C.
(11) in parallel
A potentiometer circuit consists of a
battery of e.m.f. 5 V and internal
resistance 1.0 12 connected in series with a
3.0 12 resistor and a potentiometer wire
AB of length 1.0 m and resistance 2.0 12.
Calculate:
(i) The total resistance of the circuit
The current flowing in the circuit
(iii) The lost volt from the internal
resistance of battery across the
battery terminals
(iv) The p.d. across the wire AB
(v) The e.m.f. of a dry cell which can be
balanced across 60 cm of the wire
AB.
Assume the wire has a uniform cross-
sectional area.​

Answers

Answer 1

Answer:

fggdfddvdghyhhhhggghh


Related Questions

PLS HELP ILL MARK U BRAINLIEST I DONT HAVE MUCH TIME!!


A football player of mass 103 kg running with a velocity of 2.0 m/s [E] collides head-
on with a 110 kg player on the opposing team travelling with a velocity of 3.2 m/s
[W]. Immediately after the collision the two players move in the same direction.
Calculate the final velocity of the two players.

Answers

Answer:

The final velocity of the two players is 0.69 m/s in the direction of the opposing player.

Explanation:

Since the players are moving in opposite directions, from the principle of conservation of linear momentum;

[tex]m_{1} u_{1}[/tex] - [tex]m_{2}u_{2}[/tex] = [tex](m_{1} + m_{2} )[/tex] v

Where: [tex]m_{1}[/tex] is the mass of the first player, [tex]u_{1}[/tex] is the initial velocity of the first player, [tex]m_{2}[/tex] is the mass of the second player, [tex]u_{2}[/tex] is the initial velocity of the second player and v is the final common velocity of the two players after collision.

[tex]m_{1}[/tex] = 103 kg, [tex]u_{1}[/tex] = 2.0 m/s, [tex]m_{2}[/tex] = 110 kg, [tex]u_{2}[/tex] = 3.2 m/s. Thus;

103 × 2.0 - 110 × 3.2 = (103 + 110)v

206 - 352 = 213 v

-146 = 213 v

v = [tex]\frac{-146}{213}[/tex]

v = -0.69 m/s

The final velocity of the two players is 0.69 m/s in the direction of the opposing player.

A water-balloon launcher with mass 5 kg fires a 1 kg balloon with a velocity of
8 m/s to the east. What is the recoil velocity of the launcher?

Answers

Answer:

1.6 m/s west

Explanation:

The recoil velocity of the launcher is 1.6 m/s west.

What is conservation of momentum principle?

When two bodies of different masses move together each other and have head on collision, they travel to same or different direction after collision.

A water-balloon launcher with mass 5 kg fires a 1 kg balloon with a velocity of 8 m/s to the east.

Final momentum will be zero, so

m₁u₁ +m₂u₂ =0

Substitute the values for m₁ = 5kg, m₂ =1kg and u₂ =8 m/s, then the recoil velocity will be

5 x v +1x8 = 0

v = - 1.6 m/s

Thus, the recoil velocity of the launcher is  1.6 m/s (West)

Learn more about conservation of momentum principle

https://brainly.com/question/14033058

#SPJ2

An airplane flies in a horizontal circle of radius 500 m at a speed of 150 m/s. If the radius were changed to 1000 m, but the speed remained the same, by what factor would its centripetal acceleration change?

Answers

Answer:

The centripetal acceleration changed by a factor of 0.5

Explanation:

Given;

first radius of the horizontal circle, r₁ = 500 m

speed of the airplane, v = 150 m/s

second radius of the airplane, r₂ = 1000 m

Centripetal acceleration is given as;

[tex]a = \frac{v^2}{r}[/tex]

At constant speed, we will have;

[tex]v^2 =ar\\\\v = \sqrt{ar}\\\\at \ constant\ v;\\\sqrt{a_1r_1} = \sqrt{a_2r_2}\\\\a_1r_1 = a_2r_2\\\\a_2 = \frac{a_1r_1}{r_2} \\\\a_2 = \frac{a_1*500}{1000}\\\\a_2 = \frac{a_1}{2} \\\\a_2 = \frac{1}{2} a_1[/tex]

a₂ = 0.5a₁

Therefore, the centripetal acceleration changed by a factor of 0.5

What happens when you increase the number of slits per millimeter (decrease the spacing between slits)?

Answers

Answer:

Increasing the number of slits not only makes the diffraction maximum sharper, but also much more intense. If a 1 mm diameter laser beam strikes a 600 line/mm grating, then it covers 600 slits and the resulting line intensity is 90,000 x that of a double slit. Such a multiple-slit is called a diffraction grating.

