The change in free energy can help us to discover whether a reaction can be sponteanous or not. The change in free energy fro this reaction is -1.51 kJ/mol.
What is change in free energy?The change in free energy is referred to as that which determines the spontenity of a chemical reaction. For a spontenous reaction the change in free energy must be negative.
Now;
ΔG = -RTlnK
R = gas constant
T = temperature
K = equilibrium constant
So;
ΔG = -(8.314 * 298 * ln 436)
ΔG = -1.51 kJ/mol
Learn more about free energy: https://brainly.com/question/15319033
To prepare 250mL of calcium chloride solution with a molar concentration of 1.20mol/L, what mass of calcium chloride would be required?
Answer:
33.30 grams of CaCl2 will be required
Explanation:
Given,
Volume of solution, V= 250 ml
Molarity of solution, M= 1.20 mol/L
Molecular mass of CaCL2, S= 40+(35.5 X 2)= 111
We know,
Required mass, W= SVM/1000
Now,
W = (111 X 250 X 1.20)/1000
= 33300/1000
= 33.30
Therefore, 33.30 grams of Calcium Chloride will be required.
Using what you know about the structures of the amino acid side chains and the mechanisms presented in this chapter, which of the following amino acid side chain may play the following roles in an enzymatic mechanism: a. participate in proton transfer, b. act as a nucleophile
Answer:
a. participate in proton transfer - His
b. acts as a nucleophile - Ser
Explanation:
Enzymes are regulated because they are proteins. They are categorize based on how they catalyze. Heat weakens and inactivates the enzymes because of non covalent interaction. His amino acid participate in proton transfer because it is able to act as an acid as well as a base while Ser amino acid can act as nucleophile.
Calculate the mass percent (m/m) of a solution prepared by dissolving 51.56 g of NaCl in 164.2 g of H2O. Express your answer to four significant figures. View Available Hint(s)
Answer:
"23.896%" is the right answer.
Explanation:
The given values are:
Mass of NaCl,
= 51.56 g
Mass of H₂O,
= 165.6 g
As we know,
⇒ Mass of solution = [tex]Mass \ of \ (NaCl+H_2O)[/tex]
= [tex]51.56+164.2[/tex]
= [tex]215.76 \ g[/tex]
hence,
⇒ [tex]Mass \ percent =\frac{Mass \ of \ NaCl}{Mass \ of \ solution}\times 100[/tex]
[tex]=\frac{51.56}{215.76}\times 100[/tex]
[tex]=23.896 \ percent[/tex]
A gas has a volume of 450. mL at 55.0 °C. If the volume changes to 502 ml, what is the new temperature?
Answer:
92.9 °C
Explanation:
Step 1: Given data
Initial volume (V₁): 450. mLInitial temperature (T₁): 55.0 °CFinal volume (V₂): 502 mLStep 2: Convert 55.0 °C to Kelvin
We will use the following expression.
K = °C + 273.15 = 55.0 + 273.15 = 328.2 K
Step 3: Calculate the final temperature of the gas
If we assume constant pressure and ideal behavior, we can calculate the final temperature of the gas using Charles' law.
T₁/V₁ = T₂/V₂
T₂ = T₁ × V₂/V₁
T₂ = 328.2 K × 502 mL/450. mL = 366 K = 92.9 °C
Which of the following statements about the pH of 0.010 M HClO4 is correct?
pH=2.00, because [H+]=1.0×10−2M.
A: p H equals 2.00 , because the molar concentration of H with a positive 1 charge equals 1.0 times 10 to the negative 2 power molar .
pH=2.00, because [H+]=2.0×10−2M.
B: p H equals 2.00 , because the molar concentration of H with a positive 1 charge equals 1.0 times 10 to the negative 2 power molar .
pH>2.00, because HClO4 is a strong acid.
C: p H is greater than 2.00 , because H C l O 4 is a strong acid.
pH<2.00, because HClO4 is a weak acid.
