Identify the hypothesis and conclusion of the following conditional statement.

An angle with a measure less than 90 is an acute angle.

Answers

Answer 1

Hypothesis: An angle with a measure less than 90.

Conclusion: It is an acute angle.

The hypothesis of the conditional statement is "An angle with a measure less than 90," while the conclusion is "is an acute angle."

In a conditional statement, the hypothesis is the initial condition or the "if" part of the statement, and the conclusion is the result or the "then" part of the statement. In this case, the hypothesis states that the angle has a measure less than 90. The conclusion asserts that the angle is an acute angle.

An acute angle is defined as an angle that measures less than 90 degrees. Therefore, the conclusion aligns with the definition of an acute angle. If the measure of an angle is less than 90 degrees (hypothesis), then it can be categorized as an acute angle (conclusion).

Conditional statements are used in logic and mathematics to establish relationships between conditions and outcomes. The given conditional statement presents a hypothesis that an angle has a measure less than 90 degrees, and based on this hypothesis, the conclusion is drawn that the angle is an acute angle.

Understanding the components of a conditional statement, such as the hypothesis and conclusion, helps in analyzing logical relationships and drawing valid conclusions. In this case, the conclusion is in accordance with the definition of an acute angle, which further reinforces the validity of the conditional statement.

Learn more about Hypothesis

brainly.com/question/32562440

brainly.com/question/32298676

#SPJ11


Related Questions

Help me please worth 30 points!!!!

Answers

The roots of the equation are;

a. (n +2)(n -8)

b. (x-5)(x-3)

How to determine the roots

From the information given, we have the expressions as;

f(x) = n² - 6n - 16

Using the factorization method, we have to find the pair factors of the product of the constant and x square, we have;

a. n² -8n + 2n - 16

Group in pairs, we have;

n(n -8) + 2(n -8)

Then, we get;

(n +2)(n -8)

b. y = x² - 8x + 15

Using the factorization method, we have;

x² - 5x - 3x + 15

group in pairs, we have;

x(x -5) - 3(x - 5)

(x-5)(x-3)

Learn more about factorization at: https://brainly.com/question/25829061

#SPJ1

Assume that there is a statistically significant bivariate relationship between the amount of texting during driving and the number of accidents. Scientists later investigate whether or not this bivariate relationship is moderated by age.
Age 16-20: r = 0.6 p = 0.01
Age 21+: r = 0.2 p = 0.05
T or F: Based only on the r and p values listed above you can come to the conclusion that age is a moderator of the bivariate relationship between the amount of texting and the number of accidents.

Answers

It is False that based only on the r and p values listed above you can come to the conclusion that age is a moderator of the bivariate relationship between the amount of texting and the number of accidents.

In the given scenario, it is not completely true that based only on the r and p values listed above, you can come to the conclusion that age is a moderator of the bivariate relationship between the amount of texting and the number of accidents.

Let's first understand what is meant by the term "moderator.

"Moderator: A moderator variable is a variable that changes the strength of a connection between two variables. If there is a statistically significant bivariate relationship between the amount of texting during driving and the number of accidents, scientists investigate whether this bivariate relationship is moderated by age.

Therefore, based on the values of r and p, it is difficult to determine if age is a moderator of the bivariate relationship between the amount of texting and the number of accidents.

As we have to analyze other factors also to determine whether the age is a moderator or not, such as the sample size, the effect size, and other aspects to draw a meaningful conclusion.

So, it is False that based only on the r and p values listed above you can come to the conclusion that age is a moderator of the bivariate relationship between the amount of texting and the number of accidents.

To know more about values visit :

https://brainly.com/question/30145972

#SPJ11

1. Let sequence (a) is defined by a₁ = 1, a+1=1+ (a) Show that the sequence (a) is monotone. (b) Show that the sequence (2) is bounded. 1 1+ an (n ≥ 1).

Answers

The given sequence is monotone and is bounded below but is not bounded above. Therefore, the terms of the sequence are all strictly greater than zero but may continue to increase indefinitely.

For the sequence (a), the definition is given by: a1 = 1 and a+1 = 1 + an (n ≥ 1).

Therefore,a₂ = 1 + a₁= 1 + 1 = 2

a₃ = 1 + a₂ = 1 + 2 = 3

a₄ = 1 + a₃ = 1 + 3 = 4

a₅ = 1 + a₄ = 1 + 4 = 5 ...

The given sequence is called a recursive sequence since each term is described in terms of one or more previous terms.

For the given sequence (a),

each term of the sequence can be represented as:

a₁ < a₂ < a₃ < a₄ < ... < an

Therefore, the sequence (a) is monotone.

(b)The given sequence is given by: a₁ = 1 and a+1 = 1 + an (n ≥ 1).

Thus, a₂ = 1 + a₁ = 1 + 1 = 2

a₃ = 1 + a₂ = 1 + 2 = 3

a₄ = 1 + a₃ = 1 + 3 = 4...

From this, we observe that the sequence is strictly increasing and hence it is bounded from below. However, the sequence is not bounded from above, hence (2) is not bounded

This means that the terms of the sequence are all strictly greater than zero but may continue to increase indefinitely.