A slender rod of length L has a varying mass-per-unit-length from the left end (x=0) according to dm/dx=Cx where C has units kg/m2. Find the total mass in terms of C and L, and then calculate the moment of inertia of the rod for an axis at the left end note: you need the total mass in order to get the answer in terms of ML^2

Answers

Answer:

ML²/6

Explanation:

Pls see attached file

The total mass is M = CL²/2, and the moment of inertia is I = ML²/2,

Moment of inertia:

The length of the rod is L. It has a non-uniform distribution of mass given by:

dm/dx = Cx

where C has units kg/m²

dm = Cxdx

the total mass M of the rod can be calculated by integrating the above relation over the length:

[tex]M =\int\limits^L_0 {} \, dm\\\\M=\int\limits^L_0 {Cx} \, dx\\\\M=C[x^2/2]^L_0\\\\M=C[L^2/2]\\\\[/tex]

Thus,

C = 2M/L²

Now, the moment of inertia of the small element dx of the rod is given by:

dI = dm.x²

dI = Cx.x²dx

[tex]dI = \frac{2M}{L^2}x^3dx\\\\I= \frac{2M}{L^2}\int\limits^L_0 {x^3} \, dx \\\\I= \frac{2M}{L^2}[\frac{L^4}{4}][/tex]

I = ML²/2

Learn more about moment of inertia:

https://brainly.com/question/6953943?referrer=searchResults

A proton with an initial speed of 400000 m/s is brought to rest by an electric field.
Part A- Did the proton move into a region of higher potential or lower potential?
Part B - What was the potential difference that stopped the proton?
?U = ________V
Part C - What was the initial kinetic energy of the proton, in electron volts?
Ki =_________eV

Answers

Answer:

moves into a region of higher potential

Potential difference = 835   V

Ki = 835 eV

Explanation:

given data

initial speed = 400000 m/s

solution

when proton moves against a electric field  so that it will move into higher potential  region

and

we know Work done by electricfield  W is express as

W = KE of proton   K

so

q × V   =  0.5 × m × v²     ......................1

put here va lue

1.6 × [tex]10^{-19}[/tex] × V   =   0.5 × 1.67 × [tex]10^{-27}[/tex] × 400000²

Potential difference V = 1.336 × 10-16 / 1.6  × 10-19      

Potential difference = 835   V

and

KE of proton in eV is express as

Ki  =   V numerical

Ki = 835 eV

An electron has an initial velocity of (17.1 + 12.7) km/s, and a constant acceleration of (1.60 × 1012 m/s2) in the positive x direction in a region in which uniform electric and magnetic fields are present. If = (529 µT) find the electric field .

Answers

Answer:

Explanation:

Since B is perpendicular, it does no work on the electron but instead deflects it in a circular path.

q = 1.6 x 10-19 C

v = (17.1j + 12.7k) km/s = square root(17.1² + 12.7²) = 2.13 x 10⁴ m/s

the force acting on electron is

F= qvBsinΦ

F= (1.6 x 10⁻¹⁹C)(2.13.x 10⁴ m/s)(526 x 10⁻⁶ T)(sin90º)

F = 1.793x 10⁻¹⁸ N

The net force acting on electron is

F = e ( E+ ( vXB)

= ( - 1.6 × 10⁻¹⁹) ( E + ( 17.1 × 10³j + 12.7 × 10³ k)X( 529 × 10⁻⁶ ) (i)

= ( -1.6 × 10⁻¹⁹ ) ( E- 6.7k + 9.0j)

a= F/m

1.60 × 10¹² i =  ( -1.6 × 10⁻¹⁹ ) ( E- 6.9 k + 7.56 j)/9.11 × 10⁻³¹

9.11 i = - ( E- 6.7 k + 9.0 j)

E = -9.11i + 6.7k - 9.0j

A coil has resistance of 20 W and inductance of 0.35 H. Compute its reactance and its impedance to an alternating current of 25 cycles/s.

Answers

Answer:

Reactance of the coil is 55 WImpedance of the coil is 59 W

Explanation:

Given;

Resistance of the coil, R = 20 W

Inductance of the coil, L = 0.35 H

Frequency of the alternating current, F = 25 cycle/s

Reactance of the coil is calculated as;

[tex]X_L=[/tex] 2πFL

Substitute in the given values and calculate the reactance [tex](X_L)[/tex]

[tex]X_L =[/tex] 2π(25)(0.35)

[tex]X_L[/tex] = 55 W

Impedance of the coil is calculated as;

[tex]Z = \sqrt{R^2 + X_L^2} \\\\Z = \sqrt{20^2 + 55^2} \\\\Z = 59 \ W[/tex]

Therefore, the reactance of the coil is 55 W and Impedance of the coil is 59 W

A 1.20 kg water balloon will break if it experiences more than 530 N of force. Your 'friend' whips the water balloon toward you at 13.0 m/s. The maximum force you apply in catching the water balloon is twice the average force. How long must the interaction time of your catch be to make sure the water balloon doesn't soak you

Answers

Answer:

t = 0.029s

Explanation:

In order to calculate the interaction time at the moment of catching the ball, you take into account that the force exerted on an object is also given by the change, on time, of its linear momentum:

[tex]F=\frac{\Delta p}{\Delta t}=m\frac{\Delta v}{\Delta t}[/tex]       (1)

m: mass of the water balloon = 1.20kg

Δv: change in the speed of the balloon = v2 - v1

v2: final speed = 0m/s (the balloon stops in my hands)

v1: initial speed = 13.0m/s

Δt: interaction time = ?

