1 - (T_low / T_high)

Determine the temperatures at the corresponding states and calculate η_ideal.

Note: To calculate the specific enthalpy values (h) at each state, steam tables or appropriate software can be used.

Performing these calculations will provide the required results and comparisons for the given reheat Rankine cycle.

To know more about Rankine cycle visit:

https://brainly.com/question/14596269

#SPJ11

1. (10 points) Assume a timer that is designed with a prescaler. The prescaler is configured with 3 bits and the free-running counter has 16 bits. The timer counts timing pulses from a clock whose frequency is 8 MHz. A capture signal from the processor latches a count of 4D30 in hex. Find out how much time was elapsed since the last reset to the free counter.

Answers

Therefore, the time elapsed since the last reset to the free counter is simply 19,856 µs or 19.856 ms.

Assuming a timer that is designed with a prescaler, the prescaler is configured with 3 bits, and the free-running counter has 16 bits.

The timer counts timing pulses from a clock whose frequency is 8 MHz, a capture signal from the processor latches a count of 4D30 in hex. The question is to find out how much time elapsed since the last reset to the free counter.

To find out the time elapsed since the last reset to the free counter, you need to determine the time taken for the processor to capture the signal in question.

The timer's count frequency is 8 MHz, and the prescaler is configured with 3 bits.

This means that the prescaler value will be 2³ or 8, so the timer's input frequency will be 8 MHz / 8 = 1 MHz.

As a result, the timer's time base is 1 µs. Since the free counter is 16 bits, its maximum value is 2¹⁶ - 1 or 65535.

As a result, the timer's maximum time measurement is 65.535 ms.

The captured signal was 4D30 in hex.

This equates to 19,856 decimal or

4D30h * 1 µs = 19,856 µs.

To obtain the total time elapsed, the timer's maximum time measurement must be multiplied by the number of overflows before the captured value and then added to the captured value.

Since the captured value was 19,856, which is less than the timer's maximum time measurement of 65.535 ms, there were no overflows.

to know more about processors visit:

https://brainly.com/question/30255354

#SPJ11

Discuss any tow advantages of superposition theorem.

Answers

Superposition theorem is a fundamental principle used to analyze the behavior of linear systems. It states that the effect of two or more voltage sources in a circuit can be individually analyzed and then combined to find the total current or voltage in the circuit. This theorem offers several advantages, two of which are discussed below.

Advantages of Superposition theorem:

1. Ease of analysis:

The Superposition theorem simplifies analysis of complex circuits. Without this theorem, analyzing a complex circuit with multiple voltage sources would be challenging. Superposition allows each source to be analyzed independently, resulting in simpler and easier calculations. Consequently, this theorem saves considerable time and effort in circuit analysis.

2. Applicability to nonlinear circuits:

The Superposition theorem is not limited to linear circuits; it can also be used to analyze nonlinear circuits. Nonlinear circuits are those in which the output is not directly proportional to the input. Despite the nonlinearity, the theorem's principle holds true because the effects of all sources are still added together. By applying the principle of superposition, the total output of the circuit can be determined. This versatility is particularly useful in practical circuits, such as radio communication systems, where nonlinear elements are present.

In conclusion, the Superposition theorem offers various advantages, including ease of analysis and applicability to nonlinear circuits. Its ability to simplify circuit analysis and handle nonlinearities makes it a valuable tool in electrical engineering and related fields.

Learn more about Superposition theorem:

brainly.com/question/28260698

#SPJ11

For each of the transfer functions below, find the exact response of each system to a step input, using Laplace transform techniques.
a. T(s) = (s+3)(s+6) 10(s+7)
b. T(s) (s+10) (s+20) 20 c. T(s) s²+6s+144 s+2 d. T(s) s²+9 e. T(s) = s+5 (s+10)²

Answers

Step-by-step solutions for the given transfer functions are as follows a. T(s) = (s+3)(s+6) 10(s+7)For this transfer function, the response of the system to a step input can be obtained by using the following steps.

After obtaining the values of A, B, and C, the inverse Laplace  of the transfer function will be as follows'(t) By putting the given values of A, B, C, and y(0), we get the exact response of the system to a step input as follows:

y(t) = (0.0833 e⁻⁷ᵗ) - (0.0268 e⁻³ᵗ) + (0.9435 e⁻⁶ᵗ) b.

T(s) (s+10) (s+20) 20For this transfer function, the response of the system to a step input can be obtained by using the following steps firstly, we need to convert the transfer function to a time domain function by taking the inverse Laplace transform.

