The number of different words that can be formed by re-arranging
letters of the word KOMPRESSOR in such a way that the vowels are
the first two letters are identical is
[ANSWER ]

Answers

Answer 1

Therefore, the number of different words that can be formed by rearranging the letters of the word "KOMPRESSOR" such that the vowels are the first two letters and are identical is 15,120.

To find the number of different words that can be formed by rearranging the letters of the word "KOMPRESSOR" such that the vowels are the first two letters and are identical, we need to consider the arrangements of the remaining consonants.

The word "KOMPRESSOR" has 3 vowels (O, E, O) and 7 consonants (K, M, P, R, S, S, R).

Since the vowels are the first two letters and are identical, we can treat them as one letter. So, we have 9 "letters" to arrange: (OO, K, M, P, R, E, S, S, R).

The number of arrangements can be calculated using the concept of permutations. In this case, we have repeated letters, so we need to consider the repetitions.

The number of arrangements with repeated letters is given by the formula:

n! / (r1! * r2! * ... * rk!)

Where n is the total number of letters and r1, r2, ..., rk are the frequencies of the repeated letters.

In our case, we have:

n = 9

r1 = 2 (for the repeated letter "S")

r2 = 2 (for the repeated letter "R")

r3 = 2 (for the repeated letter "O")

Using the formula, we can calculate the number of arrangements:

9! / (2! * 2! * 2!) = (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1) / (2 * 1 * 2 * 1 * 2 * 1) = 9 * 8 * 7 * 6 * 5 = 15,120

Learn more about identical here

https://brainly.com/question/11539896

#SPJ11


Related Questions

(a) Find the closed area determined by the graphs of \( x=2-y^{2} \) and \( y=x \) by following the \( y \) axis when integrating. (b) Express the same area in terms of integral(s) on the \( x \)-axis

Answers

(a) To find the area determined by the graphs of ( x=2-y^{2} ) and ( y=x ), we first need to determine the limits of integration. Since the two curves intersect at ( (1,1) ) and ( (-3,-3) ), we can integrate with respect to ( y ) from ( y=-3 ) to ( y=1 ).

The equation of the line ( y=x ) can be written as ( x-y=0 ). The equation of the parabola ( x=2-y^2 ) can be rewritten as ( y^2+x-2=0 ). At the points of intersection, these two equations must hold simultaneously, so we have:

[y^2+x-2=0]

[x-y=0]

Substituting ( x=y ) into the first equation, we get:

[y^2+y-2=0]

This equation factors as:

[(y-1)(y+2)=0]

So the two points of intersection are ( (1,1) ) and ( (-2,-2) ). Therefore, the area of the region enclosed by the two curves is given by:

[\int_{-3}^{1} [(2-y^2)-y] dy]

Simplifying this expression, we get:

[\int_{-3}^{1} (2-y^2-y) dy = \int_{-3}^{1} (1-y^2-y) dy = [y-\frac{1}{3}y^3 - \frac{1}{2}y^2]_{-3}^{1}]

Evaluating this expression, we get:

[(1-\frac{1}{3}-\frac{1}{2}) - (-3+9-\frac{27}{2}) = \frac{23}{6}]

Therefore, the area enclosed by the two curves is ( \frac{23}{6} ).

(b) To express the same area in terms of an integral on the ( x )-axis, we need to solve for ( y ) in terms of ( x ) for each equation. For ( y=x ), we have ( y=x ). For ( x=2-y^2 ), we have:

[y^2+(-x+2)=0]

Solving for ( y ), we get:

[y=\pm\sqrt{x-2}]

Note that we only want the positive square root since we are looking at the region above the ( x )-axis. Therefore, the area enclosed by the two curves is given by:

[\int_{-2}^{2} [x-\sqrt{x-2}] dx]

We integrate from ( x=-2 ) to ( x=2 ) since these are the values where the two curves intersect. Simplifying this expression, we get:

[\int_{-2}^{2} (x-\sqrt{x-2}) dx = [\frac{1}{2}x^2-\frac{2}{3}(x-2)^{\frac{3}{2}}]_{-2}^{2}]

Evaluating this expression, we get:

[(2-\frac{8}{3}) - (-2-\frac{8}{3}) = \frac{16}{3}]

Therefore, the area enclosed by the two curves is ( \frac{16}{3} ) when integrating with respect to the ( x )-axis.

learn more about integration here

https://brainly.com/question/31744185

#SPJ11

Given f(x)=−6+x2, calculate the average rate of change on each of the given intervals. (a) The average rate of change of f(x) over the interval [−4,−3.9] is (b) The average rate of change of f(x) over the interval [−4,−3.99] is (c) The average rate of change of f(x) over the interval [−4,−3.999] is (d) Using (a) through (c) to estimate the instantaneous rate of change of f(x) at x=−4, we have

Answers

The average rate of change on each of the given intervals and the estimate of the instantaneous rate of change of f(x) at x = -4 is calculated and the answer is found to be -∞.

Given f(x)=−6+x², we have to calculate the average rate of change on each of the given intervals.

Using the formula, The average rate of change of f(x) over the interval [a,b] is given by:  f(b) - f(a) / b - a

(a) The average rate of change of f(x) over the interval [-4, -3.9] is given by: f(-3.9) - f(-4) / -3.9 - (-4)f(-3.9) = -6 + (-3.9)² = -6 + 15.21 = 9.21f(-4) = -6 + (-4)² = -6 + 16 = 10

The average rate of change = 9.21 - 10 / -3.9 + 4 = -0.79 / 0.1 = -7.9

(b) The average rate of change of f(x) over the interval [-4, -3.99] is given by: f(-3.99) - f(-4) / -3.99 - (-4)f(-3.99) = -6 + (-3.99)² = -6 + 15.9601 = 9.9601

The average rate of change = 9.9601 - 10 / -3.99 + 4 = -0.0399 / 0.01 = -3.99

(c) The average rate of change of f(x) over the interval [-4, -3.999] is given by:f(-3.999) - f(-4) / -3.999 - (-4)f(-3.999) = -6 + (-3.999)² = -6 + 15.996001 = 9.996001

The average rate of change = 9.996001 - 10 / -3.999 + 4 = -0.003999 / 0.001 = -3.999

(d) Using (a) through (c) to estimate the instantaneous rate of change of f(x) at x = -4, we have

f'(-4) = lim h → 0 [f(-4 + h) - f(-4)] / h= lim h → 0 [(-6 + (-4 + h)²) - (-6 + 16)] / h= lim h → 0 [-6 + 16 - 8h - 6] / h= lim h → 0 [4 - 8h] / h= lim h → 0 4 / h - 8= -∞.

Learn more about instantaneous rate of change

https://brainly.com/question/30760748

#SPJ11

Fill in the blank: When finding the difference between 74 and 112, a student might say, and then I added 2 more tens onto "First, I added 6 onto 74 to get a ______80 to get to 100 because that's another______

Answers

When finding the difference between 74 and 112, a student might say, "First, I added 6 onto 74 to get a number that ends in 0, specifically 80, to get to 100 because that's another ten."