Answer:
Option B: p H equals 2.00 , because the molar concentration of H with a positive 1 charge equals 1.0 times 10 to the negative 2 power molar .
pH = 2 because [H⁺] = 1×10¯² M
Explanation:
To know which option is correct, we shall determine the pH of the 0.010 M HClO₄ solution. This can be obtained as follow:
We'll begin by calculating the concentration of the hydrogen ion [H⁺] in the solution. This is illustrated below:
HClO₄ is a strong acid and will dessociates as follow:
HClO₄ (aq) —> H⁺ (aq) + ClO₄¯ (aq)
From the balanced equation above,
1 mole of HClO₄ produced 1 mole H⁺.
Therefore, 0.010 M HClO₄ will also produce 0.010 M H⁺.
Finally we shall determine the pH of the solution. This can be obtained as follow:
Concentration of the hydrogen ion [H⁺] = 0.010 = 1×10¯² M
pH =?
pH = –Log [H⁺]
pH = –Log 1×10¯²
pH = 2
Thus,
The pH = 2
because,
[H⁺] = 1×10¯² M
Thus, option B gives the correct answer to the question.
Based on the definition of pH, pH of 0.010 M solution of HClO4 equals 2.00, because the molar concentration of H with a positive 1 charge equals 1.0 times 10 to the negative 2 power molar.
What is pH?The pH of a solution is the negative logarithm of the hydrogen ion concentration of a solution.
pH of a solution is a measure of the acidity of the solution.
pH = - log[H+]where
[H+] is hydrogen ion concentrationFor the 0.010 M solution of HClO4, [H+} = 0.01 M
pH = -log(0.01)
pH = 2.00
Therefore, pH of 0.010 M solution of HClO4 equals 2.00, because the molar concentration of H with a positive 1 charge equals 1.0 times 10 to the negative 2 power molar.
Learn more about pH at: https://brainly.com/question/172153
What are anti-oxidants? Why are they added to fat and oil containing food?
Answer:
A substance that protects cells from the damage caused by free radicals (unstable molecules made by the process of oxidation during normal metabolism). Free radicals may play a part in cancer, heart disease, stroke, and other diseases of aging.
In the titration, 15 mL of CsOH solution is neutralized by 38.2 mL of 0.250 M HBr solution. What is the molarity of the CsOH solution?
Answer: 0.637M
10.2M
1.36M
0.0982M
Explanation: the answer is 1.36M
The molarity of the CsOH solution is 0.636 M.
What is molarity?Molarity is the concentration of any substance in a place.
The reaction is
HBr + CsOH —> CsBr + H₂O
The formula of molarity
[tex]M = \dfrac{n}{V}[/tex]
[tex]\dfrac{0.25 \times 38.2 }{15} = 0.6366[/tex]
Thus, the molarity of the CsOH solution is 0.636 M.
Learn more about molarity
https://brainly.com/question/2817451
#SPJ2
The picture below shows a NASA image of the Oort cloud, a sphere of objects that are thought to surround Earth's solar system at a distance of up to one light-year from the Sun.
If the Oort cloud does exist, which of the following could explain why the objects in it may have formed this spherical shape?
A
They are held in orbits by the Sun's gravitational force.
B
They are held in Earth's solar system by Neptune's magnetic field.
C
They float freely in space because the Sun's gravitational force is too weak to hold them in orbit.
D
They are held in stationary positions around Earth's solar system by other stars in space.
The gravitational pull of the Sun keeps them in their orbits. The gravitational pull of the Sun and surrounding stars combined is most likely what gives the Oort cloud its spherical shape.
What does NASA's Oort Cloud mean?The Oort Cloud is a spherical layer of ice objects that is thought to be located between 2,000 and 100,000 astronomical units (AU) from our Sun, a star.
What makes it the Oort Cloud?The Oort cloud, so named after the Dutch astronomer Jan Oort who first confirmed its existence, is a collection of objects with a combined mass estimated to be 10-100 times that of Earth that are less than 100 km (60 miles) across and maybe trillions in number.