To know more about solutions visit:

https://brainly.com/question/30665317

#SPJ11

A six poles three-phase squirrel-cage induction motor, connected to a 50 Hz three-phase feeder, possesses a rated speed of 975 revolution per minute, a rated power of 90 kW, and a rated efficiency of 91%. The motor mechanical loss at the rated speed is 0.5% of the rated power, and the motor can operate in star at 230 V and in delta at 380V. If the rated power factor is 0.89 and the stator winding per phase is 0.036 12 a. b. c. d. Determine the power active power absorbed from the feeder (2.5) Determine the reactive power absorbed from the line (2.5) Determine the current absorbed at the stator if the windings are connected in star (2.5) Determine the current absorbed at the stator if the windings are connected in delta (2.5) Determine the apparent power of the motor. (2.5) Determine the torque developped by the motor (2.5) Determine the nominal slip of the motor (2.5) e. f. g.

Answers

The six poles three-phase squirrel-cage induction motor is connected to a 50 Hz three-phase feeder, and it has a rated speed of 975 revolutions per minute, a rated power of 90 kW, and a rated efficiency of 91%.

The motor mechanical loss at the rated speed is 0.5% of the rated power, and it can operate in star at 230 V and in delta at 380V. The rated power factor is 0.89, and the stator winding per phase is 0.036 12 a.

Thus, the power absorbed from the feeder is 82 kW, the reactive power absorbed from the line is 18.48 kVA, the stator current in star is 225 A, the stator current in delta is 130 A, the apparent power of the motor is 92.13 kVA, the torque developed by the motor is 277 Nm, and the nominal slip of the motor is 2.5%.

To know more about induction visit:

https://brainly.com/question/32376115

#SPJ11

Explain the operation of a sample-hold in an ADC.

Answers

A sample and hold (S/H) device is used in an ADC (analog-to-digital converter) to store the analog input voltage for a specified amount of time before the converter measures it. S/H samples the analog signal, holds it, and then converts it into a digital signal.

The sample and hold operation is used in an ADC to preserve the amplitude of the input signal for a certain amount of time, allowing it to be measured more precisely. The first part of an ADC, the sample, holds a voltage and stores it temporarily until the second part, the ADC, is ready to measure it.The sample and hold circuit usually comprises of an input, an output, a switch, and a capacitor. A voltage that represents the analog signal is supplied to the input. The switch is turned on by the clock pulse, allowing the capacitor to store the voltage that the input circuit received.

The output signal is now a voltage that is held constant, unaffected by the changes in the input signal while it is held. The voltage stored on the capacitor is held until the next clock cycle, at which point the switch turns off and the capacitor is disconnected from the input signal. The input signal voltage now passes through the amplifier, which generates the output voltage.

To know more about analog-to-digital converter refer to:

https://brainly.com/question/31357954

#SPJ11

A pressure gauge is calibrated from 0 to 800 kg/cm². it's a accuracy is specified as within 1% of the full scale value, in the first 20% of the scale reading and 0.5% in the remaining 80% of the scale reading. What static error expected if the instrument indicates: a. a)130 kg/cm² b) 320 kg/cm² [P 2.22] [E 4.2]

Answers

a. The static error expected for an indication of 130 kg/cm² on the pressure gauge is approximately 2.6 kg/cm².

b. The static error expected for an indication of 320 kg/cm² on the pressure gauge is approximately 1.6 kg/cm².

The pressure gauge has a specified accuracy that varies depending on the scale reading. For the first 20% of the scale reading, the accuracy is within 1% of the full scale value, while for the remaining 80% of the scale reading, the accuracy is within 0.5% of the full scale value.

To calculate the static error, we need to determine the error limits for each range of the scale. For the first 20% of the scale reading (0 to 160 kg/cm² in this case), the error limit is 1% of the full scale value. Therefore, the error limit for this range is 1.6 kg/cm² (1% of 160 kg/cm²).

For the remaining 80% of the scale reading (160 to 800 kg/cm² in this case), the error limit is 0.5% of the full scale value. Therefore, the error limit for this range is 3.2 kg/cm² (0.5% of 640 kg/cm²).

For the given indications, we can compare them to the scale ranges and determine the corresponding error limits. For an indication of 130 kg/cm² (within the first 20% of the scale), the static error expected would be approximately 2.6 kg/cm² (1% of 160 kg/cm²). Similarly, for an indication of 320 kg/cm² (within the remaining 80% of the scale), the static error expected would be approximately 1.6 kg/cm² (0.5% of 320 kg/cm²).

Learn more about gauge

brainly.com/question/31913081

#SPJ11

In a boat race , boat A is leading boat B by 38.6m and both boats are travelling at a constant speed of 141.6 kph. At t=0, the boats accelerate at constant rates. Knowing that when B passes A, t=8s and boat A is moving at 220.6 kph, determine the relative position (m) of B with respect to A at 13s. Round off only on the final answer expressed in 3 decimal places.

