Calculate the cross product assuming that u×v=⟨7,6,0⟩.(u−7v)×(u+7v)

Answers

Answer 1

The cross product assuming that u×v=⟨7,6,0⟩.(u−7v)×(u+7v) is                ⟨-49, -7u_2 + 6u_3, -7u_3 + 6u_2⟩.

The cross product of two vectors using the distributive property:

(u - 7v) × (u + 7v) = u × u + u × 7v - 7v × u - 7v × 7v

Also, cross product is anti-commutative. Specifically, the cross product of v × w is equal to the negative of the cross product of w × v. So, we can simplify the expression as follows:

(u - 7v) × (u + 7v) = u × 7v - 7v × u - 7(u × 7v)

Now, using u × v = ⟨7, 6, 0⟩ to evaluate the cross products:

u × 7v = 7(u × v) = 7⟨7, 6, 0⟩ = ⟨49, 42, 0⟩

7v × u = -u × 7v = -⟨7, 6, 0⟩ = ⟨-7, -6, 0⟩

Substituting these values into the expression:

(u - 7v) × (u + 7v) = ⟨0, 7u_2 - 6u_3, 7u_3 - 6u_2⟩ - 7⟨7, 6, 0⟩ - 7⟨-7, -6, 0⟩

= ⟨0, 7u_2 - 6u_3, 7u_3 - 6u_2⟩ - ⟨49, 42, 0⟩ + ⟨49, 42, 0⟩

= ⟨-49, -7u_2 + 6u_3, -7u_3 + 6u_2⟩

Therefore, (u - 7v) × (u + 7v) = ⟨-49, -7u_2 + 6u_3, -7u_3 + 6u_2⟩.

Know more about cross product here:

https://brainly.com/question/30284978

#SPJ11


Related Questions

consider the function f(x)={xif x<11xif x≥1 evaluate the definite integral. ∫08f(x)dx

Answers

To evaluate the definite integral [tex]\int\limit {0^{8} fx} \, dx[/tex], we first need to identify the values of the function f(x) in the given interval [0, 8].

Since 0 < 1, we know that f(0) = 0. Similarly, since 8 < 11, we know that f(8) = 8.

Next, we need to evaluate the integral of f(x) over the interval [0, 8]. Since the function f(x) is defined piecewise, we need to split the interval into two parts: [0, 1) and [1, 8].

Over the interval [0, 1), the function f(x) is equal to 0. Therefore, the integral of f(x) over this interval is equal to 0.

Over the interval [1, 8], the function f(x) is equal to x. Therefore, the integral of f(x) over this interval is equal to:

[tex]\int\limits {1^{8} x} \, dx=\int\limit \frac{x^{2} }{2}} 1^{8} = \frac{8^{2} }{2} -\frac{1^{2} }{2}=28[/tex]

So, the answer to the question is 28.

Learn more about integral here:

https://brainly.com/question/18125359

#SPJ11

how high must a 400-gallon rectangular tank be if the base is a square 3ft 9in on a side? (1 cu ft approx 7.48 gallons)

Answers

The height of the 400-gallon rectangular tank with a square base measuring 3ft 9in on a side must be approximately 3.8 feet.

To determine the height of a 400-gallon rectangular tank with a square base measuring 3ft 9in on a side, we first need to convert the tank's volume from gallons to cubic feet.
Since 1 cu ft is approximately 7.48 gallons, we can calculate the volume in cubic feet as follows:
400 gallons / 7.48 gallons per cu ft ≈ 53.48 cu ft
Now, we know the base of the rectangular tank is a square with sides measuring 3ft 9in, which is equivalent to 3.75 ft (since 9 inches is 0.75 ft). The area of the square base can be calculated by squaring the length of one side:
3.75 ft * 3.75 ft = 14.06 sq ft
To find the height of the tank, we can divide the volume of the tank by the area of the base:
53.48 cu ft / 14.06 sq ft ≈ 3.8 ft
Therefore, the height of the 400-gallon rectangular tank with a square base measuring 3ft 9in on a side must be approximately 3.8 feet.

To know more about Volume & Area visit:
https://brainly.com/question/15585435
#SPJ11

given the function f(x)=2x−6, find the net signed area between f(x) and the x-axis over the interval [−6,6]. do not include any units in your answer.

Answers

The net signed area between f(x) = 2x - 6 and the x-axis over the interval [-6, 6] is -72.

To find the net signed area between the function f(x) = 2x - 6 and the x-axis over the interval [-6, 6], we need to calculate the definite integral of f(x) from -6 to 6.

The definite integral of a function represents the signed area between the function and the x-axis over a given interval. Since f(x) is a linear function, the area between the function and the x-axis will be in the form of a trapezoid.

The definite integral of f(x) from -6 to 6 can be calculated as follows:

∫[-6,6] (2x - 6) dx

To evaluate this integral, we can apply the power rule of integration:

= [x^2 - 6x] evaluated from -6 to 6

Substituting the upper and lower limits:

= (6^2 - 6(6)) - (-6^2 - 6(-6))

Simplifying further:

= (36 - 36) - (36 + 36)

= 0 - 72

= -72

Know more about definite integral here:

https://brainly.com/question/29974649

#SPJ11

Find the value(s) of a making v= 6a i – 3j parallel to w*= ał i +6j. a = ((3)^(1/3) (If there is more than one value of a, enter the values as a comma-separated list.)