The water balloon brakes if the force is more than 530N. You solve the equation (1) for Δt and replace the values of the other parameters:

[tex]|F|=|530N|= |m\frac{v_2-v_1}{\Delta t}|\\\\|530N|=| (1.20kg)\frac{0m/s-13.0m/s}{\Delta t}|\\\\\Delta t=0.029s[/tex]

The interaction time to avoid that the water balloon breaks is 0.029s

Find the terminal velocity (in m/s) of a spherical bacterium (diameter 1.81 µm) falling in water. You will first need to note that the drag force is equal to the weight at terminal velocity. Take the density of the bacterium to be 1.10 ✕ 103 kg/m3. (Assume the viscosity of water is 1.002 ✕ 10−3 kg/(m · s).)

Answers

Answer:

The terminal velocity of a spherical bacterium falling in the water is 1.96x10⁻⁶ m/s.

Explanation:

The terminal velocity of the bacterium can be calculated using the following equation:

[tex] F = 6\pi*\eta*rv [/tex]    (1)

Where:

F: is drag force equal to the weight

η: is the viscosity = 1.002x10⁻³ kg/(m*s)

r: is the radium of the bacterium = d/2 = 1.81 μm/2 = 0.905 μm

v: is the terminal velocity

Since that F = mg and by solving equation (1) for v we have:

[tex] v = \frac{mg}{6\pi*\eta*r} [/tex]  

We can find the mass as follows:

[tex] \rho = \frac{m}{V} \rightarrow m = \rho*V [/tex]

Where:

ρ: is the density of the bacterium = 1.10x10³ kg/m³

V: is the volume of the spherical bacterium

[tex] m = \rho*V = \rho*\frac{4}{3}\pi*r^{3} = 1.10 \cdot 10^{3} kg/m^{3}*\frac{4}{3}\pi*(0.905 \cdot 10^{-6} m)^{3} = 3.42 \cdot 10^{-15} kg [/tex]

Now, the terminal velocity of the bacterium is:

[tex] v = \frac{mg}{6\pi*\eta*r} = \frac{3.42 \cdot 10^{-15} kg*9.81 m/s^{2}}{6\pi*1.002 \cdot 10^{-3} kg/(m*s)*0.905 \cdot 10^{-6} m} = 1.96 \cdot 10^{-6} m/s [/tex]

Therefore, the terminal velocity of a spherical bacterium falling in the water is 1.96x10⁻⁶ m/s.

I hope it helps you!

Legacy issues $570,000 of 8.5%, four-year bonds dated January 1, 2019, that pay interest semiannually on June 30 and December 31. They are issued at $508,050 when the market rate is 12%.
1. Determine the total bond interest expense to be recognized.
Total bond interest expense over life of bonds:
Amount repaid:
8 payments of $24,225 $193,800
Par value at maturity 570,000
Total repaid 763,800
Less amount borrowed 645 669
Total bond interest expense $118.131
2. Prepare a straight-line amortization table for the bonds' first two years.
Semiannual Period End Unamortized Discount Carrying Value
01/01/2019
06/30/2019
12/31/2019
06/30/2020
12/31/2020
3. Record the interest payment and amortization on June 30. Note:
Date General Journal Debit Credit
June 30
4. Record the interest payment and amortization on December 31.
Date General Journal Debit Credit
December 31

Answers

Answer:

1) Determine the total bond interest expense to be recognized.

Total bond interest expense over life of bonds:

Amount repaid:    

8 payments of $24,225:           $193,800    

Par value at maturity:                 $570,000    

Total repaid:                                   $763800 (193,800 + 570,000)  

Less amount borrowed:         $508050    

Total bond interest expense: $255750 (763800 - 508,050)

2)Prepare a straight-line amortization table for the bonds' first two years.

Semiannual Interest Period­ End; Unamortized Discount; Carrying Value

01/01/2019                                      61,950                           508,050  

06/30/2019                                      54,206                          515,794  

12/31/2019                                       46,462                         523,538  

06/30/2020                                       38,718                        531,282  

12/31/2020                                         30,974                          539,026

3) Record the interest payment and amortization on June 30:

June 30            Bond interest expense, dr                         31969  

                       Discount on bonds payable, Cr     (61950/8)  7743.75

                                        Cash, Cr                     ( 570000*8.5%/2)  24225  

4) Record the interest payment and amortization on December 31:

Dec 31                 Bond interest expense, Dr               31969  

                           Discount on bonds payable, Cr  7744  

                                    Cash, Cr                                24225

When a hydrometer (see Fig. 2) having a stem diameter of 0.30 in. is placed in water, the stem protrudes 3.15 in. above the water surface. If the water is replaced with a liquid having a specific gravity of 1.10, how much of the stem would protrude above the liquid surface

Answers

Answer:

5.79 in

Explanation:

We are given that

Diameter,d=0.30 in

Radius,r=[tex]\frac{d}{2}=\frac{0.30}{2}=0.15 in[/tex]

Weight of hydrometer,W=0.042 lb

Specific gravity(SG)=1.10

Height of stem from the water surface=3.15 in

Density of water=[tex]62.4lb/ft^3[/tex]

In water

Volume  of water displaced [tex]V=\frac{mass}{density}=\frac{0.042}{62.4}=6.73\times 10^{-4} ft^3[/tex]

Volume of another liquid displaced=[tex]V'=\frac{V}{SG}=\frac{6.73\times 10^{-4}}{1.19}=5.66\times 10^{-4}ft^3[/tex]