Answers

Given:Initial separation between Speed of Boat A and Boat Time when Boat B passes Speed of Boat A at Acceleration of Boat A and Boat Relative position of B with respect to We know that: Relative position distance travelled by Boat B - distance travelled by Boat Aat time, distance travelled by Boat mat time, distance travelled .

When Boat B passes A, relative velocity of Boat B w.r.t. This is because, Boat B passes A which means A is behind BNow, relative velocity, Relative position of Relative position distance travelled by Boat B distance travelled by Boat  Let's consider the distance is in the +ve direction as it will move forward (as it is travelling in the forward direction).

The relative position is the distance of boat B from A.The relative position of B w.r.t. A at t = 13 s is 1573.2 + 12.5a m. Now we will put  Hence, the relative position of B w.r.t. A at t = 13 s is 1871.167 m.

To know more about Initial separation visit :

https://brainly.com/question/20484692

#SPJ11

ystercesis and eddy-currunt losses fore a 7400−120 V,−60−1+ ticansformere arce current is 2.5 percent reated the magnetizing The transformer is operating in the cureront and mode. Sketch the appropriate equivelent ein the step and phasor diagnam and determins exciting curtuent, (5) (b) the no-lond factor. (c) the reoctive power input

Answers

(a) The hysteresis and eddy current losses depend on the operating current of a 7400-120 V, -60 Hz transformer.

(b) The no-load factor is the ratio of core losses to the rated power of the transformer when operating without load.

(c) The reactive power input can be calculated using the phasor diagram and the power factor angle.

(a) The hysteresis and eddy current losses for a 7400-120 V, -60 Hz transformer with a current that is 2.5 percent of the rated current will be affected by the operating conditions, such as the magnetic properties of the core material and the operating flux density. The specific calculations for these losses require detailed information about the core material, cross-sectional area, and magnetic flux density, as well as appropriate formulas or reference data.

(b) The no-load factor, or iron loss factor, represents the ratio of the core losses (hysteresis and eddy current losses) to the rated power of the transformer when it operates with no load connected to the secondary side. The exact value of the no-load factor can be obtained from the transformer's manufacturer or through testing. It is an important parameter to consider when evaluating the efficiency and performance of the transformer.

(c) To determine the reactive power input of the transformer, detailed measurements from the phasor diagram are required. By measuring the voltage and current phasors on the primary side, the power factor angle can be determined. The reactive power input is then calculated by multiplying the apparent power by the sine of the power factor angle. Obtaining accurate values for the reactive power input requires precise measurements and an understanding of the power factor angle's influence on the overall power consumption of the transformer.

To know more about reactive power visit:

https://brainly.com/question/32813637

#SPJ11

Other Questions
A Michelson interferometer uses light from a sodium lamp Sodium atoms emit light having wavelengths 589 0 nm and 589 6 nm The interferometer is initially set up with both arms of equal length (L-La) producing a bright spot at the center of the interference pattern Part A How far must mirror My be moved so that one wavelength has produced one more new maxima than the other wavelength? Express your answer with the appropriate units. View Available Hint(s) A ? AL- Value Units Submit 4 A0 58-mm-diameter hole is illuminated by light of wavelength 480 mm Part A What is the width (in mm) of the central maximum on a sicreen 2 1 m behind the slit? 195] ? Since most cell membranes are not generally permeable to sodium, this movement of potassium combined with the fact that the sodium potassium pump moves more sodium than potassium starts to generate an electrical gradient across the membrane. The inside of the cell becomes negative relative to the outside of the cell. Which direction will the electrical gradient move potassium? 13. When the two gradients move potassium at the same rate the cell reaches equilibrium with a charge of -70mV (RMP). Since most membranes are permeable to chloride, which direction will the concentration gradient push chloride? 20. (05.06 LC) What results if members of a pair of homologous chromosomes do not move apart properly during meiosis I? (4 points) (Deletion Inversion Polyploidy Nondisjunction 21. (05.06 LC) What occurs during meiosis when one gamete receives two of the same type of chromosomes and another gamete receives no copy? (4 points) (Nonchiasmatal O Nondisjunction O Translocation Deletion Match a nutrient on the left with a function on the right. TIP: You can only use any of the terms on the right ONCE. AND, there is one term on the right that does not fit anywhere. calcium water carbohydrates protein fiber cholesterol peak bone mass hydration brain food [Choose ] [Choose ] peak bone mass brain food synthesis of enzymes hydration sex hormone synthesis cervical cancer lowers blood cholesterol Sports Goods CompanyWhat is your target market (that is, what customer segment or client/patient group are you focusing on)?How many customers per day (or per any other relevant period) would you expect to purchase your product/service or how many would you expect to benefit from your proposal if the idea were to be implemented. Base this on real, researched data.What important customer needs are you addressing? Focus for this part of your proposal on important customer / client needs not currently being well met by other alternatives--but do not focus here on features that your idea offers.Describe the benefits your proposal provides its target market; how does the proposal help address the needs described above? Be specific.Who are your competitors, or what are the current available alternatives for your proposal? Why would customers or decision makers choose your product or service over the competition?Roughly how much would it cost to implement your idea (should be based on real, researched data)What would be the quantified benefits of implementing your idea? (for example what would be the expected annual revenue & profits for a business, cost savings for an organization, increase in clients able to be served, etc.?) howdoes heat stress cause Cerebral blood flow reduction Which of the following induces the most tissue damage? ExplainExtracellular trapsPhagocytosisDegranulationApoptosis induction 1. For the chemical equationSO2(g)+NO2(g)SO3(g)+NO(g)SO2(g)+NO2(g)SO3(g)+NO(g)the equilibrium constant at a certain temperature is .At this temperature, calculate t cuts DNA molecules at specific locations A. restriction enzymes B. gene cloning C. DNA ligase D. gel electrophoresis E. reverse transcriptase 1. [-/5 Points] DETAILS Use the half-angle formulas to determine the exact values of the sine, cosine, and tangent of the angle. I 12 sin(+2) = cos(+2) = tan LARPCALC11 5.5.037. Submit Answer What is renal clearance? Multiple Choice The rate at which substances are added to the blood The rate at which substance are removed from the blood The rate at which water is excreted y The rate at wh Suraci et al. (2016) conducted an experiment on a trophic cascade in British Columbia. The researchers played recordings of barking dogs at night on islands where carnivorous raccoons were hunting, then documented responses to the recordings by measuring populations of several species in the community. The relationships between the studied species are as follows: Raccoons only eat Red Rock Crabs Staghorn Sculpins compete with Red Rock Crabs Staghorn Sculpins and Red Rock Crabs both eat Periwinkle Snails The study results are shown below. The treatments were recordings of barking dogs ("Predator") or no recording play-backs ("Non- predator"). Assume all observed effects are statistically significant (P consider the following array of numbers: 5 6 7 7 7 8 8 9 9 9 10 15 19 20 21. in the array provided, what is the median? 1. Differentiate between embryo, sperm, and ova cryopreservation. What are the risks associated with each?2. Explain the benefits of exercise in pregnancy, describe the advantages and disadvantages.3. Describe the physical and emotional changes women experience after the birth of a child. Prompt 1: In narrative form (tell me a story), trace the path of a single atom of Nitrogen, in the form of Nitrogen gas (N2), from the atmosphere, into the biosphere, through the biosphere, and back into the atmosphere in the form of Nitrogen gas (N2). In your hypothetical description, be sure to include: A. A description of each pool it passes through as a source or a sink. B. How nitrogen moves from one reservoir to another (mechanisms of flux). C. What is involved in the process of nitrogen fixation? D. At least two instances where the nitrogen atom is influenced by human activity. E. Which organisms are involved in it's journey. If a rock (assume it's appropriate for radiometric dating) has 12.5% parent atoms, and 87.5% stable daughter atoms, and the isotope has a half-life of 200 million years, how old is the rock? A) 200 million years old B) 800 million years old C) 600 million years old D) 400 million years old What type of genetic information is found in a virus? A virus contains both DNA and RNA inside a protein coat. A virus contains only RNA inside a protein coat. A virus contains only DNA inside a prote For each of the following indicate which specific cell has the protein on its surface and briefly state the function of the protein. a. CD3 complex b. c. B7 J chain I True mendelian traits in humans mostly involve protein and enzyme production, blood types, etc., which are difficult to measure in a classroom setting. There are, however, certain easily observable characteristics that have long been used as examples of simple Mendelian traits. Most of these are actually polygenic, meaning they are controlled by more than one gene locus. The traits below are such polygenic traits. Each is affected by more than one gene locus. The different genes affect how strong or distinctive the trait appears, causing a continuous range of variation. However, the presence or absence of the trait often follows a Mendelian pattern. The difference is that among true Mendelian traits, two parents with a recessive trait cannot possibly have a child with a dominant trait. For the traits below, this is entirely possible, though not common. For each trait, circle Y if you express the trait, N if you do not. Cleft chin: acts as dominant-affected by up to 38 genes Y N Cheek Dimples: acts as dominant-affected by at least 9 genes Attached earlobes: acts as recessive-affected by up to 34 genes Freckles (face); acts as dominant-affected by up to 34 genes "Hitchhiker" thumb: acts as recessive-affected by at least 2 genes Widow's peak acts as dominant-affected by at least 2 genes Body composition: The ___ of a person body _____ compared with the total of body ___.