Answers

Hence, the value(s) of a that make v parallel to w* are a = 2ł√3 or a = -2ł√3. Note that for these values of a, the unit vectors u and u* are equal, which means that v and w* are parallel.

To make vector v parallel to vector w*, we need to find a scalar multiple of w* that has the same direction as v.

The direction of v is given by its unit vector, which is:

u = v/|v| = (6a i - 3j) / |6a i - 3j| = (6a i - 3j) / √[(6a)^2 + (-3)^2]

The direction of w* is given by its unit vector, which is:

u* = w*/|w*| = (ał i + 6j) / |ał i + 6j| = (ał i + 6j) / √[(ał)^2 + 6^2]

For v to be parallel to w*, the unit vectors u and u* must be equal, which means their components must be proportional. Therefore, we can write:

6a / √[(6a)^2 + (-3)^2] = ał / √[(ał)^2 + 6^2] = k, where k is the proportionality constant.

Squaring both sides of this equation, we get:

(6a)^2 / [(6a)^2 + 9] = (ał)^2 / [(ał)^2 + 36] = k^2

Simplifying and solving for a, we get:

(36a^2) / [(36a^2) + 9] = (a^2ł^2) / [(a^2ł^2) + 36^2]

Multiplying both sides by [(36a^2) + 9] [(a^2ł^2) + 36^2], we get:

36a^2 (a^2ł^2 + 36^2) = (36a^2 + 9) a^2ł^2

Simplifying and rearranging, we get:

3a^2ł^2 - 36a^2 = 0

Factorizing and solving for a, we get:

a^2 (3ł^2 - 36) = 0

Therefore, a = 0 or a = ±6ł/√3 = ±2ł√3.

Since a cannot be zero (otherwise, v would be the zero vector), the only possible values for a are a = 2ł√3 or a = -2ł√3.

To know more about vectors,

https://brainly.com/question/29740341

#SPJ11

find the length of the loan in months, if $500 is borrowed with an annual simple interest rate of 13 nd with $565 repaid at the end of the loan.

Answers

The length of the loan in months is 12 months.

To find the length of the loan in months, we first need to calculate the total amount of interest paid on the loan.
The formula for simple interest is:
Interest = Principal x Rate x Time
Where:
- Principal = $500
- Rate = 13% per year = 0.13
- Time = the length of the loan in years
We want to find the length of the loan in months, so we need to convert the interest rate and loan length accordingly.
First, let's calculate the interest paid:
Interest = $500 x 0.13 x Time
$65 = $500 x 0.13 x Time
Simplifying:
Time = $65 / ($500 x 0.13)
Time = 1.00 years
Now we need to convert 1 year into months:
12 months = 1 year
1 month = 1/12 year
So the length of the loan in months is:
Time = 1.00 years x 12 months/year
Time = 12 months
Therefore, the length of the loan in months is 12 months.

Learn more about loan here

https://brainly.com/question/25696681

#SPJ11

let a = {o, 1}. prove that the set ii a is numerically equivalent to r.

Answers

To prove that the set a = {0, 1} is numerically equivalent to r (the set of real numbers), we need to find a bijective function that maps each element of a to a unique element in r.

One way to do this is to use the binary representation of real numbers. Specifically, we can define the function f: a -> r as follows:

- For any x in a, we map it to the real number f(x) = 0.x_1 x_2 x_3 ..., where x_i is the i-th digit of the binary representation of x. In other words, we take the binary representation of x and interpret it as a binary fraction in [0, 1).

For example, f(0) = 0.000..., which corresponds to the real number 0. f(1) = 0.111..., which corresponds to the real number 0.999..., the largest number less than 1 in binary.

We can see that f is a bijection, since every binary fraction in [0, 1) has a unique binary representation, and hence corresponds to a unique element in a. Also, every element in a corresponds to a unique binary fraction in [0, 1), which is mapped by f to a unique real number.

Therefore, we have proven that a is numerically equivalent to r, since we have found a bijection between the two sets.

To know more about bijection refer here:

https://brainly.com/question/13012424?#

#SPJ11

why is cos(2022pi easy to compute by hand

Answers

The value of cos(2022π) is easy to compute by hand because the argument (2022π) is a multiple of 2π, which means it lies on the x-axis of the unit circle.

Recall that the unit circle is the circle centered at the origin with radius 1 in the Cartesian plane. The x-coordinate of any point on the unit circle is given by cos(θ), where θ is the angle between the positive x-axis and the line segment connecting the origin to the point. Similarly, the y-coordinate of the point is given by sin(θ).

Since 2022π is a multiple of 2π, it represents an angle that has completed a full revolution around the unit circle. Therefore, the point corresponding to this angle lies on the positive x-axis, and its x-coordinate is equal to 1. Hence, cos(2022π) = 1.

In summary, cos(2022π) is easy to compute by hand because the argument lies on the x-axis of the unit circle, and its x-coordinate is equal to 1.