To know more about Oort cloud visit:-
https://brainly.com/question/23368033
#SPJ1
What is the mass in grams of 5.50 moles of Copper, Cu?
Answer:
349.503 g
https://www.convertunits.com/from/moles+Copper/to/grams
here is a link, you can convert moles of copper to grams here
The answer is 5.50 moles of Cu (Copper) has 349.503 grams mass .
What is a mole ?
A mole is defined as 6.02214076 × 10²³ atoms, molecules, ions, or other chemical units.
and the molar mass of a substance is defined as the mass of 1 mole of that substance, expressed in grams per mole.
It is equal to the mass of 6.022 × 10 23 atoms, molecules, or formula units of that substance.
1 mole of Cu has 63.546 grams of Cu
So 5.50 moles will have 5.50 * 63.546 grams
=349.503 grams
Therefore 5.50 moles of Cu (Copper) has 349.503 grams mass .
To know more about moles
https://brainly.in/question/148570
#SPJ2
One kilogram of water at 100 0C is cooled reversibly to 15 0C. Compute the change in entropy. Specific heat of water is 4190 J/Kg.K.
Answer:
The change in entropy is -1083.112 joules per kilogram-Kelvin.
Explanation:
If the water is cooled reversibly with no phase changes, then there is no entropy generation during the entire process. By the Second Law of Thermodynamics, we represent the change of entropy ([tex]s_{2} - s_{1}[/tex]), in joules per gram-Kelvin, by the following model:
[tex]s_{2} - s_{1} = \int\limits^{T_{2}}_{T_{1}} {\frac{dQ}{T} }[/tex]
[tex]s_{2} - s_{1} = m\cdot c_{w} \cdot \int\limits^{T_{2}}_{T_{1}} {\frac{dT}{T} }[/tex]
[tex]s_{2} - s_{1} = m\cdot c_{w} \cdot \ln \frac{T_{2}}{T_{1}}[/tex] (1)
Where:
[tex]m[/tex] - Mass, in kilograms.
[tex]c_{w}[/tex] - Specific heat of water, in joules per kilogram-Kelvin.
[tex]T_{1}[/tex], [tex]T_{2}[/tex] - Initial and final temperatures of water, in Kelvin.
If we know that [tex]m = 1\,kg[/tex], [tex]c_{w} = 4190\,\frac{J}{kg\cdot K}[/tex], [tex]T_{1} = 373.15\,K[/tex] and [tex]T_{2} = 288.15\,K[/tex], then the change in entropy for the entire process is:
[tex]s_{2} - s_{1} = (1\,kg) \cdot \left(4190\,\frac{J}{kg\cdot K} \right)\cdot \ln \frac{288.15\,K}{373.15\,K}[/tex]
[tex]s_{2} - s_{1} = -1083.112\,\frac{J}{kg\cdot K}[/tex]
The change in entropy is -1083.112 joules per kilogram-Kelvin.
Answer:
The change in entropy = [tex]-1083.534 J/k[/tex]Explanation:
Change in entropy,
[tex]\delta S = mCp * In[\frac{T2}{T1}][/tex]
The initial temperature,
[tex]T1 = 100^oC\\\\T1 = 100+273\\\\T1 = 373k[/tex]
Final value of temperature,
[tex]T2 = 15^oC\\\\T2 = 15+273\\\\T2 = 288k[/tex]
where,
[tex]m = 1kg\\\\Cp = 4190 J/kg.k[/tex]
Substitute into [tex]\delta S[/tex]
[tex]\delta S = mCp * In[\frac{T2}{T1}]\\\\\delta S = 1 * 4190 * In[\frac{288}{373}]\\\\\delta S = 4190 * In[0.7721]\\\\\delta S = 4190 * [-0.2586]\\\\\delta S = -1083.534 J/k[/tex]
The negative sign exists because the change in entropy will be decreasing due to cooling.
For more information on this visit
https://brainly.com/question/17756498
A flask contains 85.5 grams C12H2011 (sucrose) in 1.00 L of solution. What is the molarit
Your answer.