Change in volume=V-V'

[tex]V-V'=\pi r^2 l[/tex]

Substitute the values

[tex]6.73\times 10^{-4}-5.66\times 10^{-4}=3.14\times (\frac{0.15}{12})^2l[/tex]

By using

1 ft=12 in

[tex]\pi=3.14[/tex]

[tex]l=\frac{6.73\times 10^{-4}-5.66\times 10^{-4}}{3.14\times (\frac{0.15}{12})^2}[/tex]

l=2.64 in

Total height=h+l=3.15+2.64= 5.79 in

Hence, the height of the stem protrude above the liquid surface=5.79 in

A trough is filled with a liquid of density 810 kg/m3. The ends of the trough are equilateral triangles with sides 8 m long and vertex at the bottom. Find the hydrostatic force on one end of the trough. (Use 9.8 m/s2 for the acceleration due to gravity.)

Answers

Answer:

The hydrostatic force on one end of the trough is 54994.464 N

Explanation:

Given;

liquid density, ρ = 810 kg/m³

side of the equilateral triangle, L = 8m

acceleration due to gravity, g =  9.8 m/s²

Hydrostatic force is given as;

H = ρgh

where;

h is the vertical height of the equilateral triangle

Draw a line to bisect upper end of the trough, to the vertex at the bottom, this line is the height of the equilateral triangle.

let the half side of the triangle = x

x = ⁸/₂ = 4m

The half section of the triangle forms a right angled triangle

h² = 8² - 4²

h² = 48

h = √48

h = 6.928m

F = ρgh

F = 810 x 9.8 x 6.928

F = 54994.464 N

Therefore, the hydrostatic force on one end of the trough is 54994.464 N

A total electric charge of 2.00 nC is distributed uniformly over the surface of a metal sphere with a radius of 26.0 cm . The potential is zero at a point at infinity.
a) Find the value of the potential at 45.0 cm from the center of the sphere.
b) Find the value of the potential at 26.0 cm from the center of the sphere.
c) Find the value of the potential at 16.0 cm from the center of the sphere.

Answers

Answer:

a) 40 V

b) 69.23 V

c) 69.23 V

Explanation:

See attachment for solution

What is the work done in stretching a spring by a distance of 0.5 m if the restoring force is 24N?

Answers

Answer:

3Nm

Explanation:

work = 0.5 x 12 x 0.5 = 3

The work done in stretching the spring by a distance of 0.5 m, with a restoring force of 24 N, is 6 joules.

To calculate the work done in stretching a spring, we can use the formula for work done by a spring:

Work = (1/2) * k *[tex]x^2[/tex]

where:

k = spring constant

x = distance the spring is stretched

Given that the restoring force (F) acting on the spring is 24 N, and the distance the spring is stretched (x) is 0.5 m, we can find the spring constant (k) using Hooke's law:

F = k * x

k = F / x

k = 24 N / 0.5 m

k = 48 N/m

Now, we can calculate the work:

Work = (1/2) * 48 N/m * [tex](0.5 m)^2[/tex]

Work = (1/2) * 48 N/m * [tex]0.25 m^2[/tex]

Work = 6 joules

Therefore, the work done in stretching the spring by a distance of 0.5 m, with a restoring force of 24 N, is 6 joules.

To know more about work done, here

brainly.com/question/2750803

#SPJ2

A loop of wire with cross-sectional area 1 m2 is inserted into a uniform magnetic field with initial strength 1 T. The field is parallel to the axis of the loop. The field begins to grow with time at a rate of 2 Teslas per hour. What is the magnitude of the induced EMF in the loop of wire

Answers

Answer:

The magnitude of the EMF is 0.00055  volts

Explanation:

The induced EMF is proportional to the change in magnetic flux based on Faraday's law:

[tex]emf\,=-\,N\, \frac{d\Phi}{dt}[/tex]

Since in our case there is only one loop of wire, then N=1 and we get:

[tex]emf\,=-\,N\, \frac{d\Phi}{dt}[/tex]

We need to express the magnetic flux given the geometry of the problem;

[tex]\Phi=B\,\,A[/tex]where A is the area of the coil that remains unchanged with time, and B is the magnetic field that does change with time. Therefore the equation for the EMF becomes:

[tex]emf\,=-\,N\, \frac{d\Phi}{dt} = \frac{d\Phi}{dt} =-\frac{d\,(B\,A)}{dt} =-\,A\,\frac{d\,(B)}{dt}=- 1\,m^2(2\,\,T/h})= -2\,\,m^2\,T/(3600\,\,s)= -0.00055\,Volts[/tex]

Which statement describes one feature of a mineral's definite chemical composition?
It always occurs in pure form.
It always contains certain elements.
It cannot form from living or once-living materials.
It cannot contain atoms from more than one element.
N

Answers

Answer:

It always contains certain elements

Explanation:

Minerals can be defined as natural inorganic substances which possess an orderly internal structural arrangement as well as a particular, well known chemical composition, crystal structures and physical properties. Minerals include; quartz, dolomite, basalt, etc. Minerals may occur in isolation or in rock formations.

Minerals contain specific, well known chemical elements in certain ratios that can only vary within narrow limits. This is what we mean by a mineral's definite chemical composition. The structure of these minerals are all well known as well as their atom to atom connectivity.