To know more about line segment refer here:

https://brainly.com/question/30072605

#SPJ11

find the value of the six trig functions if the conditions provided hold. cos(2θ) = 3/5 and 90º <θ< 180°

Answers

The values of the six trigonometric functions are:

sin(θ) = -sqrt(1/5)

cos(θ) = -sqrt(4/5)

tan(θ) = -1/2

csc(θ) = -sqrt(5)

sec(θ) = -sqrt(5)/2

cot(θ) = -2

We can use the Pythagorean identity to find sin(2θ) since we know cos(2θ):

sin^2(2θ) + cos^2(2θ) = 1

sin^2(2θ) + (3/5)^2 = 1

sin^2(2θ) = 16/25

sin(2θ) = ±4/5

Since 90º < θ < 180°, we know that sin(θ) is negative. Therefore:

sin(2θ) = -4/5

Now we can use the double angle formulas to find the values of the six trig functions:

sin(θ) = sin(2θ/2) = ±sqrt[(1-cos(2θ))/2] = ±sqrt[(1-3/5)/2] = ±sqrt(1/5)

cos(θ) = cos(2θ/2) = ±sqrt[(1+cos(2θ))/2] = ±sqrt[(1+3/5)/2] = ±sqrt(4/5)

tan(θ) = sin(θ)/cos(θ) = (±sqrt(1/5))/(±sqrt(4/5)) = ±sqrt(1/4) = ±1/2

csc(θ) = 1/sin(θ) = ±sqrt(5)

sec(θ) = 1/cos(θ) = ±sqrt(5/4) = ±sqrt(5)/2

cot(θ) = 1/tan(θ) = ±2

Therefore, the six trig functions are:

sin(θ) = -sqrt(1/5)

cos(θ) = -sqrt(4/5)

tan(θ) = -1/2

csc(θ) = -sqrt(5)

sec(θ) = -sqrt(5)/2

cot(θ) = -2

To learn more about trigonometric functions visit : https://brainly.com/question/25618616

#SPJ11

use laplace transforms to solve the integral equation y(t) 16∫t0(t−v)y(v)dv=12t. the first step is to apply the laplace transform and solve for y(s)=l(y(t))

Answers

The solution to the integral equation using Laplace transform is:

y(t) = (1/16)e^2t - (1/16)e^-2t + (1/4)

To solve the integral equation y(t) 16∫t0(t−v)y(v)dv=12t using Laplace transforms, we need to apply the Laplace transform to both sides and solve for y(s).

Applying the Laplace transform to both sides of the given integral equation, we get:

Ly(t) * 16[1/s^2] * [1 - e^-st] * Ly(t) = 1/(s^2) * 1/(s-1/2)

Simplifying the above equation and solving for Ly(t), we get:

Ly(t) = 1/(s^3 - 8s)

Now, we need to find the inverse Laplace transform of Ly(t) to get y(t). To do this, we need to decompose Ly(t) into partial fractions as follows:

Ly(t) = A/(s-2) + B/(s+2) + C/s

Solving for the constants A, B, and C, we get:

A = 1/16, B = -1/16, and C = 1/4

Therefore, the inverse Laplace transform of Ly(t) is given by:

y(t) = (1/16)e^2t - (1/16)e^-2t + (1/4)

Hence, the solution to the integral equation is:

y(t) = (1/16)e^2t - (1/16)e^-2t + (1/4)

For more questions like Integral click the link below:

https://brainly.com/question/22008756

#SPJ11

find a formula for the general term an of the sequence, assuming that the pattern of the first few terms continues. (assume that n begins with 1.) 1, − 1 6 , 1 36 , − 1 216 , 1 1296 , . . .

Answers

Assuming that the pattern of the first few terms continues, the formula for the general term an of the sequence is:
an = (-1)^(n+1) / 6^(n-1)

To find a formula for the general term an of this sequence, we need to identify the pattern in the given terms. Looking at the sequence, we can see that each term is either a positive or negative fraction with a denominator that is a power of 6. Specifically, the denominators of the terms are 1, 6, 36, 216, 1296, which are all powers of 6.

Moreover, we can see that the signs of the terms alternate: the first term is positive, the second term is negative, the third term is positive, and so on.

Based on these observations, we can write the formula for the nth term as follows:

an = (-1)^(n+1) / 6^(n-1)

Here, (-1)^(n+1) gives the alternating signs, and 6^(n-1) gives the denominator that is a power of 6.

Therefore, assuming that the pattern of the first few terms continues, the formula for the general term an of the sequence is:

an = (-1)^(n+1) / 6^(n-1)

Learn more about the general term:

https://brainly.com/question/28999301

#SPJ11

find integral from (-1)^4 t^3 dt

Answers

The integral of [tex]t^3[/tex] from -1 to 4 is 63.75

To find the integral of [tex]t^3[/tex] from -1 to 4,

-Determine the antiderivative of [tex]t^3[/tex].

-The antiderivative of [tex]t^3[/tex] is [tex]( \frac{1}{4} )t^4 + C[/tex], where C is the constant of integration.

- Apply the Fundamental Theorem of Calculus. Evaluate the antiderivative at the upper limit (4) and subtract the antiderivative evaluated at the lower limit (-1).
[tex](\frac{1}{4}) (4)^4 + C - [(\frac{1}{4} )(-1)^4 + C] = (\frac{1}{4}) (256) - (\frac{1}{4}) (1)[/tex]

-Simplify the expression.
[tex](64) - (\frac{1}{4} ) = 63.75[/tex]

So, the integral of [tex]t^3[/tex] from -1 to 4 is 63.75.