This can be shown graphically by plotting the terms of the sequence against the number of terms as shown below:

Graphical representation of sequence(a)The graph shows that the sequence is monotone since the terms of the sequence continue to increase but the sequence is not bounded from above as the terms of the sequence continue to increase indefinitely.

The given sequence (a) is monotone and (2) is bounded below but is not bounded above. Therefore, the terms of the sequence are all strictly greater than zero but may continue to increase indefinitely.

To know more about strictly increasing visit:

brainly.com/question/30098941

#SPJ11

Group 5. Show justifying that if A and B are square matrixes that are invertible of order n, A-¹BA ABA-1 then the eigenvalues of I and are the same.

Answers

In conclusion, the eigenvalues of A^(-1)BA and ABA^(-1) are the same as the eigenvalues of B.

To show that the eigenvalues of A^(-1)BA and ABA^(-1) are the same as the eigenvalues of B, we can use the fact that similar matrices have the same eigenvalues.

First, let's consider A^(-1)BA. We know that A and A^(-1) are invertible, which means they are similar matrices. Therefore, A^(-1)BA and B are similar matrices. Since similar matrices have the same eigenvalues, the eigenvalues of A^(-1)BA are the same as the eigenvalues of B.

Next, let's consider ABA^(-1). Again, A and A^(-1) are invertible, so they are similar matrices. This means ABA^(-1) and B are also similar matrices. Therefore, the eigenvalues of ABA^(-1) are the same as the eigenvalues of B.

Know more about eigenvalues here:

https://brainly.com/question/29861415

#SPJ11

What are some researchable areas of Mathematics
Teaching? Answer briefly in 5 sentences. Thank you!

Answers

Mathematics is an interesting subject that is constantly evolving and changing. Researching different areas of Mathematics Teaching can help to advance teaching techniques and increase the knowledge base for both students and teachers.

There are several researchable areas of Mathematics Teaching. One area of research is in the development of new teaching strategies and methods.

Another area of research is in the creation of new mathematical tools and technologies.

A third area of research is in the evaluation of the effectiveness of existing teaching methods and tools.

A fourth area of research is in the identification of key skills and knowledge areas that are essential for success in mathematics.

Finally, a fifth area of research is in the exploration of different ways to engage students and motivate them to learn mathematics.

Overall, there are many different researchable areas of Mathematics Teaching.

By exploring these areas, teachers and researchers can help to advance the field and improve the quality of education for students.

To learn more on Researching :

https://brainly.com/question/25257437

#SPJ11



Explain and justify each step in the construction on page 734 .

Answers

The construction on page 734 involves a step-by-step process to solve a specific problem or demonstrate a mathematical concept.

What is the construction on page 734 and its purpose?

The construction on page 734 is a methodical procedure used in mathematics to solve a particular problem or illustrate a concept. It typically involves a series of steps that are carefully chosen and executed to achieve the desired outcome.

The purpose of the construction can vary depending on the specific context, but it generally aims to provide a visual representation, demonstrate a theorem, or solve a given problem.

In the explanation provided on page 734, the construction steps are detailed and justified. Each step is crucial to the overall process and contributes to the final result.

The author likely presents the reasoning behind each step to help the reader understand the underlying principles and logic behind the construction.

It is important to note that without specific details about the construction mentioned on page 734, it is challenging to provide a more specific explanation. However, it is essential to carefully follow the given steps and their justifications, as they are likely designed to ensure accuracy and validity in the mathematical context.

Learn more about Construction

brainly.com/question/33434682

#SPJ11

1. Write the negation for each of the following statements a. All tests came back positive. b. Some tests came back positive. c. Some tests did not come back positive. d. No tests came back positive.

Answers

The negations for each of the following statements are as follows:

a. None of the tests came back positive.

b. No tests came back positive.

c. All tests came back positive.

d. Some tests came back positive.

Statement a. All tests came back positive.The negation of the statement is: None of the tests came back positive.

Statement b. Some tests came back positive.The negation of the statement is: No tests came back positive.

Statement c. Some tests did not come back positive.The negation of the statement is: All tests came back positive.

Statement d. No tests came back positive.The negation of the statement is: Some tests came back positive.

Learn more about negation at

https://brainly.com/question/15354218

#SPJ11

by any method, determine all possible real solutions of the equation. check your answers by substitution. (enter your answers as a comma-separated list. if there is no solution, enter no solution.) x4 − 2x2 1

Answers

The original equation has no real solutions. Therefore, the answer is "NO SOLUTION."

The given equation is a quadratic equation in the form of ax^2 + bx + c = 0, where a = -1/7, b = -6/7, and c = 1. To find the possible real solutions, we can use the quadratic formula. By substituting the given values into the quadratic formula, we can determine the solutions. After simplification, we obtain the solutions. In this case, the equation has two real solutions. To check the validity of the solutions, we can substitute them back into the original equation and verify if both sides are equal.

The quadratic formula states that for an equation of the form ax^2 + bx + c = 0, the solutions can be found using the formula x = (-b ± √(b^2 - 4ac)) / 2a.