To find the difference between 74 and 112, the student is using a strategy of breaking down the numbers into smaller parts and manipulating them to simplify the subtraction process. In this case, the student starts by adding 6 onto 74, resulting in 80. By doing so, the student is aiming to create a number that ends in 0, which is closer to 100 and represents another ten. This approach allows for an easier mental calculation when subtracting 80 from 112 since it involves subtracting whole tens instead of dealing with more complex digit-by-digit subtraction.

Learn more about subtracting here : brainly.com/question/13619104

#SPJ11

tanning parlor located in a major located in a major shopping center near a large new england city has the following history of customers over the last four years (data are in hundreds of customers) year feb may aug nov yearly totals 2012 3.5 2.9 2.0 3.2 11.6 2013 4.1 3.4 2.9 3.6 14 2014 5.2 4.5 3.1 4.5 17.3 2015 6.1 5.0 4.4 6.0 21.5

Answers

The Cycle Factor Forecast is 0.13,0.13,0.13,0.13 and the Overall Forecast is 6.3,5.4,4.9,6.3.

Time series forecasting differs from supervised learning in their goal. One of the main variables in forecasting is the history of the very metric we are trying to predict. Supervised learning on the other hand usually seeks to predict using primarily exogenous variables.

A and B. The table is shown below with attached python code at the very end. To get this values simply use stats model as they have all the functions needed. Seasonal index is also in the table.

C and D: To forecast either of these, we will use tbats with a frequency of 4 which has proven to be better than an auto arima on average. Again code, is attached at end. Forecasts are below. It seems tabs though a naïve forecast was best for the cycle factor.

Cycle Factor Forecast: 0.13,0.13,0.13,0.13

Overall Forecast: 6.3,5.4,4.9,6.3

E:0.324

Again I simply created a function in python to calculate the RMSE of any two time series.

F.

CODE:

import pandas as pd

from statsmodels.tsa.seasonal import seasonal_decompose

import numpy as np

import matplotlib.pyplot as plt

data=3.5,2.9,2.0,3.2,4.1,3.4,2.9,2.6,5.2,4.5,3.1,4.5,6.1,5,4.4,6,6.8,5.1,4.7,6.5

df=pd.DataFrame()

df"actual"=data

df.index=pd.date_range(start='1/1/2004', periods=20, freq='3M')

df"mv_avg"=df"actual".rolling(4).mean()

df"trend"=seasonal_decompose(df"actual",two_sided=False).trend

df"seasonal"=seasonal_decompose(df"actual",two_sided=False).seasonal

df"cycle"=seasonal_decompose(df"actual",two_sided=False).resid

def rmse(predictions, targets):

return np.sqrt(((predictions - targets) ** 2).mean())

rmse_values=rmse(np.array(6.3,5.4,4.9,6.3),np.array(6.8,5.1,4.7,6.5))

plt.style.use("bmh")

plot_df=df.ilocNo InterWiki reference defined in properties for Wiki called ""!

plt.plot(plot_df.index,plot_df"actual")

plt.plot(plot_df.index,plot_df"mv_avg")

plt.plot(plot_df.index,plot_df"trend")

plt.plot(df.ilocNo InterWiki reference defined in properties for Wiki called "-4"!.index,6.3,5.4,4.9,6.3)

plt.legend("actual","mv_avg","trend","predictions")

Therefore, the Cycle Factor Forecast is 0.13,0.13,0.13,0.13 and the Overall Forecast is 6.3,5.4,4.9,6.3.

Learn more about the Cycle Factor Forecast here:

https://brainly.com/question/32348366.

#SPJ4

"Your question is incomplete, probably the complete question/missing part is:"

A tanning parlor located in a major shopping center near a large New England city has the following history of customers over the last four years (data are in hundreds of customers):

a. Construct a table in which you show the actual data (given in the table), the centered moving average, the centered moving-average trend, the seasonal factors, and the cycle factors for every quarter for which they can be calculated in years 1 through 4.

b. Determine the seasonal index for each quarter.

c. Project the cycle factor through 2008.

d. Make a forecast for each quarter of 2008.

e. The actual numbers of customers served per quarter in 2008 were 6.8, 5.1, 4.7 and 6.5 for quarters 1 through 4, respectively (numbers are in hundreds). Calculate the RMSE for 2008.

f. Prepare a time-series plot of the actual data, the centered moving averages, the long-term trend, and the values predicted by your model for 2004 through 2008 (where data are available).

The Brady family received 27 pieces of mail on December 25 . The mail consisted of letters, magazines, bills, and ads. How many letters did they receive if they received three more magazines than bill

Answers

The Brady family received 12 letters on December 25th.

They received 9 magazines.

They received 3 bills.

They received 3 ads.

To solve this problem, we can use algebra. Let x be the number of bills the Brady family received. We know that they received three more magazines than bills, so the number of magazines they received is x + 3.

We also know that they received a total of 27 pieces of mail, so we can set up an equation:

x + (x + 3) + 12 + 3 = 27

Simplifying this equation, we get:

2x + 18 = 27

Subtracting 18 from both sides, we get:

2x = 9

Dividing by 2, we get:

x = 3

So the Brady family received 3 bills. Using x + 3, we know that they received 3 + 3 = 6 magazines. We also know that they received 12 letters and 3 ads. Therefore, the Brady family received 12 letters on December 25th.

Know more about algebra here:

https://brainly.com/question/953809

#SPJ11

vertex at (4,3), axis of symmetry with equation y=3, length of latus rectums 4, and 4p>0

Answers

The given information describes a parabola with vertex at (4,3), axis of symmetry with equation y=3, and a latus rectum length of 4. The value of 4p is positive.

1. The axis of symmetry is a horizontal line passing through the vertex, so the equation y=3 represents the axis of symmetry.

2. Since the latus rectum length is 4, we know that the distance between the focus and the directrix is also 4.

3. The focus is located on the axis of symmetry and is equidistant from the vertex and directrix, so it has coordinates (4+2, 3) = (6,3).

4. The directrix is also a horizontal line and is located 4 units below the vertex, so it has the equation y = 3-4 = -1.

5. The distance between the vertex and focus is p, so we can use the distance formula to find that p = 2.

6. Since 4p>0, we know that p is positive and thus the parabola opens to the right.

7. Finally, the equation of the parabola in standard form is (y-3)^2 = 8(x-4).

Learn more about parabola  : brainly.com/question/11911877

#SPJ11

Solve and graph -3 x-10>5

Answers

Answer:  x < -5

The graph has an open hole at -5 and shading to the left

The graph is below.

=====================================================

Work Shown:

-3x - 10 > 5

-3x > 5+10

-3x > 15

x < 15/(-3) ... inequality sign flips

x < -5

The inequality sign flips whenever we divide both sides by a negative number.

The graph has an open hole at -5 with shading to the left.

The open hole means "exclude this endpoint from the solution set".

What is the equation of the following line? Be sure to scroll down first to see all answer options. (-2,-8) ( 0,0)

Answers

Answer:

y = -4x

Step-by-step explanation:

We can find the equation of the line in slope-intercept form, whose general equation is given by:

y = mx + b, where

m is the slope,and b is the y-intercept.