To know more about "Fundamental Theorem of Calculus" refer here:

https://brainly.com/question/30761130#

#SPJ11

The heights (in inches) of a sample of eight mother daughter pairs of subjects were measured. (i point Using a speeadsheet with the paired mother/daughter heights, the lincar correlation cocfficient is found to be 0.693. Find the critical valuc, assuming a 0.05 significance level Is there safficient evidence to support the claim that there is a lincar correlation between the heights of mothers and the heights of their daughters? Critical value 0.707, there is not sufficient evidence to support the claim of a linear correlation between beights of mothers and heights of their daughters Critical value 0.707, there is sufficient evidence to support the claim of a linear correlation between heights of mothers and heights of their daughters O Critical value 0.666, there is sot sufficient evidence to support the claim of a linear cornelation between heights of mothers and heights of their daughters Critical value 0.666there is sufficient evidence to support the claim of a lincar correlation between heights of mothers and heights of their daughters.

Answers

Thus, the critical value is 0.707 and there is not enough evidence to support the claim that there is a linear correlation between the heights of mothers and their daughters.

Based on the information provided, the linear correlation coefficient between the heights of mothers and daughters is 0.693.

To determine if there is sufficient evidence to support the claim that there is a linear correlation between these heights, we need to find the critical value assuming a significance level of 0.05.Using a two-tailed test with 6 degrees of freedom (n-2=8-2=6), the critical value is 0.707. If the calculated correlation coefficient is greater than 0.707 or less than -0.707, then we can reject the null hypothesis that there is no linear correlation between the heights of mothers and daughters.In this case, the calculated correlation coefficient of 0.693 is less than the critical value of 0.707. Therefore, we fail to reject the null hypothesis and there is not sufficient evidence to support the claim of a linear correlation between the heights of mothers and their daughters.

Know more about the linear correlation coefficient

https://brainly.com/question/16814950

#SPJ11

The function, f, gives the number of copies a book has sold w weeks after it was published. the equation f(w)=500⋅2w defines this function.

select all domains for which the average rate of change could be a good measure for the number of books sold.

Answers

The average rate of change can be a good measure for the number of books sold when the function is continuous and exhibits a relatively stable and consistent growth or decline.

The function f(w) = 500 * 2^w represents the number of copies sold after w weeks since the book was published. To determine the domains where the average rate of change is a good measure, we need to consider the characteristics of the function.

Since the function is exponential with a base of 2, it will continuously increase as w increases. Therefore, for positive values of w, the average rate of change can be a good measure for the number of books sold as it represents the growth rate over a specific time interval.

However, it's important to note that as w approaches negative infinity (representing weeks before the book was published), the average rate of change may not be a good measure as it would not reflect the actual sales pattern during that time period.

In summary, the domains where the average rate of change could be a good measure for the number of books sold in the given function are when w takes positive values, indicating the weeks after the book was published and reflecting the continuous growth in sales.

Learn more about  average rate here:

https://brainly.com/question/28739131

#SPJ11

Determine whether the series is convergent or divergent.(Sigma) Σ (From n=1 to [infinity]): cos^2(n) / (n^5 + 1)You may use: Limit Comparison Test, Integral Test, Comparison Test, P-test, and the test for divergence.

Answers

We can use the Comparison Test to determine the convergence of the given series:

Since 0 ≤ cos^2(n) ≤ 1 for all n, we have:

0 ≤ cos^2(n) / (n^5 + 1) ≤ 1 / (n^5)

The series ∑(n=1 to ∞) 1 / (n^5) is a convergent p-series with p = 5, so by the Comparison Test, the given series is also convergent.

Therefore, the series ∑(n=1 to ∞) cos^2(n) / (n^5 + 1) is convergent.

To know more about comparison test , refer here :

https://brainly.com/question/30761693#
#SPJ11

The process of inserting a removable disk of some sort (usually a USB thumb drive) containing an updated BIOS file is called ________

Answers

The process of inserting a removable disk of some sort (usually a USB thumb drive) containing an updated BIOS file is called flashing.

Flashing refers to the process of updating or replacing the firmware (software that runs on a device) of a hardware device. BIOS flashing is a specific example of flashing that involves updating or replacing the BIOS firmware on a computer motherboard. Flashing is often done to fix bugs or security vulnerabilities in the firmware, as well as to add new features or improve performance. In the case of BIOS flashing, it is important to follow the manufacturer's instructions carefully and to ensure that the update file is compatible with the specific motherboard and BIOS version. Failure to do so can result in permanent damage to the motherboard or other hardware components.

Know more about Flashing  here:

https://brainly.com/question/27800037

#SPJ11

find y'. y = log6(x4 − 5x3 2)

Answers

We use the chain rule and the power rule of differentiation and get the value of y' as, [tex]y' = (4x^3 - (15/2)x^{(1/2)}) / ln(6).[/tex]

The given equation defines a function y that is the natural logarithm (base e) of an algebraic expression involving x.

[tex]y = log6(x^4 - 5x^{(3/2)})[/tex]

We can find the derivative of y with respect to x using the chain rule and the power rule of differentiation.

The derivative of y is denoted as y' and is obtained by differentiating the expression inside the logarithm with respect to x, and then multiplying the result by the reciprocal of the natural logarithm of the base.