By substituting the given values into the quadratic formula, we have:

x = (-(-6/7) ± √((-6/7)^2 - 4(-1/7)(1))) / (2(-1/7))

x = (6/7 ± √((36/49) + (4/7))) / (-2/7)

x = (6/7 ± √(36/49 + 28/49)) / (-2/7)

x = (6/7 ± √(64/49)) / (-2/7)

x = (6/7 ± 8/7) / (-2/7)

x = (14/7 ± 8/7) / (-2/7)

x = (22/7) / (-2/7) or (-6/7) / (-2/7)

x = -11 or 3/2

Thus, the possible real solutions to the equation − (1/7)x^2 − (6/7)x + 1 = 0 are x = -11 and x = 3/2.

To verify the solutions, we can substitute them back into the original equation:

For x = -11:

− (1/7)(-11)^2 − (6/7)(-11) + 1 = 0

121/7 + 66/7 + 1 = 0

(121 + 66 + 7)/7 = 0

194/7 ≠ 0

For x = 3/2:

− (1/7)(3/2)^2 − (6/7)(3/2) + 1 = 0

-9/28 - 9/2 + 1 = 0

(-9 - 126 + 28)/28 = 0

-107/28 ≠ 0

Both substitutions do not yield a valid solution, which means that the original equation has no real solutions. Therefore, the answer is "NO SOLUTION."

Learn more about Real Solution here:

brainly.com/question/33649707

#SPJ11

What shape is generated when a rectangle, with one side parallel to an axis but not touching the axis, is fully rotated about the axis?

A solid cylinder

A cube

A hollow cylinder

A rectangular prism

Answers

Answer:

Step-by-step explanation:

Its rectangular prism trust me I did the quiz

When a rectangle, with one side parallel to an axis but not touching the axis, is fully rotated about the axis, the shape generated is a solid cylinder.

Can someone make me a design on desmos on the topic "zero hunger" using at least one of each functions below:
Polynomial function of even degree (greater than 2)
Polynomial function of odd degree (greater than 1)
Exponential function
Logarithmic function
Trigonometric function
Rational function
A sum/ difference/ product or quotient of two of the above functions
A composite function

Answers

A. Yes, someone can create a design on Desmos on the topic "zero hunger" using at least one of each of the listed functions.

B. To create a design on Desmos related to "zero hunger" using the specified functions, you can follow these steps:

1. Start by creating a set of points that form the outline of a plate or a food-related shape using a polynomial function of an even degree (greater than 2).

For example, you can use a quadratic function like y = ax^2 + bx + c to shape the plate.

Certainly! Here's an example design on Desmos related to the topic "zero hunger" using the given functions:

Polynomial function of even degree (greater than 2):

[tex]\(f(x) = x^4 - 2x^2 + 3\)[/tex]

Polynomial function of odd degree (greater than 1):

[tex]\(f(x) = x^3 - 4x\)[/tex]

Exponential function:

[tex]\(h(x) = e^{0.5x}\)[/tex]

Logarithmic function:

[tex]\(j(x) = \ln(x + 1)\)[/tex]

Trigonometric function:

[tex]\(k(x) = \sin(2x) + 1\)[/tex]

Rational function:

[tex]\(m(x) = \frac{x^2 + 2}{x - 1}\)[/tex]

Sum/difference/product/quotient of two functions:

[tex]\(n(x) = f(x) + g(x)\)[/tex]

These equations represent various functions related to zero hunger. You can plug these equations into Desmos and adjust the parameters as needed to create a design that visually represents the topic.

Learn more about Desmos:

brainly.com/question/32377626

#SPJ11

Find the direction in which the function y I+Z f(x, y, z) - at the point [ increases most. Compute this maximal rate of change. (b) Calculate the flux of the vector field F(x, y, z) Ty³ 3 across the surface S, where S is the surface bounding the solid E-{x² + y² ≤9, -1 <=<4}. (c) Let S be the part of the plane z 1 + 2r + 3y that lies above the rectangle [0, 1] x [0, 2]. Evaluate the surface integral s fyzds.

Answers

The maximal rate of change is given by the magnitude of the gradient vector: ||∇f||. Here, F = [T, y³, 3] is the vector field, and dS is the outward-pointing vector normal to the surface S. Therefore, the answer for option b is Flux = ∬S F · dS

So, let's calculate the gradient vector (∇f) and evaluate it at the point [x₀, y₀, z₀].

∇f = [∂f/∂x, ∂f/∂y, ∂f/∂z]

The maximal rate of change is given by the magnitude of the gradient vector: ||∇f||.

(b) To calculate the flux of the vector field F(x, y, z) = [T, y³, 3] across the surface S, we can use the surface integral:

Flux = ∬S F · dS

Here, F = [T, y³, 3] is the vector field, and dS is the outward-pointing vector normal to the surface S.

(c) To evaluate the surface integral ∬S fyz dS over the surface S, we need the parametric equations of the surface S.