The statement describes one feature of a mineral's definite chemical composition - It always contains certain elements.

A mineral is a naturally occurring chemical compound, usually of a crystalline form.

A mineral has one specific chemical composition.chemical composition that varies within a specific limited range and the atoms that make up the mineral must occur in specific ratiosthe proportions of the different elements and groups of elements in the mineral.

Thus, The statement describes one feature of a mineral's definite chemical composition - It always contains certain elements.

Learn more:

https://brainly.com/question/690965

6a. A special lamp can produce UV radiation. Which two statements
describe the electromagnetic waves emitted by a UV lamp? *
They have a higher frequency than X-rays.
They have the same wave speed as visible light
They have a longer wavelength than microwaves.
They have a lower frequency than gamma rays.
They have a greater wave speed than radio waves.

Answers

Answer:

The correct options are:

B) They have the same wave speed as visible light

D) They have a lower frequency than gamma rays.

Explanation:

B) Ultraviolet rays, commonly known as UV rays, are a type of electromagnetic ways. As electromagnetic waves, in the layman's term, are all kinds of life that can be identified, all electromagnetic waves (UV rays, visible light, infrared, radio etc) all travel with the same velocity, that is the speed of light, given as v = 3 × 10⁸ m/s

D) The frequency of all electromagnetic rays can be found by electromagnetic spectrum (picture attached below).

We can clearly see in the picture that the frequencies of UV rays lie at about 10¹⁵ - 10¹⁶ Hz which is lower than the frequency of Gamma ray, which lie at about 10²⁰ Hz.

Two identical pendulums have the same period when measured in the factory. While one pendulum swings on earth, the other is taken on a spaceship traveling at 95%% the speed of light. Assume that both pendulums operate under the influence of the same net force and swing through the same angle.
When observed from earth, how many oscillations does the pendulum on the spaceship undergo compared to the pendulum on earth in a given time interval?
a. more oscillations
b. fewer oscillations
c. the same number of oscillations

Answers

Answer:

Explanation:

As a result of impact of time widening, a clock moving as for an observer seems to run all the more gradually than a clock that is very still in the observer's casing.  

At the point when observed from earth, the pendulum on the spaceship takes more time to finish one oscillation.  

Hence, the clock related with that pendulum will run more slow (gives fewer oscillations as observed from the earth)  than the clock related with the pendulum on earth.

Ans => B fewer oscillations

What direct current will produce the same amount of thermal energy, in a particular resistor, as an alternating current that has a maximum value of 2.59 A?

Answers

Answer:

The direct current that will produce the same amount of thermal energy is 1.83 A

Explanation:

Given;

maximum current, I₀ = 2.59 A

The average power dissipated in a resistor connected in an AC source is given as;

[tex]P_{avg} = I_{rms} ^2R[/tex]

Where;

[tex]I_{rms} = \frac{I_o}{\sqrt{2} }[/tex]

[tex]P_{avg} = (\frac{I_o}{\sqrt{2} } )^2R\\\\P_{avg} = \frac{I_o^2R}{2} ----equation(1)[/tex]

The average power dissipated in a resistor connected in a DC source is given as;

[tex]P_{avg} = I_d^2R --------equation(2)[/tex]

where;

[tex]I_d[/tex] is direct current

Solve equation (1) and (2) together;

[tex]I_d^2R = \frac{I_o^2R}{2} \\\\I_d^2 = \frac{I_o^2}{2} \\\\I_d=\sqrt{\frac{I_o^2}{2} } \\\\I_d = \frac{I_o}{\sqrt{2}} \\\\I_d = \frac{2.59}{\sqrt{2} } \\\\I_d = 1.83 \ A[/tex]

Therefore, the direct current that will produce the same amount of thermal energy is 1.83 A

The spectral lines of two stars in a particular eclipsing binary system shift back and forth with a period of 3 months. The lines of both stars shift by equal amounts, and the amount of the Doppler shift indicates that each star has an orbital speed of 88,000 m/s. What are the masses of the two stars

Answers

Answer:

Explanation:

given

T = 3months = 7.9 × 10⁶s

orbital speed = 88 × 10³m/s

V= 2πr÷T

∴ r = (V×T) ÷ 2π

r = (88km × 7.9 × 10⁶s) ÷ 2π

r = 1.10 × 10⁸km

using kepler's 3rd law

mass of both stars = (seperation diatance)³/(orbital speed)²

M₁ + M₂ = (2r)³/([tex]\frac{1}{4}[/tex]year)²

= (1.06 × 10²⁵)/(6.2×10¹³)

1.71×10¹²kg

since M₁ = M₂ =1.71×10¹²kg ÷ 2

M₁ = M₂ = 8.55×10¹¹kg

1. A ski-plane with a total mass of 1200 kg lands towards the west on a frozen lake at 30.0
m/s. The coefficient of kinetic friction between the skis and the ice is 0.200. How far does
the plane slide before coming to a stop?

Answers

Answer:

d = 229.5 m

Explanation:

It is given that,

Total mass of a ski-plane is 1200 kg

It lands towards the west on a frozen lake at 30.0  m/s.

The coefficient of kinetic friction between the skis and the ice is 0.200.