[tex]y' = (1 / ln(6)) * d/dx (x^4 - 5x^{(3/2}))[/tex]

The final expression for y' involves terms that include the power of x raised to the third and the half power, which can be simplified as necessary.

[tex]y' = (1 / ln(6)) * (4x^3 - (15/2)x^{(1/2)})[/tex]

Therefore, [tex]y' = (4x^3 - (15/2)x^{(1/2)}) / ln(6).[/tex]

To know more about chain rule refer here:

https://brainly.com/question/30117847

#SPJ11

Kenna has a gift to wrap that is in the shape of a rectangular prism. The length is 12


inches, the width is 10 inches, and the height is 5 inches.
.


Write an expression that can be used to calculate the amount of wrapping paper


needed to cover this


prism.


• Will Kenna have enough wrapping paper to cover this prism if she purchases a roll


of wrapping paper that


covers 4 square feet?

Answers

The amount of wrapping paper needed to cover the prism is 2 * (12 * 10 + 12 * 5 + 10 * 5) square inches, and Kenna would have enough wrapping paper if she purchases a roll that covers 4 square feet.

To calculate the amount of wrapping paper needed to cover the rectangular prism, we need to find the surface area of the prism.

The surface area of a rectangular prism is calculated by adding the areas of all six faces.

Given the dimensions of the rectangular prism:

Length = 12 inches

Width = 10 inches

Height = 5 inches

The expression to calculate the amount of wrapping paper needed is:

2 * (length * width + length * height + width * height)

Substituting the values:

2 * (12 * 10 + 12 * 5 + 10 * 5) = 2 * (120 + 60 + 50) = 2 * 230 = 460 square inches

Therefore, Kenna would need 460 square inches of wrapping paper to cover the prism.

To determine if Kenna has enough wrapping paper, we need to convert the square inches to square feet since the roll of wrapping paper covers 4 square feet.

1 square foot = 144 square inches

Therefore, 460 square inches is equivalent to: 460 / 144 ≈ 3.19 square feet

Since Kenna purchases a roll of wrapping paper that covers 4 square feet, she would have enough wrapping paper to cover the prism.

Learn more about amount here:

https://brainly.com/question/31907517

#SPJ11

Toss a fair coin 5 times, what is the probability of seeing a total of 3 heads and 2 tails?

Answers

The probability of seeing a total of 3 heads and 2 tails in 5 tosses of a fair coin is 31.25%.

To find the probability of getting 3 heads and 2 tails when tossing a fair coin 5 times, we can use the binomial probability formula. The formula is:

P(X=k) = C(n, k) * [tex](p^k) * (q^{(n-k)})[/tex]

Where:
- P(X=k) is the probability of getting k successes (heads) in n trials (tosses)
- C(n, k) is the number of combinations of n items taken k at a time
- n is the total number of trials (5 tosses)
- k is the desired number of successes (3 heads)
- p is the probability of a single success (head; 0.5 for a fair coin)
- q is the probability of a single failure (tail; 0.5 for a fair coin)

Using the formula:

P(X=3) = C(5, 3) * (0.5³) * (0.5²)

C(5, 3) = 5! / (3! * (5-3)!) = 10
(0.5³) = 0.125
(0.5²) = 0.25

P(X=3) = 10 * 0.125 * 0.25 = 0.3125

So, the probability of getting 3 heads and 2 tails when tossing a fair coin 5 times is 0.3125 or 31.25%.

To know more about probability, refer to the link below:

https://brainly.com/question/1213976#

#SPJ11

Unknown to the statistical​ analyst, the null hypothesis is actually true.
A. If the null hypothesis is rejected a Type I error would be committed.
B. If the null hypothesis is rejected a Type II error would be committed.
C. If the null hypothesis is not rejected a Type I error would be committed.
D. If the null hypothesis is not rejected a Type II error would be committed.
E.No error is made.

Answers

If the null hypothesis is rejected when it is actually true, a Type I error would be committed (A).

In hypothesis testing, there are two types of errors: Type I and Type II. A Type I error occurs when the null hypothesis is rejected even though it is true, leading to a false positive conclusion.

On the other hand, a Type II error occurs when the null hypothesis is not rejected when it is actually false, leading to a false negative conclusion. In this scenario, since the null hypothesis is true and if it were to be rejected, the error committed would be a Type I error (A).

To know more about null hypothesis click on below link:

https://brainly.com/question/19263925#

#SPJ11

The density of a fish tank is 0. 4fish over feet cubed. There are 12 fish in the tank. What is the volume of the tank? 3 ft3 30 ft3 48 ft3 96 ft3.

Answers

The volume of the tank is 30 ft³. In the problem its given the density of a fish tank is 0.4 fish per cubic feet.There are 12 fish in the tank.

Considering the given data,

The density of a fish tank is 0. 4 fish over feet cubed.

In order to find the volume of the tank we can use the formula;

Density = Number of fish / Volume of tank

Rearranging the above formula to find Volume of the tank:

Volume of tank = Number of fish / Density

Volume of tank = 12 fish / 0.4 fish per cubic feet

Therefore,

Volume of tank = 30 cubic feet

Hence the required answer for the given question is 30 cubic ft

To know more about  number please visit :

https://brainly.com/question/27894163

#SPJ11

Show that an = 5an−1 − 6an−2 for all integers n with n ≥ 2

Answers

To show that the sequence an = 5an−1 − 6an−2 satisfies the recurrence relation for all integers n with n ≥ 2, we need to substitute the formula for an into the relation and verify that the equation holds true.