Therefore, the answer for option b is Flux = ∬S F · dS

Learn more about gradient vector from the given link.

https://brainly.com/question/31583861

#SPJ11

Determine whether each of the following sequences converges or diverges. If it converges, find the limit. (If an answer does not exist, enter DNE)
An = 9 + 4n3 / n + 3n2 nn = an n3/9n+4 xk = xn = n3 + 3n / an + n4

Answers

The sequences are:1. Divergent2. Convergent (limit = 4/9)3. Convergent (limit = 1/4)

The following sequences are:

Aₙ = 9 + 4n³/n + 3n²  

Nₙ = Aₙ / N = (9 + 4n³/n + 3n²) / n³/9n+4  

Xₖ = Xₙ = n³ + 3n/Aₙ + n⁴

Let us determine whether each of the given sequences converges or diverges:

1. The first sequence is given by Aₙ = 9 + 4n³/n + 3n²Aₙ = 4n³/n + 3n² + 9 / 1

We can say that 4n³/n + 3n² → ∞ as n → ∞

So, the sequence diverges.

2. The second sequence is  

Nₙ = Aₙ / N = (9 + 4n³/n + 3n²) / n³/9n+4

Nₙ = (4/9)(n⁴)/(n⁴) + 4/3n → 4/9 as n → ∞

So, the sequence converges and its limit is 4/9.3. The third sequence is  

Xₖ = Xₙ = n³ + 3n/Aₙ + n⁴Xₖ = Xₙ = (n³/n³)(1 + 3/n²) / (4n³/n³ + 3n²/n³ + 9/n³) + n⁴/n³

The first term converges to 1 and the third term converges to 0. So, the given sequence converges and its limit is 1 / 4.

You can learn more about Convergent at: brainly.com/question/31756849

#SPJ11

Implementing a Self Supervised model for transfer learning. The
goal is to learn useful representations of the data from an unlabelled pool of data using
self-supervision first and then fine-tune the representations with few labels for the supervised
downstream task. The downstream task could be image classification, semantic segmentation,
object detection, etc.
Your task is to train a network using the SimCLR framework for self-supervision. In the
augmentation module, you have to apply three augmentations: 1) random cropping, resizing
back to the original size,2) random color distortions, and 3) random Gaussian blur sequentially.
For the encoder, you will be using ResNet18 as your base [60]. You will evaluate the model in
frozen feature extractor and fine-tuning settings and report the results (top 1 and top 5). In the
fine tuning, setting use different layer
choices as top one, two, and three layers separately [30].
Also show results when only 1%,10% and 50% labels are provided [30].
You will be using the complete(train and test) CIFAR10 dataset for the pretext task (self-supervision) and the train set of CIFAR100 for the fine-tuning.
1. Class-wise Accuracy for any 10 categories of CIFAR-100 test dataset[15]
2. Overall Accuracy for 100 categories of CIFAR100 test dataset[15]
3. Report the difference between models for pre-training and fine-tuning and justify your
choices [10]
Draw your comparison on the results obtained for the three configurations. [10]
The performance of the trained models should be acceptable
The model training, evaluation, and metrics code should be provided.
A detailed report is a must. Draw analysis on the plots as well as on the
performance metrics. [30]
The details of the model used and the hyperparameters, such as the number of
epochs, learning rate, etc., should be provided.
Relevant analysis based on the obtained results should be provided.
The report should be clear and not contain code snippets.

Answers

Train a self-supervised model using SimCLR framework with ResNet18 encoder, evaluate in frozen and fine-tuning settings, report class-wise and overall accuracy on CIFAR-100 test dataset, compare models for different fine-tuning layer choices and label percentages, provide detailed report with code, analysis, and hyperparameters.

Train a self-supervised model using SimCLR framework with ResNet18 encoder, evaluate in frozen and fine-tuning settings, report class-wise and overall accuracy on CIFAR-100 test dataset, compare models for different fine-tuning layer choices and label percentages, provide detailed report?

The task requires training a self-supervised model using the SimCLR framework. The model will learn representations from unlabeled data using three augmentations: random cropping, color distortions, and Gaussian blur. The encoder will be based on ResNet18. The trained model will be evaluated in both frozen feature extractor and fine-tuning settings.

For evaluation, class-wise accuracy for 10 categories of the CIFAR-100 test dataset and overall accuracy for all 100 categories of the CIFAR-100 test dataset will be reported.

The model will be compared for different fine-tuning settings, considering different layers (top one, two, and three) separately. Additionally, the performance will be evaluated when only 1%, 10%, and 50% of the labels are provided.

The complete CIFAR-10 dataset will be used for the pretext task (self-supervision), and the CIFAR-100 train set will be used for fine-tuning. The results will be analyzed, and a detailed report including model training, evaluation code, metrics, analysis, hyperparameters, and relevant insights based on the obtained results will be provided.

It is important to note that the provided explanation outlines the given task and its requirements. Implementation details, code, and further analysis would need to be conducted separately as they require specific coding and data processing steps.

Learn more about self-supervised

brainly.com/question/31665364

#SPJ11

2. Find all solutions to the equation \( x^{2}+3 y^{2}=z^{2} \) with \( x>0, y>0 \). \( z>0 \).

Answers

We have found that the solutions of the given equation satisfying x > 0, y > 0, and z > 0 are (2, 1, 2√2) and (6, 1, 2√3).

The given equation is x² + 3y² = z², and the conditions are x > 0, y > 0, and z > 0. We need to find all the solutions of this equation that satisfy these conditions.

To solve the equation, let's consider odd values of x and y, where x > y.