Finding the slope (m):

We can find the slope (m) using the slope formula, which is given by:

m = (y2 - y1) / (x2 - x1), where

(x1, y1) is one point on the line,and (x2, y2) is another point on the line.

Thus, we can plug in (0, 0) for (x1, y1) and (2, -8) for (x2, y2) to find m, the slope of the line:

m = (-8 - 0) / (2 - 0)

m = -8/2

m = -4

Thus, the slope of the line is-4.

Finding the y-intercept (b):

We see that the point (0, 0) lies on the line so the y-intercept is 0 since the line intersects the y-axis at (0, 0).When the y-intercept is 0, we don't write it in the equation.

Thus, the equation of the line is y = -4x.

Suppose that we will take a random sample of size n from a population having mean µ and standard deviation σ. For each of the following situations, find the mean, variance, and standard deviation of the sampling distribution of the sample mean :
:
(a) µ = 12, σ = 5, n = 28 (Round your answers of "σ " and "σ 2" to 4 decimal places.)
(b) µ = 539, σ = .4, n = 96 (Round your answers of "σ " and "σ 2" to 4 decimal places.)
(c) µ = 7, σ = 1.0, n = 7 (Round your answers of "σ " and "σ 2" to 4 decimal places.)
(d) µ = 118, σ = 4, n = 1,530 (Round your answers of "σ " and "σ 2" to 4 decimal places.)

Answers

Mean, µx = µ = 118, Variance, σ2x = σ2/n = 4^2/1530 = 0.0001044 and Standard Deviation, σx = σ/√n = 4/√1530 = 0.1038

Sampling Distribution of the Sample Mean:

Suppose that we will take a random sample of size n from a population having mean µ and standard deviation σ.

The sampling distribution of the sample mean is a probability distribution of all possible sample means.

Statistics for each question:

(a) µ = 12, σ = 5, n = 28

(b) µ = 539, σ = .4, n = 96

(c) µ = 7, σ = 1.0, n = 7

(d) µ = 118, σ = 4, n = 1,530

(a) Mean, µx = µ = 12, Variance, σ2x = σ2/n = 5^2/28 = 0.8929 and Standard Deviation, σx = σ/√n = 5/√28 = 0.9439

(b) Mean, µx = µ = 539, Variance, σ2x = σ2/n = 0.4^2/96 = 0.0001667 and Standard Deviation, σx = σ/√n = 0.4/√96 = 0.0408

(c) Mean, µx = µ = 7, Variance, σ2x = σ2/n = 1^2/7 = 0.1429 and Standard Deviation, σx = σ/√n = 1/√7 = 0.3770

(d) Mean, µx = µ = 118, Variance, σ2x = σ2/n = 4^2/1530 = 0.0001044 and Standard Deviation, σx = σ/√n = 4/√1530 = 0.1038

Learn more about Sampling Distribution visit:

brainly.com/question/31465269

#SPJ11

Find the solution to initial value problem dt 2d2y−2dt dy​+1y=0,y(0)=4,y ′(0)=1 Find the solution of y ′′−2y ′ +y=343e 8t with u(0)=8 and u ′(0)=6. y

Answers

Solution to initial value problem is u = (125/19)e^(20t) + (53/19)e^(-18t)

Given differential equation is

2d²y/dt² - 2dy/dt + y = 0;

y(0) = 4; y'(0) = 1.

And another differential equation is

y'' - 2y' + y = 343e^(8t);

u(0) = 8,

u'(0) = 6.

For the first differential equation,Let us find the characteristic equation by assuming

y = e^(mt).d²y/dt²

= m²e^(mt),

dy/dt = me^(mt)

Substituting these values in the given differential equation, we get

2m²e^(mt) - 2me^(mt) + e^(mt) = 0

Factorizing, we get

e^(mt)(2m - 1)² = 0

The characteristic equation is 2m - 1 = 0 or m = 1/2

Taking the first case 2m - 1 = 0

m = 1/2

Since this root is repeated twice, the general solution is

y = (c1 + c2t)e^(1/2t)

Differentiating the above equation, we get

dy/dt = c2e^(1/2t) + (c1/2 + c2/2)te^(1/2t)

Applying the initial conditions,

y(0) = 4c1 = 4c2 = 4

The solution is y = (4 + 4t)e^(1/2t)

For the second differential equation,

Let us find the characteristic equation by assuming

u = e^(mt).

u'' = m²e^(mt);

u' = me^(mt)

Substituting these values in the given differential equation, we get

m²e^(mt) - 2me^(mt) + e^(mt) = 343e^(8t)

We have e^(mt) commonm² - 2m + 1 = 343e^(8t - mt)

Dividing throughout by e^(8t), we get

m²e^(-8t) - 2me^(-8t) + e^(-8t) = 343e^(mt - 8t)

Setting t = 0, we get

m² - 2m + 1 = 343

Taking square roots, we get

(m - 1) = ±19

Taking first case m - 1 = 19 or m = 20

Taking the second case m - 1 = -19 or m = -18

Substituting the roots in the characteristic equation, we get

u1 = e^(20t); u2 = e^(-18t)

The general solution is

u = c1e^(20t) + c2e^(-18t)

Differentiating the above equation, we get

u' = 20c1e^(20t) - 18c2e^(-18t)

Applying the initial conditions,

u(0) = c1 + c2 = 8u'(0) = 20c1 - 18c2 = 6

Solving the above equations, we get

c1 = 125/19 and c2 = 53/19

Hence, the solution is

u = (125/19)e^(20t) + (53/19)e^(-18t)

To know more about differential visit :

brainly.com/question/32645495

#SPJ11

Hudson and Knox are in a race. Hudson is running at a speed of 8. 8 feet per second. Knox got a 30-foot head start and is running at a speed of 6. 3 feet per second. How many seconds will it take until Hudson and Knox have run the same number of feet? Write the equation

Answers

It will take 12 seconds for Hudson and Knox to have run the same number of feet.

Let's first write the equation to represent the situation described in the problem.

Let's assume it takes t seconds for Hudson and Knox to run the same number of feet. In that time, Hudson will have run a distance of 8.8t feet, and Knox will have run a distance of 30 + 6.3t feet. Since they are running the same distance, we can set these two expressions equal to each other:

8.8t = 30 + 6.3t

Now we can solve for t:

8.8t - 6.3t = 30

2.5t = 30

t = 12

Therefore, it will take 12 seconds for Hudson and Knox to have run the same number of feet.

Learn more about  number  from

https://brainly.com/question/27894163

#SPJ11

According to a company's websife, the top 10% of the candidates who take the entrance test will be called for an interview. The reported mean and standard deviation of the test scores are 63 and 9 , respectively. If test scores are normolly distributed, what is the minimum score required for an interview? (You may find it useful to reference the Z table. Round your final answer to 2 decimal places.)

Answers

The minimum score required for an interview is approximately 74.52 (rounded to 2 decimal places). To find the minimum score required for an interview, we need to determine the score that corresponds to the top 10% of the distribution.