So, we have:

an = 5an−1 − 6an−2

5an−1 = 5(5an−2 − 6an−3)     [Substituting an−1 with 5an−2 − 6an−3]

= 25an−2 − 30an−3

6an−2 = 6an−2

an = 25an−2 − 30an−3 − 6an−2   [Adding the above two equations]

Now, we simplify the above equation by grouping the terms:

an = 25an−2 − 6an−2 − 30an−3

= 19an−2 − 30an−3

We can see that the above expression is in the form of the recurrence relation. Thus, we have verified that the given sequence satisfies the recurrence relation an = 5an−1 − 6an−2 for all integers n with n ≥ 2.

To know more about sequence, visit:

https://brainly.com/question/30262438

#SPJ11

The function m, defined by m(h) =300x (3/4) h represents the amount of a medicine, in milligrams in a patients body. H represents the number of hours after the medicine is administered. What does m (0. 5) represent in this situation?

Answers

In the given function, m(h) = 300 * (3/4) * h, the variable h represents the number of hours after the medicine is administered.

To find the value of m(0.5), we substitute h = 0.5 into the function:

m(0.5) = 300 * (3/4) * 0.5

Simplifying the expression:

m(0.5) = 300 * (3/4) * 0.5

= 225 * 0.5

= 112.5

Therefore, m(0.5) represents 112.5 milligrams of the medicine in the patient's body after 0.5 hours since the medicine was administered.

Learn more about function here:

https://brainly.com/question/11624077

#SPJ11

The first three terms of a sequence are given. Round to the nearest thousandth (if necessary). 9, 15,21,. 9,15,21,. \text{Find the 38th term. }

Find the 38th term

Answers

To find the 38th term of the sequence given as 9, 15, 21, we can observe that each term is obtained by adding 6 to the previous term. By continuing this pattern, we can determine the 38th term.

The given sequence starts with 9, and each subsequent term is obtained by adding 6 to the previous term. This means that the second term is 9 + 6 = 15, and the third term is 15 + 6 = 21.
Since there is a constant difference of 6 between each term, we can infer that the pattern continues for the remaining terms. To find the 38th term, we can apply the same pattern. Adding 6 to the third term, 21, we get 21 + 6 = 27. Adding 6 to 27, we obtain the fourth term as 33, and so on.
Continuing this pattern until the 38th term, we find that the 38th term is 9 + (37 * 6) = 231.
Therefore, the 38th term of the sequence is 231.

Learn more about sequence here
https://brainly.com/question/30262438



#SPJ11

A bag is filled with 100 marbles each colored red, white or blue. The table
shows the results when Cia randomly draws
10 marbles. Based on this data, how many of
the marbles in the bag are expected to be red?

Answers

Based on the data we have, it is expected that there is a probability that there are 30 red marbles in the bag.

What is probability?

The probability of an event is  described as a number that indicates how likely the event is to occur.

There are 100 marbles in the bag which  are all either red, white or blue,

100/3 = 33.33  marbles of each color.

From the table ,  we know that Cia randomly drew 10 marbles, and 3 of them were red.

That means Probability of (red) = 3/10 = 0.3

The expected number of red marbles = Probability of (red) x  the total number of marbles

= 0.3 * 100

= 30 red marbles

Learn more about probability at:

https://brainly.com/question/13604758

#SPJ1

let f(x) = (1 4x2)(x − x2). find the derivative by using the product rule. f '(x) = find the derivative by multiplying first. f '(x) = do your answers agree? yes no

Answers

The value of derivative f '(x) can be simplified to f '(x) = -20x³+4x²+8x+1.Yes the answer agrees.

To find the derivative of f(x) = (1 + 4x²)(x - x²) using the product rule, we first take the derivative of the first term, which is 8x(x-x²), and then add it to the derivative of the second term, which is (1+4x²)(1-2x). Simplifying this expression, we get f '(x) = 8x-12x³+1-2x+4x²-8x³.  

To find the derivative by multiplying first, we would have to distribute the terms and then take the derivative of each term separately, which would be a more tedious process and would not necessarily give us the same answer as using the product rule. .

To know more about derivative click on below link:

https://brainly.com/question/25324584#

#SPJ11

a point moves in a plane such that its position is defined by x = ln2t and y = 3 − t^3. find the acceleration vector when t = 2.√2305/16√325/4[-1/4, -12][-1/2,-12]

Answers

The acceleration vector when t = 2, is (-1/4, -12).

option B.

What is the acceleration vector?

The acceleration vector of the point is calculated as follows;

The position vector of the point at time t = y r(t) = (x(t), y(t)) = (ln(2t), 3 - t³).

The velocity vector is calculated as follows;

v(t) = r'(t)

v(t)  = (dx/dt, dy/dt)

v(t) =  (d/dt(ln(2t)), d/dt(3 - t³))

v(t) = (1/t, -3t²)

Acceleration is change in velocity with time, so the acceleration vector is calculated as follows;

a(t) = v'(t) = (d/dt(1/t), d/dt(-3t²))

a(t) = (-1/t², -6t)

The acceleration vector when t = 2, is calculated as follows;

a(2) = (-1/2², -6(2) )

a(2) = (-1/4, -12)

Learn more about acceleration vector here: https://brainly.com/question/31134791

#SPJ1

2. determine whether each of these integers is prime. a) 19 b) 27 c) 93 d) 101 e) 107 f ) 113

Answers

Out of the integers listed, 19, 101, 107, and 113 are prime, while 27 and 93 are not.