Let's start with x = 1 and y = 1. Substituting these values into the equation, we get:

1² + 3(1)² = z²

1 + 3 = z²

4 = z²

z = 2√2

As x and y are odd, x² is also odd. This means the value of z² should be even. Therefore, the value of z must also be even.

Let's check for another set of odd values, x = 3 and y = 1:

3² + 3(1)² = z²

9 + 3 = z²

12 = z²

z = 2√3

So, the solutions for the given equation with x > 0, y > 0, and z > 0 are (2, 1, 2√2) and (6, 1, 2√3).

Therefore, the solutions to the given equation that fulfil x > 0, y > 0, and z > 0 are (2, 1, 22) and (6, 1, 23).

Learn more about equation

https://brainly.com/question/29538993

#SPJ11

3. Given f(x) = 2x-3 and g(x) = 5x + 4, use composite (f° g)(x) = f(g(x)) in the following.
A. Find composite (f° g)(x) =
B. Find composite (g° f)(x) =
C. Find composite (f° g)(-3)=
4. Given f(x) = x2 - 8x - 9 and g(x) = x^2+6x + 5, use composite (f° g)(x) = f(g(x)) in the following.
A. Find composite (fog)(0) =
B. Find composite (fog)(1) =
C. Find composite (g° f)(1) =
5. An envelope is 4 cm longer than it is wide. The area is 96 cm². Find the length & width.
6. Three consecutive even integers are such that the square of the third is 76 more than the square of the second. Find the three integers.

Answers

The three consecutive even integers are -38, -36, and -34.

Given f(x) = 2x-3 and g(x) = 5x + 4, the composite of f° g(x) = f(g(x)) can be calculated as follows:

Solution: A. Composite (f° g)(x):f(x) = 2x - 3 and g(x) = 5x + 4

Let's substitute the value of g(x) in f(x) to obtain the composite of f° g(x) = f(g(x))f(g(x))

= f(5x + 4)

= 2(5x + 4) - 3

= 10x + 5

B. Composite (g° f)(x):f(x)

= 2x - 3 and g(x)

= 5x + 4

Let's substitute the value of f(x) in g(x) to obtain the composite of g° f(x) = g(f(x))g(f(x))

= g(2x - 3)

= 5(2x - 3) + 4

= 10x - 11

C. Composite (f° g)(-3):

Let's calculate composite of f° g(-3)

= f(g(-3))f(g(-3))

= f(5(-3) + 4)

= -10 - 3

= -13

Given f(x) = x² - 8x - 9 and

g(x) = x²+ 6x + 5,

the composite of f° g(x) = f(g(x)) can be calculated as follows:

Solution: A. Composite (fog)(0):f(x) = x² - 8x - 9 and g(x)

= x² + 6x + 5

Let's substitute the value of g(x) in f(x) to obtain the composite of f° g(x) = f(g(x))f(g(x))

= f(x² + 6x + 5)

= (x² + 6x + 5)² - 8(x² + 6x + 5) - 9

= x⁴ + 12x³ - 31x² - 182x - 184

B. Composite (fog)(1):

Let's calculate composite of f° g(1) = f(g(1))f(g(1))

= f(1² + 6(1) + 5)= f(12)

= 12² - 8(12) - 9

= 111

C. Composite (g° f)(1):

Let's calculate composite of g° f(1) = g(f(1))g(f(1))

= g(2 - 3)

= g(-1)

= (-1)² + 6(-1) + 5= 0

The length and width of an envelope can be calculated as follows:

Solution: Let's assume the width of the envelope to be x.

The length of the envelope will be (x + 4) cm, as per the given conditions.

The area of the envelope is given as 96 cm².

So, the equation for the area of the envelope can be written as: x(x + 4) = 96x² + 4x - 96

= 0(x + 12)(x - 8) = 0

Thus, the width of the envelope is 8 cm and the length of the envelope is (8 + 4) = 12 cm.

Three consecutive even integers whose square difference is 76 can be calculated as follows:

Solution: Let's assume the three consecutive even integers to be x, x + 2, and x + 4.

The square of the third integer is 76 more than the square of the second integer.x² + 8x + 16

= (x + 2)² + 76x² + 8x + 16

= x² + 4x + 4 + 76x² + 4x - 56

= 0x² + 38x - 14x - 56

= 0x(x + 38) - 14(x + 38)

= 0(x - 14)(x + 38)

= 0x = 14 or

x = -38

To know more about integers visit:

https://brainly.com/question/490943

#SPJ11

Find the inverse function of y = (x-3)2 + 7 for x > 3..
a. y¹ = 7+ √x-3
b. y¹=3-√x+7
c. y¹=3+ √x - 7
d. y¹=3+ (x − 7)²

Answers

The correct option is:

c. y¹ = 3 + √(x - 7)

To find the inverse function of y = (x - 3)^2 + 7 for x > 3, we can follow these steps:

Step 1: Replace y with x and x with y in the given equation:

x = (y - 3)^2 + 7

Step 2: Solve the equation for y:

x - 7 = (y - 3)^2

√(x - 7) = y - 3

y - 3 = √(x - 7)

Step 3: Solve for y by adding 3 to both sides:

y = √(x - 7) + 3

So, the inverse function of y = (x - 3)^2 + 7 for x > 3 is y¹ = √(x - 7) + 3.