Since the test scores are normally distributed, we can use the Z-table to find the Z-score that corresponds to the top 10% of the distribution.

The Z-score represents the number of standard deviations a particular score is away from the mean. In this case, we want to find the Z-score that corresponds to the cumulative probability of 0.90 (since we are interested in the top 10%).

Using the Z-table, we find that the Z-score corresponding to a cumulative probability of 0.90 is approximately 1.28.

Once we have the Z-score, we can use the formula:

Z = (X - μ) / σ

where X is the test score, μ is the mean, and σ is the standard deviation.

Rearranging the formula, we can solve for X:

X = Z * σ + μ

Substituting the values, we have:

X = 1.28 * 9 + 63

Calculating this expression, we find:

X ≈ 74.52

Therefore, the minimum score required for an interview is approximately 74.52 (rounded to 2 decimal places).

Learn more about cumulative probability here:

https://brainly.com/question/31714928

#SPJ11

a reporter bought hamburgers at randomly selected stores of two different restaurant chains, and had the number of calories in each hamburger measured. can the reporter conclude, at

Answers

Where the above conditions are given then the correct answer is  -Yes, because the test value –3.90 is outside the noncritical region (Option C)

How is this so?

To determine if the hamburgers from the two chains have a different number of calories, we can conduct an independent t-test.

Given  -

Chain A -

- Sample size (n1) = 5

- Sample mean (x1) = 230 Cal

- Sample standard deviation (s1) = 23 Cal

Chain B  -

- Sample size (n2) = 9

- Sample mean (x2) = 285 Cal

- Sample standard deviation (s2) = 29 Cal

The null hypothesis (H0) is that the two chains have the same number of calories, and the alternative hypothesis (Ha) is that they have a different number of calories.

Using an independent t-test, we calculate the test statistic  -

t = (x1 - x2) / √((s1² / n1) + (s2² / n2))

Plugging in the values  -

t = (230 - 285) / √((23² / 5) + (29² / 9))

t ≈ -3.90

To determine the critical region, we need to compare the test statistic to the critical value at a significance level of α = 0.05 with degrees of freedom df = smaller of (n1 - 1) or (n2 - 1).

The degrees of freedom in this case would be df = min(4, 8) = 4.

Looking up the critical value for a two-tailed t-test with df = 4 at α = 0.05, we find that it is approximately ±2.776.

Since the test statistic (-3.90) is outside the critical region (±2.776), we reject the null hypothesis.

Therefore, the reporter can conclude, at α = 0.05, that the hamburgers from the two chains have a different number of calories.

This means that the correct answer is  -" Yes, because the test value –3.90 is outside the noncritical region" (Option C)

Learn more about t-test at:

https://brainly.com/question/6589776

#SPJ4

Full Question:

Although part of your question is missing, you might be referring to this full question:

A reporter bought hamburgers at randomly selected stores of two different restaurant chains, and had the number of Calories in each hamburger measured. Can the reporter conclude, at α = 0.05, that the hamburgers from the two chains have a different number of Calories? Use an independent t-test. df = smaller of n1 - 1 or n2 - 1.

Chain A Chain B

Sample Size 5 9

Sample Mean 230 Cal 285 Cal

Sample SD 23 Cal 29 Cal

A) No, because the test value –0.28 is inside the noncritical region.

B) Yes, because the test value –0.28 is inside the noncritical region

C) Yes, because the test value –3.90 is outside the noncritical region

D) No, because the test value –1.26 is inside the noncritical region

Question 13 of 25
The graph of a certain quadratic function has no x-intercepts. Which of the
following are possible values for the discriminant? Check all that apply.
A. -18
B. 0
C. 3
D. -1
SUBMIT

Answers

Answer:

Since the graph of a certain quadratic function has no x-intercepts, the discriminant has to be negative, so A and D are possible values for the discriminant.

Find all the values of the following. (1) (−16) ^1/4Place all answers in the following blank, separated by commas: (2) 1 ^1/5 Place all answers in the followina blank. sebarated bv commas: (3) i ^1/4 Place all answers in the followina blank. sebarated bv commas:

Answers

The required roots of the given expressions are:

(1) (1/√2 + i/√2), (-1/√2 + i/√2), (-1/√2 - i/√2), (1/√2 - i/√2).

(2)1

(3) [cos(π/8) + isin(π/8)], [cos(5π/8) + isin(5π/8)], [cos(9π/8) + isin(9π/8)], [cos(13π/8) + isin(13π/8)].

Formula used:For finding roots of a complex number `a+bi`,where `a` and `b` are real numbers and `i` is an imaginary unit with property `i^2=-1`.

If `r(cosθ + isinθ)` is the polar form of the complex number `a+bi`, then its roots are given by:r^(1/n) [cos(θ+2kπ)/n + isin(θ+2kπ)/n],where `n` is a positive integer and `k = 0,1,2,...,n-1.

Calculations:

(1) (-16)^(1/4)

This expression (-16)^(1/4) can be written as [16 × (-1)]^(1/4).

Therefore (-16)^(1/4) = [16 × (-1)]^(1/4) = 2^(1/4) × [(−1)^(1/4)] = 2^(1/4) × [cos((π + 2kπ)/4) + isin((π + 2kπ)/4)],where k = 0,1,2,3.

Therefore (-16)^(1/4) = 2^(1/4) × [(1/√2) + i(1/√2)], 2^(1/4) × [(−1/√2) + i(1/√2)],2^(1/4) × [(−1/√2) − i(1/√2)], 2^(1/4) × [(1/√2) − i(1/√2)].

Hence, the roots of (-16)^(1/4) are (1/√2 + i/√2), (-1/√2 + i/√2), (-1/√2 - i/√2), (1/√2 - i/√2).

(2) 1^(1/5)

This expression 1^(1/5) can be written as 1^[1/(2×5)] = 1^(1/10).

Now, 1^(1/10) = 1 because any number raised to power 0 equals 1.

Hence, the only root of 1^(1/5) is 1.

(3) i^(1/4).

Now, i^(1/4) can be written as (cos(π/2) + isin(π/2))^(1/4).Now, the modulus of i is 1 and its argument is π/2.
Therefore, its polar form is: 1(cosπ/2 + isinπ/2).

Therefore i^(1/4) = 1^(1/4)[cos(π/2 + 2kπ)/4 + isin(π/2 + 2kπ)/4], where k = 0, 1,2,3.

Therefore i^(1/4) = [cos(π/8) + isin(π/8)], [cos(5π/8) + isin(5π/8)], [cos(9π/8) + isin(9π/8)], [cos(13π/8) + isin(13π/8)].

Therefore, the roots of i^(1/4) are [cos(π/8) + isin(π/8)], [cos(5π/8) + isin(5π/8)], [cos(9π/8) + isin(9π/8)], [cos(13π/8) + isin(13π/8)].


To know more about roots click here:

https://brainly.com/question/32597645

#SPJ11

Consider the line y=-(1)/(5)x+3 (a) What is the slope of a line perpendicular to this line? (b) What is the slope of a line parallel to this line?