To determine if an integer is prime, it must have only two distinct positive divisors: 1 and itself. Here are the results for the integers you provided:
a) 19 is prime (divisors: 1, 19)
b) 27 is not prime (divisors: 1, 3, 9, 27)
c) 93 is not prime (divisors: 1, 3, 31, 93)
d) 101 is prime (divisors: 1, 101)
e) 107 is prime (divisors: 1, 107)
f) 113 is prime (divisors: 1, 113)

Learn more about integers here:

https://brainly.com/question/1768254

#SPJ11

consider the following initial-value problem. y' 6y = f(t), y(0) = 0,

Answers

The given initial-value problem is a first-order linear differential equation with an initial condition, which can be represented as: y'(t) + 6y(t) = f(t), y(0) = 0.

To solve this problem, we first find the integrating factor, which is e^(∫6 dt) = e^(6t). Multiplying the entire equation by the integrating factor, we get: e^(6t)y'(t) + 6e^(6t)y(t) = e^(6t)f(t).
Now, the left-hand side of the equation is the derivative of the product (e^(6t)y(t)), so we can rewrite the equation as:
(d/dt)(e^(6t)y(t)) = e^(6t)f(t).
Next, we integrate both sides of the equation with respect to t: ∫(d/dt)(e^(6t)y(t)) dt = ∫e^(6t)f(t) dt.
By integrating the left-hand side, we obtain
e^(6t)y(t) = ∫e^(6t)f(t) dt + C,
where C is the constant of integration. Now, we multiply both sides by e^(-6t) to isolate y(t):
y(t) = e^(-6t) ∫e^(6t)f(t) dt + Ce^(-6t).
To find the value of C, we apply the initial condition y(0) = 0:
0 = e^(-6*0) ∫e^(6*0)f(0) dt + Ce^(-6*0),
which simplifies to: 0 = ∫f(0) dt + C.
Since theintegral of f(0) dt is a constant, we can deduce that C = 0. Therefore, the solution to the initial-value problem is: y(t) = e^(-6t) ∫e^(6t)f(t) dt.

Learn more about linear here

https://brainly.com/question/2408815

#SPJ11

A survey asks a group of students if they buy CDs or not. It also asks if the students own a smartphone or not. These values are recorded in the contingency table below. Which of the following tables correctly shows the expected values for the chi- square homogeneity test? (The observed values are above the expected values.) CDs No CDs Row Total 23 14 37 Smartphone No Smartphone Column Total 14 22 36 37 36 73 Select the correct answer below: CDs No CDs No CDs Row Total 23 14 37 Smartphone 18.8 18.2 14 22 36 No Smartphone | 18.2 17.8 Column Total 37 36 73 CDs No CDs Row Total 23 14 37 Smartphone 19.8 16.2 14 22 36 No Smartphone 20.2 15.8 Column Total 37 36 73 CDs No CDs Row Total 23 14 37 Smartphone 20.8 17.2 14 22 36 No Smartphone 16.2 15.8 Column Total 37 36 73 O CDs No CDs No CDs Row Total 23 14 37 Smartphone 20.8 19.2 14 22 36 No Smartphone 16.2 16.8 Column Total 37 36 73

Answers

The correct answer is: CDs No CDs Row Total 23 14 37 Smartphone 20.8 19.2 14 22 36 No Smartphone 16.2 16.8 Column Total 37 36 73 using contingency table.

This table shows the expected values for the chi-square homogeneity test. These values were obtained by calculating the expected frequencies based on the row and column totals and the sample size. The observed values are compared to the expected values to determine if there is a significant association between the two variables (buying CDs and owning a smartphone) using contingency table.

A statistical tool used to show the frequency distribution of two or more categorical variables is a contingency table, sometimes referred to as a cross-tabulation table. It displays the number or percentage of observations for each set of categories for the variables. Using contingency tables, you may spot trends and connections between several variables.

Learn more about contingency table here:

https://brainly.com/question/30407883


#SPJ11

Jasmine wants to start saving to purchase an apartment. Her goal is to save $225,000. If she


deposits $180,000 into an account that pays 3. 12% interest compounded monthly,


approximately how long will it take for her money to grow to the desired amount? round your


answer to the nearest year

Answers

Jasmine wants to start saving to purchase an apartment. Her goal is to save $225,000. If she deposits $180,000 into an account that pays 3. 12% interest compounded monthly, approximately how long will it take for her money to grow to the desired amount?