3.8 M
25 M
10M
1.2M
Answer:
0.25 M
Explanation:
First we convert 85.5 grams of sucrose into moles, using its molar mass:
Molar Mass of C₁₂H₂₂O₁₁ = (Molar Mass of C)*12 + (Molar Mass of H)*22 + (Molar Mass of O)*11Molar Mass of C₁₂H₂₂O₁₁ = 342.3 g/mol85.5 g ÷ 342.3 g/mol = 0.25 molThen we divide the number of moles by the number of liters to calculate the molarity:
0.25 mol / 1.00 L = 0.25 MWhen the pressure and number of particles of a gas are constant, which of the following is also constant
True or False
Low temperatures lead to faster dissolution rates compared to high temperatures
Answer:
false
Explanation:
this is because , high temperature speeds up the the random motion of particles which leads to high dissolution
In the reaction below does water acts as the acid or as the base?
H2S + H20 - HS1- + H30+ *
O a. Neither, water is neutral
O b. Acid
O C. Base
Answer:
C. Base.
Explanation:
Hello there!
In this case, according to the given information, it turns out convenient for us to realize that the concept acid and base we should use here is based off the Bronsted-Lowry one, which says that an acid is a hydrogen donor. In such a way, since water accepts one H ion as it goes to H3O⁺, we infer it is C. Base and the H2S the acid.
Also, we can tell HS⁻ is the conjugate base and H3O⁺ the conjugate acid.
Regards!
what is a saturated organic compound and unsaturated organic compound?
Answer:
Saturated organic compound has only single bonds between carbon atoms. An important class of saturated compounds are the alkanes. Many saturated compounds have functional groups, e.g., alcohols.
Unsaturated organic compound have double or triple covalent bonds between adjacent carbon atoms. The term "unsaturated" means more hydrogen atoms may be added to the hydrocarbon to make it saturated (i.e. consisting all single bonds).
Air movement and weather conditions are influenced by
A The Moon
B. Altitude
C. Thermal Energy
Answer:
The moon
Explanation:
The answer is A; Sorry i put the wrong answer by accident. I was trying to get to another question.
Give the answer below brainliest!!!
A. The moon influences the air movement
As the temperature increases from 0°C to 25°C the amount of NH3 that can be dissolved in 100 grams of water.
A) decreases by 10 grams
B) decreases by 40 grams
C) increases by 10 grams
D) increases by 40 grams
Answer:
decreases by 10 gram
Explanation:
What are the characteristics of acids and bases, and some examples of each?
Answer:
Acids taste sour while bases taste bitter. An acid reacts with metals to produce bubbles of hydrogen gas while a base feels slimy to the touch. Acids turn blue litmus paper red while bases turn red litmus paper blue.
Question 1
3 pts
TI
Which part(s) of the following ground state electron configuration holds the valence
electrons?
At
o
1s22s22p63523p4
ОЗр
03s
O2s
O 35 and 3p
Answer:
3s and 3p
Explanation:
From the question given above, the following data were obtained:
Electronic configuration =>
1s² 2s²2p⁶ 3s²3p⁴
Location of valence electron =?
From the electronic configuration given above, we can see clearly that the atom has three (3) shells.
Valence electron(s) are located at the outer most shell of an atom.
The outer most shell of the atom above is 3s and 3p.
Therefore, 3s and 3p will contain the valence electron(s)
Write the Ksp expression for the sparingly soluble compound cobalt(II) sulfide, CoS. If either the numerator or denominator is 1, please enter 1.
Answer:
[tex]Ksp=\frac{[Co^{2+}][S^{2-}]}{1}[/tex]
Explanation:
Hello there!
In this case, according to the given information, it turns out firstly necessary to write the chemical equation for this reaction as shown below:
[tex]CoS(s)\rightleftharpoons Co^{2+}(aq)+S^{2-}(aq)[/tex]
Thus, since solids are not included in equilibrium expressions, we can set this one up as follows:
[tex]Ksp=\frac{[Co^{2+}][S^{2-}]}{1}[/tex]
Regards!