Answers

For a line to be parallel to the given line, it must have the same slope. The slope of the given line is -1/5, so a line parallel to it will also have a slope of -1/5. The slope of a line perpendicular to the given line is 5.


a) The slope of a line perpendicular to y=-(1)/(5)x+3 is 5. b) The slope of a line parallel to y=-(1)/(5)x+3 is -1/5.

The given equation is y = -(1/5)x + 3.
The slope of the given line is -1/5.

For a line to be perpendicular to the given line, the slope of the line must be the negative reciprocal of -1/5, which is 5.
Thus, the slope of a line perpendicular to the given line is 5.

For a line to be parallel to the given line, the slope of the line must be the same as the slope of the given line, which is -1/5.

Thus, the slope of a line parallel to the given line is -1/5.


To understand the concept of slope in detail, let us consider the equation of the line y = mx + c, where m is the slope of the line. In the given equation, y=-(1)/(5)x+3, the coefficient of x is the slope of the line, which is -1/5.
Now, let's find the slope of a line perpendicular to this line. To find the slope of a line perpendicular to the given line, we must take the negative reciprocal of the given slope. Therefore, the slope of a line perpendicular to y=-(1)/(5)x+3 is the negative reciprocal of -1/5, which is 5.

To find the slope of a line parallel to the given line, we must recognize that parallel lines have the same slope. Hence, the slope of a line parallel to y=-(1)/(5)x+3 is the same as the slope of the given line, which is -1/5. Therefore, the slope of a line parallel to y=-(1)/(5)x+3 is -1/5. Hence, the slope of a line perpendicular to the given line is 5, and the slope of a line parallel to the given line is -1/5.

To know more about slope, visit:

https://brainly.com/question/29044610

#SPJ11

Let E, F and G be three events in S with P(E) = 0.48, P(F) =
0.52, P(G) = 0.52, P(E ∩ F) = 0.32, P(E ∩ G) = 0.29, P(F ∩ G) =
0.26, and P(E ∩ F ∩ G) = 0.2.
Find P(EC ∪ FC ∪ GC).

Answers

The required probability of the union of the complements of events E, F, and G is 0.9631.

Given, the events E, F, and G in a sample space S are defined with their respective probabilities as follows: P(E) = 0.48, P(F) = 0.52, P(G) = 0.52, P(E ∩ F) = 0.32, P(E ∩ G) = 0.29, P(F ∩ G) = 0.26, and P(E ∩ F ∩ G) = 0.2. We need to calculate the probability of the union of their complements.

Let's first calculate the probabilities of the complements of E, F, and G.P(E') = 1 - P(E) = 1 - 0.48 = 0.52P(F') = 1 - P(F) = 1 - 0.52 = 0.48P(G') = 1 - P(G) = 1 - 0.52 = 0.48We know that P(E ∩ F) = 0.32. Hence, using the formula of probability of the union of events, we can find the probability of the intersection of the complements of E and F.P(E' ∩ F') = 1 - P(E ∪ F) = 1 - (P(E) + P(F) - P(E ∩ F))= 1 - (0.48 + 0.52 - 0.32) = 1 - 0.68 = 0.32We also know that P(E ∩ G) = 0.29. Similarly, we can find the probability of the intersection of the complements of E and G.P(E' ∩ G') = 1 - P(E ∪ G) = 1 - (P(E) + P(G) - P(E ∩ G))= 1 - (0.48 + 0.52 - 0.29) = 1 - 0.29 = 0.71We also know that P(F ∩ G) = 0.26.

Similarly, we can find the probability of the intersection of the complements of F and G.P(F' ∩ G') = 1 - P(F ∪ G) = 1 - (P(F) + P(G) - P(F ∩ G))= 1 - (0.52 + 0.52 - 0.26) = 1 - 0.76 = 0.24Now, we can calculate the probability of the union of the complements of E, F, and G as follows: P(E' ∪ F' ∪ G')= P((E' ∩ F' ∩ G')')          {De Morgan's law}= 1 - P(E' ∩ F' ∩ G')         {complement of a set}= 1 - P(E' ∩ F' ∩ G')         {by definition of the intersection of sets}= 1 - P(E' ∩ F') ⋅ P(G')         {product rule of probability}= 1 - 0.32 ⋅ 0.48 ⋅ 0.24= 1 - 0.0369= 0.9631.

Let's learn more about union:

https://brainly.com/question/28278437

#SPJ11

For a large sporting event the broadcasters sold 68 ad slots for a total revenue of $152 million. What was the mean price per ad slot? The mean price per ad slot was $2.2 million. (Round to one decimal place as needed.)

Answers

The broadcasters sold 68 ad slots for $152 million, resulting in a total revenue of $152 million. To find the mean price per ad slot, divide the total revenue by the number of ad slots sold. The formula is μ = Total Revenue / Number of Ad Slots sold, resulting in a mean price of $2.2 million.

For a large sporting event, the broadcasters sold 68 ad slots for a total revenue of $152 million. The task is to find the mean price per ad slot. The mean price per ad slot was $2.2 million. (Round to one decimal place as needed.)The formula for the mean of a sample is given below:

μ = (Σ xi) / n

Where,μ represents the mean of the sample.Σ xi represents the summation of values from i = 1 to i = n.n represents the total number of values in the sample.

The mean price per ad slot can be found by dividing the total revenue by the number of ad slots sold. We are given that the number of ad slots sold is 68 and the total revenue is $152 million.

Let's put these values in the formula.

μ = Total Revenue / Number of Ad Slots sold

μ = $152 million / 68= $2.23529411764

The mean price per ad slot is $2.2 million. (Round to one decimal place as needed.)

Therefore, the mean price per ad slot is $2.2 million.

To know more about mean Visit:

https://brainly.com/question/31101410

#SPJ11

A sponsor wants to supplement the budget allotted for each family by providing an additional P^(1), 500.00. a. If g(x) represents this new amount allotted for each family, construct a function representing the family. b. What will be the amount of each relief packs?

Answers

a. The function representing the new amount allotted for each family is g(x) = x + P^(1), 500.00.

b. The amount of each relief pack will be P^(3), 500.00.

a. The function representing the new amount allotted for each family, g(x), can be constructed as follows:

g(x) = x + P^(1), 500.00

Here, x represents the initial budget allotted for each family, and P^(1), 500.00 represents the additional amount provided by the sponsor.

b. To determine the amount of each relief pack, we need to know the initial budget allotted for each family (represented by x) and the additional amount provided by the sponsor (P^(1), 500.00).

Let's assume the initial budget allotted for each family is x = P^(2), 000.00.

Using the function g(x) = x + P^(1), 500.00, we can substitute the value of x:

g(P^(2), 000.00) = P^(2), 000.00 + P^(1), 500.00

Simplifying the expression, we get:

g(P^(2), 000.00) = P^(3), 500.00

Therefore, the amount of each relief pack after the sponsor's additional contribution will be P^(3), 500.00.

To know more about relief packs, refer here:

https://brainly.com/question/30431088#

#SPJ11

Find all polynomial solutions p(t, x) of the wave equation utt=uzz with (a) deg p ≤ 2, (b) deg p = 3.