We need to find the distance covered by the plane before coming to rest. In this case,

[tex]\mu mg=ma\\\\a=\mu g\\\\a=0.2\times 9.8\\\\a=1.96\ m/s^2[/tex]

It is decelerating, a = -1.96 m/s²

Now using the third equation of motion to find the distance covered by the plane such that :

[tex]v^2-u^2=2ad\\\\d=\dfrac{-u^2}{2a}\\\\d=\dfrac{-(30)^2}{2\times -1.96}\\\\d=229.59\ m[/tex]

So, the plane slide a distance of 229.5 m.  

(a) According to Hooke's Law, the force required to hold any spring stretched x meters beyond its natural length is f(x)=kx. Suppose a spring has a natural length of 20 cm. If a 25-N force is required to keep it stretched to a length of 30 cm, how much work is required to stretch it from 20 cm to 25 cm?
(b) Find the area of the region enclosed by one loop of the curve r=2sin(5θ).

Answers

Answer:

a) The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules, b) The area of the region enclosed by one loop of the curve [tex]r(\theta) = 2\cdot \sin 5\theta[/tex] is [tex]4\pi[/tex].

Explanation:

a) The work, measured in joules, is a physical variable represented by the following integral:

[tex]W = \int\limits^{x_{f}}_{x_{o}} {F(x)} \, dx[/tex]

Where

[tex]x_{o}[/tex], [tex]x_{f}[/tex] - Initial and final position, respectively, measured in meters.

[tex]F(x)[/tex] - Force as a function of position, measured in newtons.

Given that [tex]F = k\cdot x[/tex] and the fact that [tex]F = 25\,N[/tex] when [tex]x = 0.3\,m - 0.2\,m[/tex], the spring constant ([tex]k[/tex]), measured in newtons per meter, is:

[tex]k = \frac{F}{x}[/tex]

[tex]k = \frac{25\,N}{0.3\,m-0.2\,m}[/tex]

[tex]k = 250\,\frac{N}{m}[/tex]

Now, the work function is obtained:

[tex]W = \left(250\,\frac{N}{m} \right)\int\limits^{0.05\,m}_{0\,m} {x} \, dx[/tex]

[tex]W = \frac{1}{2}\cdot \left(250\,\frac{N}{m} \right)\cdot [(0.05\,m)^{2}-(0.00\,m)^{2}][/tex]

[tex]W = 0.313\,J[/tex]

The work required to stretch the spring from 20 centimeters to 25 centimeters is 0.313 joules.

b) Let be [tex]r(\theta) = 2\cdot \sin 5\theta[/tex]. The area of the region enclosed by one loop of the curve is given by the following integral:

[tex]A = \int\limits^{2\pi}_0 {[r(\theta)]^{2}} \, d\theta[/tex]

[tex]A = 4\int\limits^{2\pi}_{0} {\sin^{2}5\theta} \, d\theta[/tex]

By using trigonometrical identities, the integral is further simplified:

[tex]A = 4\int\limits^{2\pi}_{0} {\frac{1-\cos 10\theta}{2} } \, d\theta[/tex]

[tex]A = 2 \int\limits^{2\pi}_{0} {(1-\cos 10\theta)} \, d\theta[/tex]

[tex]A = 2\int\limits^{2\pi}_{0}\, d\theta - 2\int\limits^{2\pi}_{0} {\cos10\theta} \, d\theta[/tex]

[tex]A = 2\cdot (2\pi - 0) - \frac{1}{5}\cdot (\sin 20\pi-\sin 0)[/tex]

[tex]A = 4\pi[/tex]

The area of the region enclosed by one loop of the curve [tex]r(\theta) = 2\cdot \sin 5\theta[/tex] is [tex]4\pi[/tex].

We observe that a small sample of material placed in a non-uniform magnetic field accelerates toward a region of stronger field. What can we say about the material?

Answers

Answer:

C) It is either ferromagnetic or paramagnetic

Explanation:

The complete question is given below

We observe that a small sample of material placed in a non-uniform magnetic field accelerates toward a region of stronger field. What can we say about the material?

A) It must be ferromagnetic.

B) It must be paramagnetic.

C) It is either ferromagnetic or paramagnetic.

D) It must be diamagnetic.

A ferromagnetic material will respond towards a magnetic field. They are those materials that are attracted to a magnet. Ferromagnetism is associated with our everyday magnets and is the strongest form of magnetism in nature. Iron and its alloys is very good example of a material that readily demonstrate ferromagnetism.

Paramagnetic materials are weakly attracted to an externally applied magnetic field. They usually accelerate towards an electric field, and form internal induced magnetic field in the direction of the external magnetic field.

The difference is that ferromagnetic materials can retain their magnetization when the externally applied magnetic field is removed, unlike paramagnetic materials that do not retain their magnetization.

In contrast, a diamagnetic material is repelled away from an externally applied magnetic field.

Given small samples of three liquids, you are asked to determine their refractive indexes. However, you do not have enough of each liquid to measure the angle of refraction for light retracting from air into the liquid. Instead, for each liquid, you take a rectangular block of glass (n= 1.52) and Place a drop of the liquid on the top surface f the block. you shine a laser beam with wavelength 638 nm in vacuum at one Side of the block and measure the largest angle of incidence for which there is total internal reflection at the interface between the glass and the liquid. Your results are given in the table.