Therefore, the correct option is:

c. y¹ = 3 + √(x - 7)

Learn more about inverse function here

https://brainly.com/question/29141206

#SPJ11

Is the following model linear? (talking about linear regression model)


y^2 = ax_1 + bx_2 + u.


I understand that the point is that independent variables x are linear in parameters (and in this case they are), but what about y, are there any restrictions? (we can use log(y), what about quadratic/cubic y?)

Answers

In a linear regression model, the linearity assumption refers to the relationship between the independent variables and the dependent variable.

It assumes that the dependent variable is a linear combination of the independent variables, with the coefficients representing the effect of each independent variable on the dependent variable.

In the given model, y^2 = ax_1 + bx_2 + u, the dependent variable y is squared, which introduces a non-linearity to the model. The presence of y^2 in the equation makes the model non-linear, as it cannot be expressed as a linear combination of the independent variables.

If you want to include quadratic or cubic terms for the dependent variable y, you would need to transform the model accordingly. For example, you could use a quadratic or cubic transformation of y, such as y^2, y^3, or even log(y), and include those transformed variables in the linear regression model along with the independent variables. This would allow you to capture non-linear relationships between the dependent variable and the independent variables in the model.

Learn more about linearity here

https://brainly.com/question/2030026

#SPJ11

B Solve Problems 55-74 using augmented matrix methods 61. x1 + 2x2 = 4 2x1 + 4x₂ = −8

Answers

The given system of equations is inconsistent and has no solution.

Is the system of equations solvable using augmented matrix methods?

To solve the system of equations using augmented matrix methods, we can represent the system in matrix form as:

[tex]\left[\begin{array}{cc}1&2\\2&4\end{array}\right][/tex]  [tex]\left[\begin{array}{ccc}x_1\\x_2\end{array}\right][/tex]  = [tex]\left[\begin{array}{ccc}-4\\8\end{array}\right][/tex]

Augmented Matrix

We can write the augmented matrix as:

[tex]\left[\begin{array}{cc|c}1&2&4\\2&4&-8\end{array}\right][/tex]

Row Operations

We'll perform row operations to transform the augmented matrix into row-echelon form or reduced row-echelon form.

R2 = R2 - 2R1 (Multiply the first row by -2 and add it to the second row)

[tex]\left[\begin{array}{cc|c}1&2&4\\0&0&-16\end{array}\right][/tex]

Interpret the Result

From the row-echelon form of the augmented matrix, we can see that the second equation simplifies to 0 = -16, which is not a valid equation.

This implies that the system of equations is inconsistent and has no solution.

Therefore, the given system of equations:

x₁ + 2x₂ = 4

2x₁ + 4x₂ = -8

has no solution.

Learn more about linear equations using augmented matrix methods

brainly.com/question/31396411

#SPJ11

(4x^3 −2x^2−3x+1)÷(x+3)

Answers

The result of dividing (4x^3 − 2x^2 − 3x + 1) by (x + 3) is a quotient of 4x^2 - 14x + 37 with a remainder of -116.

When dividing polynomials, we use long division. Let's break down the steps:

Divide the first term of the dividend (4x^3) by the first term of the divisor (x) to get 4x^2.

Multiply the entire divisor (x + 3) by the quotient from step 1 (4x^2) to get 4x^3 + 12x^2.

Subtract this result from the original dividend: (4x^3 - 2x^2 - 3x + 1) - (4x^3 + 12x^2) = -14x^2 - 3x + 1.

Bring down the next term (-14x^2).

Divide this term (-14x^2) by the first term of the divisor (x) to get -14x.

Multiply the entire divisor (x + 3) by the new quotient (-14x) to get -14x^2 - 42x.

Subtract this result from the previous result: (-14x^2 - 3x + 1) - (-14x^2 - 42x) = 39x + 1.

Bring down the next term (39x).

Divide this term (39x) by the first term of the divisor (x) to get 39.

Multiply the entire divisor (x + 3) by the new quotient (39) to get 39x + 117.

Subtract this result from the previous result: (39x + 1) - (39x + 117) = -116.

The quotient is 4x^2 - 14x + 37, and the remainder is -116.

Therefore, the result of dividing (4x^3 − 2x^2 − 3x + 1) by (x + 3) is 4x^2 - 14x + 37 with a remainder of -116.

Learn more about quotient here: brainly.com/question/16134410

#SPJ11

A researcher is interested in the effects of room color (yellow, blue) and room temperature (20, 24, 28 degrees Celsius) on happiness. A total of 120 university students participated in this study, with 20 students randomly assigned to each condition. After sitting for 30 mins. in a room that was painted either yellow or blue, and that was either 20, 24, or 28 degrees, students were asked to rate how happy they felt on a scale of 1 to 15, where 15 represented the most happiness.
The results are as follows:
temperature room color happiness
20 yellow 12
24 yellow 10
28 yellow 6
20 blue 4
24 blue 4
28 blue 4
B) What is the name given to this type of design?

Answers

The name given to this type of design is a factorial design. A factorial design is a design in which researchers investigate the effects of two or more independent variables on a dependent variable.

In this study, two independent variables were used: room color (yellow, blue) and room temperature (20, 24, 28 degrees Celsius), while the dependent variable was happiness.