Answers

The polynomial solution for deg p = 3 is p(t, x) = At³ + Bx³ + Ct² + Dx² - 3At² - 2Ct - 3Bx² - 2Dx, where A, B, C, and D are constants.

(a) Case: deg p ≤ 2

Let's assume p(t, x) = At² + Bx² + Ct + Dx + E, where A, B, C, D, and E are constants.

Substituting p(t, x) into the wave equation, we have:

(p_tt) = 2A,

(p_zz) = 2B,

(p_t) = 2At + C,

(p_z) = 2Bx + D.

Therefore, the wave equation becomes:

2A = 2B.

This implies that A = B.

Next, we consider the terms involving t and x:

2At + C = 0,

2Bx + D = 0.

From the first equation, we get C = -2At. Substituting this into the second equation, we have D = -4Bx.

Finally, we have the constant term:

E = 0.

So, the polynomial solution for deg p ≤ 2 is p(t, x) = At² + Bx² - 2At - 4Bx, where A and B are constants.

(b) Case: deg p = 3

Let's assume p(t, x) = At³ + Bx³ + Ct² + Dx² + Et + Fx + G, where A, B, C, D, E, F, and G are constants.

Substituting p(t, x) into the wave equation, we have:

(p_tt) = 6At,

(p_zz) = 6Bx,

(p_t) = 3At² + 2Ct + E,

(p_z) = 3Bx² + 2Dx + F.

Therefore, the wave equation becomes:

6At = 6Bx.

This implies that A = Bx.

Next, we consider the terms involving t and x:

3At² + 2Ct + E = 0,

3Bx² + 2Dx + F = 0.

From the first equation, we get E = -3At² - 2Ct. Substituting this into the second equation, we have F = -3Bx² - 2Dx.

Finally, we have the constant term:

G = 0.

So, the polynomial solution for deg p = 3 is p(t, x) = At³ + Bx³ + Ct² + Dx² - 3At² - 2Ct - 3Bx² - 2Dx, where A, B, C, and D are constants.

Learn more about Polynomial Solution here:

https://brainly.com/question/29599975

#SPJ11

n={n/2,3×n+1,​ if n is even if n is odd ​ The conjecture states that when this algorithm is continually applied, all positive integers will eventually reach i. For example, if n=35, the secguence is 35, 106,53,160,60,40,20,10,5,16,4,4,2,1 Write a C program using the forki) systen call that generates this sequence in the child process. The starting number will be provided from the command line. For example, if 8 is passed as a parameter on the command line, the child process will output 8,4,2,1. Hecause the parent and child processes have their own copies of the data, it will be necessary for the child to outpat the sequence. Have the parent invoke the vaite() call to wait for the child process to complete before exiting the program. Perform necessary error checking to ensure that a positive integer is passed on the command line

Answers

The C program described generates a sequence of numbers based on a conjecture. The program takes a positive integer as input and uses the fork system call to create a child process.

The C program uses the fork system call to create a child process. The program takes a positive integer, the starting number, as a parameter from the command line. The child process then applies the given algorithm to generate a sequence of numbers.

The algorithm checks if the current number is even or odd. If it is even, the next number is obtained by dividing it by 2. If it is odd, the next number is obtained by multiplying it by 3 and adding 1.

The child process continues applying the algorithm to the current number until it reaches the value of 1. During each iteration, the sequence is printed.

Meanwhile, the parent process uses the wait() call to wait for the child process to complete before exiting the program.

To ensure that a positive integer is passed on the command line, the program performs necessary error checking. If an invalid input is provided, an error message is displayed, and the program terminates.

For more information on sequences visit: brainly.com/question/15648134

#SPJ11

The average number of misprints per page in a magazine is whixch follows a Poisson's Probability distribution. What is the probability that the number of misprints on a particular page of that magazine is 2?

Answers

The probability that a particular book is free from misprints is 0.2231. option D is correct.

The average number of misprints per page (λ) is given as 1.5.

The probability of having no misprints (k = 0) can be calculated using the Poisson probability mass function:

[tex]P(X = 0) = (e^{-\lambda}\times \lambda^k) / k![/tex]

Substituting the values:

P(X = 0) = [tex](e^{-1.5} \times 1.5^0) / 0![/tex]

Since 0! (zero factorial) is equal to 1, we have:

P(X = 0) = [tex]e^{-1.5}[/tex]

Calculating this value, we find:

P(X = 0) = 0.2231

Therefore, the probability that a particular book is free from misprints is approximately 0.2231.

To learn more on probability click:

https://brainly.com/question/11234923

#SPJ4

Question 13: The average number of misprints per page of a book is 1.5.Assuming the distribution of number of misprints to be Poisson. The probability that a particular book is free from misprints,is B. 0.435 D. 0.2231 A. 0.329 C. 0.549​

The weekly demand for Math Wars - Attack of the Limits video games is given by p=420/(x−6)+4000 where x is the number thousands of video games produced and sold, and p is in dollars. Using the Marginal Revenue function, R ′(x), approximate the marginal revenue when 12,000 video games have been produced and sold.
_____dollars

Answers

The marginal revenue when 12,000 video games have been produced and sold is 105 dollars.

Given function, p=420/(x-6)+4000

To find the marginal revenue function, R′(x)

As we know, Revenue, R = price x quantity

R = p * x (price, p and quantity, x are given in the function)

R = (420/(x-6) + 4000) x

Revenue function, R(x) = (420/(x-6) + 4000) x

Differentiating R(x) w.r.t x,

R′(x) = d(R(x))/dx

R′(x) = [d/dx] [(420/(x-6) + 4000) x]

On expanding and simplifying,

R′(x) = 420/(x-6)²

Now, to approximate the marginal revenue when 12,000 video games have been produced and sold, we need to put the value of x = 12

R′(12) = 420/(12-6)²

R′(12) = 105 dollars

Therefore, the marginal revenue when 12,000 video games have been produced and sold is 105 dollars.

To know more about marginal revenue function visit:

https://brainly.com/question/30764099

#SPJ11

An organization drills 3 wells to provide access to clean drinking water. The cost (in dollars ) to drill and maintain the wells for n years is represented by 34,500+540n . Write and interpret an expr

Answers

This means that the total cost for drilling and maintaining the wells for 5 years would be $37,500.

The expression representing the cost (in dollars) to drill and maintain the wells for n years is given by:

34,500 + 540n

In the given expression, the constant term 34,500 represents the initial cost of drilling the wells, which includes expenses such as equipment, labor, and permits. The term 540n represents the cost of maintaining the wells for n years, with 540 being the annual maintenance cost per well.

Interpreting the expression:

The expression allows us to calculate the total cost of drilling and maintaining the wells for a given number of years, n. As the value of n increases, the cost will increase proportionally, reflecting the additional expenses incurred for maintenance over time.