28. If the total pressure of a mixture of four gases (neon, carbon dioxide, oxygen and hydrogen) is 1245 mm
Hg, what is the pressure of neon gas if the pressure of carbon dioxide is 145 mm Hg, the pressure of hydrogen is
499 mm Hg and the pressure of oxygen is 228 mm Hg?
A) 601 mm Hg
B) 746 mm Hg
C) 872 mm Hg
D) 373 mm Hg
Answer:
D) 373 mm Hg.
Explanation:
We can solve this problem by keeping in mind Dalton's law of partial pressures, which states that the total pressure of a mixture of gases is equal to the sum of each gas' partial pressures. In other words, for this case:
Total Pressure = Ne Pressure + CO₂ Pressure + O₂ Pressure + H₂ Pressure1245 mm Hg = Ne Pressure + 145 mm Hg + 228 mm Hg + 499 mm HgNe Pressure = 373 mm HgThe answer is option D) 373 mm Hg.
It is well-known that carbon dioxide, CO2, has a much greater density than air. In fact,
CO2 gas can displace air, which is why there are regulations in place that limit the
amount of dry ice allowed in elevators. In other words, do not get trapped in an
elevator, or any enclosed space, with someone who is transporting dry ice. Calculate
the pressure exerted by the CO2 gas, in atm, if the density was measured to be 1.983
g/L on a day where the temperature is 22.165 °C.
Answer: The pressure exerted by the [tex]CO_2[/tex] gas, in atm is 1.092
Explanation:
According to the ideal gas equation:'
[tex]PV=nRT[/tex]
P = Pressure of the gas = ?
V= Volume of the gas
T= Temperature of the gas = [tex]22.165^0C=(273+22.165)K=295.165K[/tex] (0°C = 273 K)
n= moles of gas = [tex]\frac{\text {given mass}}{\text {Molar mass}}[/tex]
R= Value of gas constant = 0.0821 Latm/K mol
[tex]P=\frac{mRT}{MV}[/tex] as [tex]Density=\frac{mass}{Volume}[/tex]
[tex]P=\frac{dRT}{M}[/tex] where d is density
[tex]P=\frac{1.983g/L\times 0.0821Latm/Kmol\times 295.165K}{44g/mol}=1.092atm[/tex]
Thus pressure exerted by the [tex]CO_2[/tex] gas, in atm is 1.092
How many grams of the bromide salt of the conjugate acid must be combined with how many grams of the weak base, to produce 1.00 L of a buffer that is
Answer:
79.1g of weak base must be combined with 56.0g of conjugate acid
Explanation:
that is 1.00 M in the weak base?
The weak base is C5H5N with a pKa of 5.17 (Ka=6.7×10-6)and a desire pH of 5.63
The equilibrium of the weak base is with the bromide salt of the conjugate acid is:
C5H5N(aq) + H2O(l) + Br- ⇄ C5H5NHBr(aq) + OH-(aq)
Where Kb = Kw / Ka = 1x10⁻¹⁴ / 6.7x10⁻⁶
Kb = 1.49x10⁻⁹ is defined as:
Kb = 1.49x10⁻⁹ = [C5H5NHBr] [OH-] / [C5H5N]
Where [OH-] = 10^-(14- pH) = 10^-(14- 5.63) = 4.255x10⁻⁹M
[C5H5N] = 1.00M
Replacing:
1.49x10⁻⁹ = [C5H5NHBr] [OH-] / [C5H5N]
1.49x10⁻⁹ = [C5H5NHBr] [4.255x10⁻⁹M] / [1.00M]
[C5H5NHBr] = 0.35M
In 1L the moles of C5H5NHBr are 0.35 moles
Mass C5H5NHBr: 160.0118g/mol
0.35 moles * (160.0118g / mol) =
56.0g of C5H5NHBr are necessaries
The mass of C5H5N is -79.1g/mol-:
1.00moles * (79.1g/mol) =
79.1g of C5H5N are necessariesHow many moles are in 150g of Li2O?