Liquid A B C
θ 52.0 44.3 36.3

Required:
a. What is the refractive index of liquid A at this wavelength?
b. What is the refractive index of liquid B at this wavelength?
c. What is the refractive index of liquid C at this wavelength?

Answers

Answer:

A — 1.198B — 1.062C — 0.900

Explanation:

The index of refraction of the liquid can be computed from ...

  [tex]n_i\sin{(\theta_t)}=n_t[/tex]

where ni is the index of refraction of the glass block (1.52) and θt is the angle at which there is total internal refraction. nt is the index of refraction of the liquid.

For the given incidence angles, the computed indices of refraction are ...

  A: n = 1.52sin(52.0°) = 1.198

  B: n = 1.52sin(44.3°) = 1.062

  C: n = 1.52sin(36.3°) = 0.900

At what minimum speed must a roller coaster be traveling when upside down at the top of a 7.4 m radius loop-the-loop circle so the passengers will not fall out?

Answers

Answer:

v = 8.5 m/s

Explanation:

In order for the passengers not to fall out of the loop circle, the centripetal force must be equal to the weight of the passenger. Therefore,

Weight = Centripetal Force

but,

Weight = mg

Centripetal Force = mv²/r

Therefore,

mg = mv²/r

g = v²/r

v² = gr

v = √gr

where,

v = minimum speed required = ?

g = 9.8 m/s²

r = radius = 7.4 m

Therefore,

v = √(9.8 m/s²)(7.4 m)

v = 8.5 m/s

Minimum speed for a roller coaster while travelling upside down  so that the person will not fall out = 8.5 m/s

For a roller coaster be traveling when upside down the Force balance equation can be written for a person of mass m.

In the given condition the weight of the person must be balanced by the centrifugal force.

and for the person not to fall out centrifugal force must be greater than or equal to the weight of the person

According to the Newton's Second Law of motion we can write force balance

[tex]\rm mv^2/r -mg =0 \\\\mg = mv^2 /r (Same\; mass) \\\\\\g = v^2/r\\\\v = \sqrt {gr}......(1)[/tex]

Given Radius of loop = r = 7.4 m

Putting the value  of r = 7.4 m  in equation (1) we get

[tex]\sqrt{9.8\times 7.4 } = \sqrt{72.594} = 8.5\; m/s[/tex]

For more information please refer to the link below

https://brainly.com/question/13259103

Blue light (λ = 475 nm) is sent through a single slit with a width of 2.1 µm. What is the maximum possible number of bright fringes, including the central maximum, produced on the screen? (Hint: What is the largest angle that can be used?)

Answers

Answer:

  m = 4

Explanation:

The expression that explains the constructive interference of a diffraction pattern is

         a sin θ = m λ

where a  is the width of the slit and λ the wavelength

         sin θ = m λ / a

The maximum value is for when the sine is 1, let's substitute

         1 = m λ/a  

         m = a /λ

let's reduce the magnitudes to the SI system

        a = 2.1 um = 2.1 10⁻⁶

        lam = 475 nm = 475 10⁻⁹ m

let's calculate

        m = 2.1  10⁻⁶ / 475 10⁻⁹

        m = 4.42

with m must be an integer the highest value is

         m = 4

⦁ A 68 kg crate is dragged across a floor by pulling on a rope attached to the crate and inclined 15° above the horizontal. (a) If the coefficient of static friction is 0.5, what minimum force magnitude is required from the rope to start the crate moving? (b) If µk= 0.35, what is the magnitude of the initial acceleration of the crate?

Answers

Answer:

303.29N and 1.44m/s^2

Explanation:

Make sure to label each vector with none, mg, fk, a, FN or T

Given

Mass m = 68.0 kg

Angle θ = 15.0°

g = 9.8m/s^2

Coefficient of static friction μs = 0.50

Coefficient of kinetic friction μk =0.35

Solution

Vertically

N = mg - Fsinθ

Horizontally

Fs = F cos θ

μsN = Fcos θ

μs( mg- Fsinθ) = Fcos θ

μsmg - μsFsinθ = Fcos θ

μsmg = Fcos θ + μsFsinθ

F = μsmg/ cos θ + μs sinθ

F = 0.5×68×9.8/cos 15×0.5×sin15

F = 332.2/0.9659+0.5×0.2588

F =332.2/1.0953

F = 303.29N

Fnet = F - Fk

ma = F - μkN

a = F - μk( mg - Fsinθ)

a = 303.29 - 0.35(68.0 * 9.8- 303.29*sin15)/68.0

303.29-0.35( 666.4 - 303.29*0.2588)/68.0

303.29-0.35(666.4-78.491)/68.0

303.29-0.35(587.90)/68.0

(303.29-205.45)/68.0

97.83/68.0

a = 1.438m/s^2

a = 1.44m/s^2

2. A 2.0-kg block slides down an incline surface from point A to point B. Points A and B are 2.0 m apart. If the coefficient of kinetic friction is 0.26 and the block is starting at rest from point A. What is the work done by friction force

Answers

Answer:a

Explanation:

A 2.0-kg object moving 5.0 m/s collides with and sticks to an 8.0-kg object initially at rest. Determine the kinetic energy lost by the system as a result of this collision.