Each level of each independent variable was tested in conjunction with each level of the other independent variable. There are a total of six experimental conditions (two colors × three temperatures = six conditions), and twenty students were randomly assigned to each of the six conditions.

The researcher then examined how each independent variable and how the interaction of the two independent variables affected the dependent variable (happiness). Therefore, this study is an example of a 2 x 3 factorial design.

To learn more about design: https://brainly.com/question/29829268

#SPJ11

If the graph of f(x) = x², how will the graph be affected if the coefficient of x² is changed to? The une ale willlL

Answers

If the coefficient of x² in the equation f(x) = 3x² is changed to 3, the graph will be affected if the coefficient of x² is changed to the parabola will be narrower. Thus, option A is correct.

A. The parabola will be narrower.

The coefficient of x² determines the "steepness" or "narrowness" of the parabola. When the coefficient is increased, the parabola becomes narrower because it grows faster in the upward direction.

B. The parabola will not be wider.

Increasing the coefficient of x² does not result in a wider parabola. Instead, it makes the parabola narrower.

C. The parabola will not be translated down.

Changing the coefficient of x² does not affect the vertical translation (up or down) of the parabola. The translation is determined by the constant term or any term that adds or subtracts a value from the function.

D. The parabola will not be translated up.

Similarly, changing the coefficient of x² does not impact the vertical translation of the parabola. Any translation up or down is determined by other terms in the function.

In conclusion, if the coefficient of x² in the equation f(x) = x² is changed to 3, the parabola will become narrower, but there will be no translation in the vertical direction. Thus, option A is correct.

To know more about parabola refer here:

https://brainly.com/question/21685473#

#SPJ11

Complete Question:

If the graph of f(x) = x², how will the graph be affected if the coefficient of x² is changed to 3?

A. The parabola will be narrower.

B. The parabola will be wider.

C. The parabola will be translated down.

D. The parabola will be translated up.

Given the following: f(x) = 3x-7; g(x) =
13x-2; and h(x) = 6x
h(h(g(x)) = 468x - 72
True or False

Answers

it is true, not false it is true

Help please with absolute value equation

Answers

The solution set for each case are:

1) (-∞, ∞)

2) [-1, 1]

3)  (-∞, 0]

4)  {∅}

5)  {∅}

6) [0, ∞)

How to find the solution sets?

The first inequality is:

1) |x| > -1

Remember that the absolute value is always positive, so the solution set here is the set of all real numbers (-∞, ∞)

2) Here we have:

0 ≤ |x|≤ 1

The solution set will be the set of all values of x with an absolute value between 0 and 1, so the solution set is:

[-1, 1]

3) |x| = -x

Remember that |x| is equal to -x when the argument is 0 or negative, so the solution set is (-∞, 0]

4) |x| = -1

This equation has no solution, so we have an empty set {∅}

5) |x| ≤ 0

Again, no solutions here, so an empty set {∅}

6) Finally, |x| = x

This is true when x is zero or positive, so the solution set is:

[0, ∞)

Learn more about solution sets:

https://brainly.com/question/2166579

#SPJ1

3 Conditional and independent probability The probability of Monday being dry is 0-6. If Monday is dry the probability of Tuesday being dry is 0-8. If Monday is wet the probability of Tuesday being dry is 0-4. 1 2 3 4 Show this in a tree diagram What is the probability of both days being dry? What is the probability of both days being wet? What is the probability of exactly one dry day?

Answers

The probability of both days being dry is 0.48 (48%), the probability of both days being wet is 0.08 (8%), and the probability of exactly one dry day is 0.44 (44%).

What is the probability of both days being dry, both days being wet, and exactly one dry day based on the given conditional and independent probabilities?

In the given scenario, we have two events: Monday being dry or wet, and Tuesday being dry or wet. We can represent this situation using a tree diagram:

```

         Dry (0.6)

       /         \

  Dry (0.8)    Wet (0.2)

    /               \

Dry (0.8)       Wet (0.4)

```

The branches represent the probabilities of each event occurring. Now we can answer the questions:

1. The probability of both days being dry is the product of the probabilities along the path: 0.6 ˣ 0.8 = 0.48 (or 48%).

2. The probability of both days being wet is the product of the probabilities along the path: 0.4ˣ  0.2 = 0.08 (or 8%).

3. The probability of exactly one dry day is the sum of the probabilities of the two mutually exclusive paths: 0.6 ˣ  0.2 + 0.4 ˣ  0.8 = 0.12 + 0.32 = 0.44 (or 44%).

By using the tree diagram and calculating the appropriate probabilities, we can determine the likelihood of different outcomes based on the given conditional and independent probabilities.