Answer:
moles= w/mm
moles=150/30
moles=5
The total number of sodium atoms in 46.0 grams of sodium
is
HELP HELP HELP
NH3 + NO + N2 + H2O
5. Given 8.25 x 1025molecules of ammonia, determine the number of grams of
nitrogen produced.
Answer:
4NH3+6NO+5N2+6H20
Explanation:
If g of chlorine gas occupies a volume of mL at a particular temperature and pressure, what volume will g of chlorine gas occupy under the same conditions
The complete question is as follows: If 1.04 g of chlorine gas occupies a volume of 872 mL at a particular temperature and pressure, what volume will 2.08 g of chlorine gas occupy under the same conditions ?
Answer: A volume of 1744 L will 2.08 g of chlorine gas occupy under the same conditions.
Explanation:
Given: [tex]Mass_1[/tex] = 1.04 g, [tex]V_{1}[/tex] = 872 mL
[tex]Mass_2[/tex] = 2.08 g, [tex]V_{2}[/tex] = ?
As molar mass of chlorine is 35.5 g/mol.
Number of moles is the mass of a substance divided by its molar mass.
Hence, moles of chlorine present in 1.04 g chlorine gas is calculated as follows.
[tex]Moles = \frac{mass}{molar mass}\\= \frac{1.04 g}{35.5 g/mol}\\= 0.029 mol[/tex]
Also, moles of chlorine present in 2.08 g chlorine gas is calculated as follows.
[tex]Moles = \frac{2.08 g}{35.5 g/mol}\\= 0.058 mol[/tex]
Formula used to calculate the volume occupied by 2.08 g of chlorine gas is as follows.
[tex]\frac{V_{1}}{n_{1}} = \frac{V_{2}}{n_{2}}[/tex]
Substitute the values into above formula as follows.
[tex]\frac{V_{1}}{n_{1}} = \frac{V_{2}}{n_{2}}\\\frac{872 L}{0.029 mol} = \frac{V_{2}}{0.058 mol}\\V_{2} = 1744 L[/tex]
Thus, we can conclude that a volume of 1744 L will 2.08 g of chlorine gas occupy under the same conditions.
What is the mass of a gas with a molar mass of 44.01 g/mol at a temperature of 298 K, a pressure of 0.957 atm and a volume of 1.30L?
Answer:
2.24 g
Explanation:
First we use the PV=nRT formula to calculate the number of moles of the gas:
0.957 atm * 1.30 L = n * 0.082 atm·L·mol⁻¹·K⁻¹ * 298 Kn = 0.0509 molThen we can use the given molar mass to calculate the mass:
Molar Mass = Mass / number of moles44.01 g/mol = Mass / 0.0509 molMass = 2.24 gWrite an equation for sodium chloride and sodium oxide
Answer:
Explanation:
The Chemical Equation for each one of these compounds would be the following
Sodium Chloride: NaCl
This compound contains 1 Sodium atom and 1 Chlorine atom
Sodium Oxide: Na₂O
This compound contains 2 Sodium atoms and 1 Oxygen atom.
Which best compares kinetic energy and temperaturo?
A. Kinetic energy is energy of motion, while temperature is a measure of that energy in substances.
B. Temperature is energy of motion, whilo kinetic energy is a measure of that energy in substances,
C.Kinetic energy is internal transferable energy, while temperature is a measure of that energy in substances,
D.Temperature is internal transferable energy, while kinetic energy is a measure of that energy in substances.
Which best compares kinetic energy and temperature?
[tex]{\boxed{\mathcal{\red{Answer:}}}}[/tex]
A. Kinetic energy is energy of motion, while temperature is a measure of that energy in substances. ✅
[tex]\circ \: \: { \underline{ \boxed{ \sf{ \color{green}{Happy\:learning.}}}}}∘[/tex]
Answer:
A. Kinetic energy is energy of motion, while temperature is a measure of that energy in substances.
Explanation:
got it right on edge 2021