Answers

Answer:

20J

Explanation:

In a collision, whether elastic or inelastic, momentum is always conserved. Therefore, using the principle of conservation of momentum we can first get the final velocity of the two bodies after collision. This is given by;

m₁u₁ + m₂u₂ = (m₁ + m₂)v          ---------------(i)

Where;

m₁ and m₂ are the masses of first and second objects respectively

u₁ and u₂ are the initial velocities of the first and second objects respectively

v  is the final velocity of the two objects after collision;

From the question;

m₁ = 2.0kg

m₂ = 8.0kg

u₁ = 5.0m/s

u₂ = 0        (since the object is initially at rest)

Substitute these values into equation (i) as follows;

(2.0 x 5.0) + (8.0 x 0) = (2.0 + 8.0)v

(10.0) + (0) = (10.0)v

10.0 = 10.0v

v = 1m/s

The two bodies stick together and move off with a velocity of 1m/s after collision.

The kinetic energy(KE₁) of the objects before collision is given by

KE₁ = [tex]\frac{1}{2}[/tex]m₁u₁² +  [tex]\frac{1}{2}[/tex]m₂u₂²       ---------------(ii)

Substitute the appropriate values into equation (ii)

KE₁ = ([tex]\frac{1}{2}[/tex] x 2.0 x 5.0²) +  ([tex]\frac{1}{2}[/tex] x 8.0 x 0²)

KE₁ = 25.0J

Also, the kinetic energy(KE₂) of the objects after collision is given by

KE₂ = [tex]\frac{1}{2}[/tex](m₁ + m₂)v²      ---------------(iii)

Substitute the appropriate values into equation (iii)

KE₂ = [tex]\frac{1}{2}[/tex] ( 2.0 + 8.0) x 1²

KE₂ = 5J

The kinetic energy lost (K) by the system is therefore the difference between the kinetic energy before collision and kinetic energy after collision

K = KE₂ - KE₁

K = 5 - 25

K = -20J

The negative sign shows that energy was lost. The kinetic energy lost by the system is 20J

Other Questions
What is the rate at whichproducers make organic matter?A. the rate of limiting nutrientsB. the rate of limiting factorsC. the rate of primary productivityD. the rate of influxion The velocity of an object in meters per second varies directly with time in seconds since the object was dropped, as represented by the table. The acceleration due to gravity is the constant of variation. What is the acceleration due to gravity of a falling object? In response to the financial crisis that began in 2007, the government began to bail out banks deemed "too big to fail." Critics of this action argued that this would create the prospect of future bailouts and encourage banks to be fiscally irresponsible in the future. This illustrates When hydrocarbons are burned in a limited amount of air, both CO and CO2 form. When 0.430 g of a particular hydrocarbon was burned in air, 0.446 g of CO, 0.700 g of CO2, and 0.430 g of H2O were formed.Required:a. What is the empirical formula of the compound? b. How many grams of O2 were used in the reaction? c. How many grams would have been required for complete combustion? "Niagara at most should be my furthest Post in that quarter... By this Means we may keep up aTrade with the most distant Nations, retain their good Opinion, and totally prevent any Jealousyof our intending them any ill. ... As we increase in Numbers on this Continent, it's easy and Safeto advance our settlements in Townships, though this I would do only by Cession or by Purchaseof the Lands to prevent the Shadow of an Excuse for the Indians to quarrel with us Select the option in which the words are in the correct alphabetical order. A.block, berry, bright, button, bottom B.bright, block,on C.bottom, block, berry, bright, button button, bottom, berry D.berry, block, bottom, bright, butt how to write short story about my self Factor by grouping 5x^3+6x^2+25x+30 f the mass of the block is 2 kg, the radius of the circle is 0.8 m, and the speed of the block is 3 m/s, what is the tension in the string at the top of the circle The amino acid methionine is specified by the codon 5'-AUG, and a methionine tRNA can have the anticodon sequence 5'-CAU. Which of the following is the base sequence of the template strand of the part of the tRNA gene corresponding to the anticodon?a. 5'-GTAb. 5'-CAUc. 5'-CATd. 5'-UACe. 5'-AUGf. 5'-GUAg. 5'-TACh. 5'-ATG Use the interactive to graph the line with a y-intercept of 2 and slope of 1/3.What is the x-intercept of the line?6336 What is the equivalent radian measure of 540?1radians3radiansradians33x radiansDONE 3. Persistence is a theme in "The Tortoise and the Hare."trueOfalse Simplify The square root of 5 (6-4 the square root of 3) if you graph the system of Inequalities given below, which points would lie in the solution set? Select all the correct answers.x-y2-42x-ys 52y+ x>1 Turn on Write equation. What you see is an equation that shows the original uranium atom on the left. The boxes on the right represent the daughter productthe atom produced by radioactive decayand the emitted alpha particle. translate into an algebraic expression: x is increased by 50% and decreased by 30% . What is the result? 3^x+x=17solve for x which event was a consequence of the enlightment PLEASEEE HELP1 What is the order of this from least to greatest. 4.37, 5.844, 5 21/25,117/20