Find the net signed area between the curve of the function f(x)=x−1 and the x-axis over the interval [−7,3]. Do not include any units in your answer.

Answers

Answer 1

The net signed area between the curve of the function f(x) = x - 1 and the x-axis over the interval [-7, 3] is -41.

To find the net signed area between the curve of the function f(x) = x - 1 and the x-axis over the interval [-7, 3], we need to integrate the function from -7 to 3 and take into account the signed area.

The integral of f(x) = x - 1 over the interval [-7, 3] is given by:

∫[-7, 3] (x - 1) dx

Evaluating this integral, we get:

[tex]∫[-7, 3] (x - 1) dx = [1/2 * x^2 - x] [-7, 3]\\= [(1/2 * 3^2 - 3) - (1/2 * (-7)^2 - (-7))][/tex]

= [(9/2 - 3) - (49/2 + 7)]

= [9/2 - 3 - 49/2 - 7]

= (-27/2) - (55/2)

= -82/2

= -41

To know more about integral, refer here:

https://brainly.com/question/31109342

#SPJ11


Related Questions

a ball that is dropped from a window hits the ground in 7 seconds. how high is the window? (give your answer in feet; note that the acceleration due to gravity is 32 ft/s.)

Answers

The ball was dropped from a window that is 784 feet high. To determine the height of the window from which the ball was dropped, we can use the formula for free fall: h = 0.5 * g * t²


The formula for free fall is :  h = 0.5 * g * t² ,

where h is the height, g is the acceleration due to gravity (32 ft/s²), and t is the time it takes to hit the ground (7 seconds).

Given below the steps to calculate how high the window is :

Plug in the values to the equation:
h = 0.5 * 32 * (7²)Calculate the square of the time
7² = 49Multiply the values
h = 0.5 * 32 * 49Calculate the height
h = 16 * 49
h = 784 feet

So, the ball was dropped from a window that is 784 feet high.

To learn more about  dropped : https://brainly.com/question/24746268

#SPJ11

2. consider the integral z 6 2 1 t 2 dt (a) a. write down—but do not evaluate—the expressions that approximate the integral as a left-sum and as a right sum using n = 2 rectanglesb. Without evaluating either expression, do you think that the left-sum will be an overestimate or understimate of the true are under the curve? How about for the right-sum?c. Evaluate those sums using a calculatord. Repeat the above steps with n = 4 rectangles.

Answers

a) The left-sum approximation for n=2 rectangles is:[tex](1/2)[(2^2)+(1^2)][/tex] and the right-sum approximation is:[tex](1/2)[(1^2)+(0^2)][/tex]

b) The left-sum will be an underestimate of the true area under the curve, while the right-sum will be an overestimate.

c) Evaluating the left-sum approximation gives 1.5, while the right-sum approximation gives 0.5.

d) The left-sum approximation for n=4 rectangles is:[tex](1/4)[(2^2)+(5/4)^2+(1^2)+(1/4)^2],[/tex] and the right-sum approximation is: [tex](1/4)[(1/4)^2+(1/2)^2+(3/4)^2+(1^2)].[/tex]

(a) The integral is:

[tex]\int (from 1 to 2) t^2 dt[/tex]

(b) Using n = 2 rectangles, the width of each rectangle is:

Δt = (2 - 1) / 2 = 0.5

The left-sum approximation is:

[tex]f(1)\Delta t + f(1.5)\Delta t = 1^2(0.5) + 1.5^2(0.5) = 1.25[/tex]

The right-sum approximation is:

[tex]f(1.5)\Delta t + f(2)\Deltat = 1.5^2(0.5) + 2^2(0.5) = 2.25[/tex]

(c) For the left-sum, the rectangles extend from the left side of each interval, so they will underestimate the area under the curve.

For the right-sum, the rectangles extend from the right side of each interval, so they will overestimate the area under the curve.

Using a calculator, we get:

∫(from 1 to 2) t^2 dt ≈ 7/3 = 2.3333

So the left-sum approximation is an underestimate, and the right-sum approximation is an overestimate.

(d) Using n = 4 rectangles, the width of each rectangle is:

Δt = (2 - 1) / 4 = 0.25

The left-sum approximation is:

[tex]f(1)\Delta t + f(1.25)\Delta t + f(1.5)\Delta t + f(1.75)\Delta t = 1^2(0.25) + 1.25^2(0.25) + 1.5^2(0.25) + 1.75^2(0.25) = 1.5625[/tex]The right-sum approximation is:

[tex]f(1.25)\Delta t + f(1.5)\Delta t + f(1.75)\Delta t + f(2)Δt = 1.25^2(0.25) + 1.5^2(0.25) + 1.75^2(0.25) + 2^2(0.25) = 2.0625.[/tex]

Using a calculator, we get:

[tex]\int (from 1 to 2) t^2 dt \approx 7/3 = 2.3333[/tex]

So the left-sum approximation is still an underestimate, but it is closer to the true value than the previous approximation.

The right-sum approximation is still an overestimate, but it is also closer to the true value than the previous approximation.

For similar question on rectangles.

https://brainly.com/question/27035529

#SPJ11

Other Questions
Calculate the angular separation of two Sodium lines given as 580.0nm and 590.0 nm in first order spectrum. Take the number of ruled lines per unit length on the diffraction grating as 300 per mm?(A) 0.0180(B) 180(C) 1.80(D) 0.180 2. consider the integral z 6 2 1 t 2 dt (a) a. write downbut do not evaluatethe expressions that approximate the integral as a left-sum and as a right sum using n = 2 rectanglesb. Without evaluating either expression, do you think that the left-sum will be an overestimate or understimate of the true are under the curve? How about for the right-sum?c. Evaluate those sums using a calculatord. Repeat the above steps with n = 4 rectangles. the conversion of 4-pentanoylbiphenyl to 4-pentanylbiphenyl with hydrazine and potassium hydroxide is an overall of carbon? a. oxidation b. not a redox c. reduction when the government increases taxes on individuals, consumption (click to select) and the ad curve (click to select) . the process by which living things give rise to offspring is called Consider three identical metal spheres, a, b, and c. sphere a carries a charge of 5q. sphere b carries a charge of -q. sphere c carries no net charge. spheres a and b are touched together and then separated. sphere c is then touched to sphere a and separated from it. lastly, sphere c is touched to sphere b and separated from it. required:a. how much charge ends up on sphere c? b. what is the total charge on the three spheres before they are allowed to touch each other? The net force on any object moving at constant velocity is a. equal to its weight. b. less than its weight. c. 10 meters per second squared. d. zero. a ball that is dropped from a window hits the ground in 7 seconds. how high is the window? (give your answer in feet; note that the acceleration due to gravity is 32 ft/s.) the value of the sum of squares due to regression, ssr, can never be larger than the value of the sum of squares total, sst. True or false?