The first step to solving the problem is to understand the formula for calculating interest on a compounded monthly basis.The formula for calculating compound interest on a monthly basis is as follows:

FV = P(1 + i/n)^(n * t) whereFV = future valueP = principal amounti = interest raten = number of times interest is compounded per yeart = number of years In this case:FV = 225,000 (the desired amount)P = 180,000i = 3.12% = 0.0312n = 12 (since the interest is compounded monthly)t = unknown Substituting these values into the formula, we get:225,000 = 180,000(1 + 0.0312/12)^(12t) Dividing both sides by 180,000, we get:1.25 = (1 + 0.0312/12)^(12t) Taking the natural log of both sides, we get:ln(1.25) = 12t ln(1 + 0.0312/12)Solving for t, we get:t = ln(1.25) / [12 ln(1 + 0.0312/12)]t = 7.64 years (rounded to the nearest year)Therefore, it will take approximately 8 years (rounded to the nearest year) for Jasmine's money to grow to the desired amount.

To know more about compounded monthly,visit:

https://brainly.com/question/28964504

#SPJ11

The correct answer is 6 years. Compound interest is the interest rate applied to the principal and interest earned. it will take Jasmine approximately 6 years to save $225,000.

Essentially, it implies that interest is earned on both the principal and interest accumulated over time.

We may use the formula [tex]A=P(1+r/n)^{(nt)[/tex]

to calculate the time it will take for Jasmine's money to grow to $225,000,

where

A is the desired amount,

P is the principal amount deposited,

r is the annual interest rate,

n is the number of times interest is compounded per year, and

t is the number of years.

Here's how we'll go about it.

[tex]A=P(1+r/n)^{(nt)[/tex]

Here,

A = $225,000

P = $180,000

r = 3.12%

n = 12

t = ?

Let's plug in the numbers and solve for t.

[tex]225000=180000(1+0.0312/12)^{(12t)}[/tex]

[tex]225000/180000=(1+0.0312/12)^{(12t)[/tex]

[tex]1.25=(1.0026)^{(12t)[/tex]

Log (1.25) = Log [tex](1.0026)^{(12t)[/tex]

Log (1.25) = 12t(Log (1.0026))

t = [Log (1.25)] / [12 Log (1.0026)]

t ≈ 6 years (rounded to the nearest year)

Therefore, it will take Jasmine approximately 6 years to save $225,000.

To know more about Compound interest, visit:

https://brainly.com/question/14295570

#SPJ11

Other Questions
grafting requires the reaction of one or more polymeric species to the main chain of the polymeric macromolecules. name the two types of activation that are commonly used for the grafting process. You set your music player to shuffle mode. It plays each of the n songs before repeating any. Write a program to estimate the likelihood that you will not hear any sequential pair of songs (that is, song 3 does not follow song 2, song 10 does not follow song 9, and so on) mingyu is driving past the scene of an automobile accident. she sees that there are a lot of other people around, so she doesnt feel that she needs to stop. this is an example of the theory ____ A rock attached to a string swings back and forth every 4.6 s. How long is the string? for 6.70 kg of a magnesiumlead alloy, is it possible to have the masses of primary and total of 4.23 kg and 6.00 kg, respectively, at 460c (860f)? why or why not? compute the value of the following expressions: (a) 4630 mod 9 Winnie worked for International Manufacturing and was trying to close a deal. To do so, she offered a $50,000 bribe to Gluseppe, the president of Italian Industries, a private corporation, to close the deal. This bribe was offered in Milan, Italy. Is this action in violation of the Foreign Corrupt Practices Act? a Multiple Choice Yes, because it was a bribe to a foreign Micial Yes, because it was a bribe in a foreign country a. Yes, because it was a bribe to a foreign official. b. Yes, because it was a bribe in a foreign country. c. No, unless the bribe was accepted by Giuseppe. d. No, because it was not a bribe to a foreign official An electron in the n = 5 level of the hydrogen atom relaxes to a lower energy level, emitting light of = 434 nm . Find the principal level to which the electron relaxed. Express your answer as an integer. determine the minimum concentration of cuno3 required to precipitate iodide from a solution containing [i-] = 0.017 m. for cui, ksp = 5.1 x 10-12 Use the information and table to answer the following question A student is planning to determine the specific heat of iron. To do this experiment the student will need to perform the following procedures: StepProcedure 1 Measure the mass of the iron sample 2 Measure the initial temperature of a known volume of water 3 Heat the iron sample . 4 Place the iron sample in the water What is Step 5 in the experiment? Find the net signed area between the curve of the function f(x)=x1 and the x-axis over the interval [7,3]. Do not include any units in your answer. consider the function ()=19. give the taylor series for () for values of near 0. 7.5-7 given x = cos and y = sin , where is an rv uniformly distributed in the range (0, 2 ), show that x and y are uncorrelated but are not independent. Calculate the energy required to melt 16.4 g of ice at 0 C. For water, H fus = 6.01kJ/mol. Show your calculations and include units to receive full credit. The Java librarys ........ interface defines functionality related to determining whether one object is greater than, less than, or equal to another object. Por alquilar una moto, una empresa nos cobra $10 de seguro, ms un adicional de $3 por cada 5km recorridos. Hall la regla de correspondencia Lyndon is making a nylon case for his new snare drum which measures 14 inches in diameterand is 6 inches deep. If the case fits snugly around the drum, how much nylon will Lyndonneed? If f(8) = 14 what is f^-1(14)? Imagine you are a public relations consultant for Frederick the Great, Joseph II or Catherine the Great. The monarch you represent wants to be named Most Enlightened Despot of the 1700s. Explain why your client should be given this honor. TRUE/FALSE. The terminology of defender is the proposed new equipment, and challenger is the current equipment in place