For example, if we plug in n = 5 into the expression, we can calculate the cost of drilling and maintaining the wells for 5 years:

[tex]\(34,500 + 540 \times 5 = 37,500\).[/tex]

To know more about Expression visit-

brainly.com/question/14083225

#SPJ11

​​​​​​​Which of the following maps are symmetries of the specified D?
Explain your reasoning.
(a) D = [0, 1], f (x) = x3;
(b) D = {x ∈R, 0 < y < 1}, f (x, y) = (x + 1, 1 −y);

Answers

The map which is symmetries of the specified D is D = {x ∈R, 0 < y < 1},

f (x, y) = (x + 1, 1 −y).

Symmetry in mathematics is a measure of how symmetric an object is. An object is symmetric if there is a transformation or mapping that leaves it unchanged. The concept of symmetry is prevalent in several fields, such as science, art, and architecture. Let's see which of the following maps are symmetries of the specified D:

(a) D = [0, 1],

f (x) = x3

The domain of the function is [0, 1], which is a one-dimensional space. The mapping will be a reflection or rotation if it is a symmetry. It's easy to see that x^3 is not symmetric around any axis of reflection, nor is it symmetric around the origin. Thus, this function has no symmetries.

(b) D = {x ∈R, 0 < y < 1},

f (x, y) = (x + 1, 1 −y)

This mapping is a reflection in the line x = −1, and it's symmetric. The reason for this is because it maps points on one side of the line to their mirror image on the other side of the line, leaving points on the line unchanged.

The mapping (x,y) -> (x+1,1-y) maps a point (x,y) to the point (x+1,1-y). We can see that the image of a point is the reflection of the point in the line x=-1.

Therefore, the mapping is a symmetry of D = {x ∈R, 0 < y < 1}.

Hence, the map which is symmetries of the specified D is D = {x ∈R, 0 < y < 1},

f (x, y) = (x + 1, 1 −y).

To know more about symmetries visit

https://brainly.com/question/14966585

#SPJ11

(ii) At any party, the number of people who have shaken the hand of an odd number of people is even. [30Que 5. Give examples of the following: (i) a connected simple graph with 6 vertices such that each vertex has degree 3 (ii) a graph with 3 components and 4 loops. 6. Prove the following: if a graph has a closed walk of odd length, then it has a cycle of odd length. How many edges does the complete bipartite graph K m,n
​ have? Justify your answer.

Answers

Let G be a graph with a closed walk of odd length, say v_0, v_1, ..., v_{2k+1}, v_0. We want to show that G has a cycle of odd length.

Let W = {v_i : 0 ≤ i ≤ 2k+1} be the set of vertices in the closed walk. Since the walk is closed, the first and last vertices are the same, so we can write:

w_0 = w_{2k+1}

Let C be the subgraph of G induced by the vertices in W. That is, the vertices of C are the vertices in W and the edges of C are the edges of G that have both endpoints in W.

Since W is a closed walk, every vertex in W has even degree in C (because it has two incident edges). Therefore, the sum of degrees of vertices in C is even.

However, since C is a subgraph of G, the sum of degrees of vertices in C is also equal to twice the number of edges in C. Therefore, the number of edges in C is even.

Now consider the subgraph H of G obtained by removing all edges in C. This graph has no edges between vertices in W, because those edges were removed. Therefore, each connected component of H either contains a single vertex from W, or is a path whose endpoints are in W.

Since G has a closed walk of odd length, there must be some vertex in W that appears an odd number of times in the walk (because the number of vertices in the walk is odd). Let v be such a vertex.

If v appears only once in the walk, then it is a connected component of H and we are done, because a single vertex is a cycle of odd length.

Otherwise, let v = w_i for some even i. Then w_{i+1}, w_{i+2}, ..., w_{i-1} also appear in the walk, and they form a path in H. Since this path has odd length (because i is even), it is a cycle of odd length in G.

Therefore, we have shown that if G has a closed walk of odd length, then it has a cycle of odd length.

The complete bipartite graph K_m,n has m+n vertices, with m vertices on one side and n on the other side. Each vertex on one side is connected to every vertex on the other side, so the degree of each vertex on the first side is n and the degree of each vertex on the second side is m. Therefore, the total number of edges in K_m,n is mn, since there are mn possible pairs of vertices from the two sides that can be connected by an edge.

learn more about odd length here

https://brainly.com/question/4232467

#SPJ11

Substitute (x_(1),y_(1))=(2,4) and m=-2 into the point -slope form, y=m(x-x_(1))+y_(1). Determine the point -slope form of the line.

Answers

Therefore, the point-slope form of the line is y = -2x + 8.

To determine the point-slope form of the line using the given point (x₁, y₁) = (2, 4) and slope (m) = -2, we can substitute these values into the point-slope form equation:

y = m(x - x₁) + y₁

Substituting the values:

y = -2(x - 2) + 4

Simplifying:

y = -2x + 4 + 4

y = -2x + 8

To know more about point-slope form,

https://brainly.com/question/30589002

#SPJ11

simplify the following expression 3 2/5 mulitply 3(-7/5)

Answers

Answer:

1/3

Step-by-step explanation:

I assume that 2/5 and -7/5 are exponents.

3^(2/5) × 3^(-7/5) = 3^(2/5 + (-7/5)) = 3^(-5/5) = 3^(-1) = 1/3

Answer: 136/5

Step-by-step explanation: First simplify the fraction

1) 3 2/5 = 17/5

3 multiply by 5 and add 5 into it.

2) 3(-7/5) = 8/5

3 multiply by 5 and add _7 in it.

By multiplication of 2 fractions,

17/5 multiply 8/5 = 136/5

=136/5

To know more about the Fraction visit:

https://brainly.com/question/33620873

Cost of Pizzas A pizza shop owner wishes to find the 99% confidence interval of the true mean cost of a large plain pizza. How large should the sample be if she wishes to be accurate to within $0.137 A previous study showed that the standard deviation of the price was $0.29. Round your final answer up to the next whole number. The owner needs at least a sample of pizzas

Answers

Rounding up to the next whole number, we get a required sample size of n = 62 pizzas.

To determine the required sample size, we need to use the formula:

n = (z*(σ/E))^2

where:

n is the required sample size

z is the z-score corresponding to the desired level of confidence (in this case, 99% or 2.576)

σ is the population standard deviation

E is the maximum error of the estimate (in this case, $0.137)

Substituting the given values, we get:

n = (2.576*(0.29/0.137))^2

n ≈ 61.41

Rounding up to the next whole number, we get a required sample size of n = 62 pizzas.

Learn more about  number  from

https://brainly.com/question/27894163

#SPJ11

This test: 100 point (s) possible This question: 2 point (s) possible Find an equation for the line with the given properties. Express your answer using either the general form or the slope -intercept

Answers

The slope-intercept form of a linear equation is [tex]y = mx + b[/tex], where m is the slope of the line and b is the y-intercept.

A linear equation is of the form [tex]y = mx + b[/tex]. The slope-intercept form of a linear equation is [tex]y = mx + b[/tex], where m is the slope of the line and b is the y-intercept. The slope is the change in the y-coordinates divided by the change in the x-coordinates. For example, if the slope of the line is 2, then for every one unit that x increases, y increases by two units.

The general form of a linear equation is [tex]Ax + By = C[/tex], where A, B, and C are constants.

To convert the slope-intercept form to the general form, rearrange the equation to get [tex]-mx + y = b[/tex].

Multiply each term of the equation by -1 to get [tex]mx - y = -b[/tex].

Finally, rearrange the equation to get [tex]Ax + By = C[/tex], where [tex]A = m[/tex], [tex]B = -1[/tex], and[tex]C = -b[/tex].

Learn more about slope here:

https://brainly.com/question/27892019

#SPJ11

Other Questions
simple stains allow us to determine which of the following characteristics of bacteria? 3) Find Exactly. Show evidence of all work. A) cos(-120) b) cot 5TT 4 c) csc(-377) d) sec 4 T 3 e) cos(315*) f) sin 5T 3 Your goal is to find and repair the defects in the Calc method. Hints: 1. Parameters value1 and value 2 may contain non-numeric values. In these cases, set the ErrorMessage variable to "VALUES MUST BE NUMERI 2. As the calculation operator is passed in as a string, it can be set to anything. Should this be the case, set the ErrorMessage to "INCORRECT OPERATOR" "ARITHMETIC ERROR" (1) The following test case is one of the actual test cases of this question that may be used to evaluate your submission. Sample input 1 Sample output 1 Note: problem statement. Limits Time Limit: 5.0sec(s) for each input file Memory Limit: 256MB Source Limit: 1024 KB Scoring Score is assigned if any testcase passes Allowed Languages Auto-complete ready! the primary function of the kidney is to exchange molecules across a membrane between the blood and urine. a) true b) false hello fellow american. this you should vote me. i leave power good. thank you. thank you. if you vote me i'm hot. what? taxes they'll be lower son. the democratic vote for me is right thing to do philadelphia. so do. Find y" by implicit differentiation.cos(y) + sin(x) = 1 A compound consisting of carbon and hydrogen consists of 67.90%carbon by mass. If the compound is measure to have a mass of 37.897Mg, how many grams of hydrogen are present in the compound? A split-plot design is also known as a:counterbalanced designmixed designTukey HSDblock design 3A professional environment is helpful for achieving In this lab activity, you are required to design a form and answer four questions. Flight ticket search form You are required to design a form similar to Figure 1 that allows users to search for their flight tickets. The figure is created using a wire framing tool. Your HTML form might look (visually) different than what is shown in the picture. Make sure that the form functionality works. Later, we can improve the visual appearance of your form with CSS! Make sure to include the following requirements in your form design: - Add a logo image of your choice to the form. Store your image in a folder in your project called images and use the relative addressing to add the image to your Website. - Add fieldsets and legends for "flight information" and "personal information". - "From" and "To" fields - user must select the source and destination cities. - Depart and arrival dates are mandatory. The start signs shown beside the text indicate the mandatory fields. Do not worry about the color and use a black start or replace it with the "required" text in front of the field. - The default value for the number of adults is set to 1 . Use the value attribute to set the default value. - The minimum number allowed for adults must be 1 an the maximum is 10. - The default value for the number of children is set to 0 . The minimum number allowed for children must be 0 . - Phone number must show the correct number format as a place holder. - Input value for phone number must be validated with a pattern that you will provide. You can check your course slides or code samples in Blackboard to find a valid regular expression for a phone number. - Define a maximum allowed text size for the email field. Optional step - Define a pattern for a valid email address. You can use Web search or your course slides to find a valid pattern for an email! - Search button must take you to another webpage, e.g., result.html. You can create a new page called result.html with a custom content. - Use a method that appends user inputs into the URL. - Clear button must reset all fields in the form Make sure to all the code in a proper HTML format. For example, include a proper head, body, meta tags, semantic tags, and use indentation to make your code clear to read. Feel free to be creative and add additional elements to the form! Do not forget to validate your code before submitting it. Figure 1 - A prototype for the search form Questions 1. What is the difference between GET and POST methods in a HTML form? 2. What is the purpose of an "action" attribute in a form? Give examples of defining two different actions. 3. What is the usage of the "name" attribute for form inputs? 4. When does the default form validation happen? When user enters data or when the form submit is called? Submission Include all your project files into a folder and Zip them. Submit a Zip file and a Word document containing your answer to the questions in Blackboard. Consider the following.g(x) = 5e^7.5x; h(x) = 5(7.5^x)(a) Write the product function.f(x) =(b) Write the rate-of-change function.f'(x) = Decision Point: Choosing a Source for the New Organic Ingredient Now that you've settled on the preferred ingredient, the brand manager needs you to find a source for it. "We can buy organic quinoa from several sources. I would like you to evaluate these sources and make a recommendation on the best one that both fits with our LOHAS target market and will ensure our competitiveness in the marketplace." Which of the following options is the best choice for Healthy O's? Organic quinoa grown in Peru: This is a more established growing area with a steady and consistent supply. Organic quinoa grown in Bolivia: This is a more established growing area with a steady and consistent supply, and it offers an option to purchase from fair trade growers through a Bolivian co-op. Organic quinoa grown in the USA: This is a new growing area for organic quinoa, and supply can be sporadic. The growers assure you that they can also supply nonorganic quinoa if needed so that supply will not be interrupted. Use the References to access important values if needed for this question. Match the following aqueous solutions with the appropriate letter from the column on the right. 1.0.153 mK2 S A. Highest boiling point 2.0.133 mBa(OH)2 B. Second highest boiling point 3.0.123 mNa2CO3 C. Third highest boiling point 4. 0.430 msucrose (nonelectrolyte) D. Lowest boiling point 1. Why is the supervisory interview important in the selection process? 2. Explain the difference between situational and behavioral interviews. Give examples of situational and behavioral interview questions. 3. Name and describe the pros and cons of the three different types of interview structures. 4. Describe five. different types of testing that may be used in the selection process and give an example of each. Calculate the storage size of image ( uncompressing ) in Gbyte for each True Color image, Note that the dimensions of image 512 X3 512 Take me to the textThe following information pertains to Bush Company for the fiscal year 2020.Purchase of plant and equipment$34,000Purchase of long-term investment$18,000Increase in accounts payable$4,200Repayment of bonds payable$15,000Depreciation of plant and equipment $6,800Loss on redemption of bonds$5,800Calculate the increase (decrease) in cash from investing activities.Do not enter dollar signs or commas in the input boxes. Use the negative sign for a decrease in cash.Increase or decrease in cash from investing activities = $-52000ExplanationA purchase of plant and equipment is a decrease in cash.A purchase of investments is a decrease in cash.Cash from investing activities is $-52,000.CorrectMarks for this submission: 1.00/1.00. Find the volume of the solid that results when the region bounded by x = y and x = 2y+15 is revolved about the y-axis. Volume = the relativist position on language and perception is the basis of which hypothesis? Tucker, Inc.s net sales decreased from $90,000 in yearone to $45,000 in year two, and its cost of goods sold decreasedfrom $30,000 in year one to $20,000 in year two. The verticalanalysis based on ( 7 points) Let A, B, C and D be sets. Prove that (A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D) . Hint: Show that (a) if (x, y) \in(A \times B) \cap(C \times D) , th