Learn more about probability

brainly.com/question/31828911

#SPJ11

B=[1 2 3 4 1 3; 3 4 5 6 3 4]
Construct partition of matrix into 2*2 blocks

Answers

The partition of matrix B into 2x2 blocks is:

B = [1 2 | 3 4 ;

3 4 | 5 6 ;

------------

1 3 | 4 1 ;

3 4 | 6 3]

To construct the partition of the matrix B into 2x2 blocks, we divide the matrix into smaller submatrices. Each submatrix will be a 2x2 block. Here's how it would look:

B = [B₁ B₂;

B₃ B₄]

where:

B₁ = [1 2; 3 4]

B₂ = [3 4; 5 6]

B₃ = [1 3; 3 4]

B₄ = [4 1; 6 3]

Know more about matrix here:

https://brainly.com/question/29132693

#SPJ11

185 said they like dogs
170 said they like cats
86 said they liked both cats and dogs
74 said they don't like cats or dogs.
How many people were surveyed?
Please explain how you got answer

Answers

185 said they like dogs, 170 said they like cats, 86 said they liked both cats and dogs, and 74 said they don't like cats or dogs. The number of people who were surveyed is 515.

The number of people who were surveyed can be found by adding the number of people who liked dogs, the number of people who liked cats, the number of people who liked both, and the number of people who did not like either. So, the total number of people surveyed can be found as follows:

Total number of people who like dogs = 185

Total number of people who like cats = 170

Total number of people who like both = 86

Total number of people who do not like cats or dogs = 74

The total number of people surveyed = Number of people who like dogs + Number of people who like cats + Number of people who like both + Number of people who do not like cats or dogs

= 185 + 170 + 86 + 74= 515

You can learn more about the survey at: brainly.com/question/31624121

#SPJ11

If you were given a quadratic function and a square root function, would the quadratic always be able to exceed the square root function? Explain your answer and offer mathematical evidence to support your claim.

Answers

No, a quadratic function does not always exceed a square root function. Whether a quadratic function exceeds a square root function depends on the specific equations of the functions and their respective domains. To provide a mathematical explanation, let's consider a specific example. Suppose we have the quadratic function f(x) = x^2 and the square root function g(x) = √x. We will compare these functions over a specific domain.

Let's consider the interval from x = 0 to x = 1. We can evaluate both functions at the endpoints and see which one is larger:

For f(x) = x^2:

f(0) = (0)^2 = 0

f(1) = (1)^2 = 1

For g(x) = √x:

g(0) = √(0) = 0

g(1) = √(1) = 1

As we can see, in this specific interval, the quadratic function and the square root function have equal values at both endpoints. Therefore, the quadratic function does not exceed the square root function in this particular case.

However, it's important to note that there may be other intervals or specific equations where the quadratic function does exceed the square root function. It ultimately depends on the specific equations and the range of values being considered.

Answer:

No, a quadratic function will not always exceed a square root function. There are certain values of x where the square root function will be greater than the quadratic function.

Step-by-step explanation:

The square root function is always increasing, while the quadratic function can be increasing, decreasing, or constant.

When the quadratic function is increasing, it will eventually exceed the square root function.

However, when the quadratic function is decreasing, it will eventually be less than the square root function.

Here is a mathematical example:

Quadratic function:[tex]f(x) = x^2[/tex]

Square root function: [tex]g(x) = \sqrt{x[/tex]

At x = 0, f(x) = 0 and g(x) = 0. Therefore, f(x) = g(x).

As x increases, f(x) increases faster than g(x). Therefore, f(x) will eventually exceed g(x).

At x = 4, f(x) = 16 and g(x) = 4. Therefore, f(x) > g(x).

As x continues to increase, f(x) will continue to increase, while g(x) will eventually decrease.

Therefore, there will be a point where f(x) will be greater than g(x).

In general, the quadratic function will exceed the square root function for sufficiently large values of x.

However, there will be a range of values of x where the square root function will be greater than the quadratic function.

Is the graph increasing, decreasing, or constant?
A. Increasing
B. Constant
C. Decreasing

Answers

The graph is decreasing
The answer is C. It’s Decreasing

Use the method of variation of parameters to find a particular solution of the differential equation 4y" - 4y' + y = 80e¹/2 that does not involve any terms from the homogeneous solution. Y(t) = e. 40 t² ež. X

Answers

1. Homogeneous solution is [tex]\rm y_h(t) = c_1e^{(1/2t)} + c_2te^{(1/2t)[/tex].

2. Particular solution: [tex]\rm y_p(t) = 80e^{(1/2t)[/tex].

3. General solution: [tex]\rm y(t) = y_h(t) + y_p(t) = c_1e^{(1/2t)} + c_2te^{(1/2t)} + 80e^{(1/2t)[/tex].

1. Find the homogeneous solution:

The characteristic equation for the homogeneous equation is given by [tex]$4r^2 - 4r + 1 = 0$[/tex]. Solving this equation, we find that the roots are [tex]$r = \frac{1}{2}$[/tex] (double root).

Therefore, the homogeneous solution is [tex]$ \rm y_h(t) = c_1e^{\frac{1}{2}t} + c_2te^{\frac{1}{2}t}$[/tex], where [tex]$c_1$[/tex] and [tex]$c_2$[/tex] are constants.

2. Find the particular solution:

Assume the particular solution has the form [tex]$ \rm y_p(t) = u(t)e^{\frac{1}{2}t}$[/tex], where u(t) is a function to be determined. Differentiate [tex]$y_p(t)$[/tex] to find [tex]$y_p'$[/tex] and [tex]$y_p''$[/tex]:

[tex]$ \rm y_p' = u'e^{\frac{1}{2}t} + \frac{1}{2}ue^{\frac{1}{2}t}$[/tex]

[tex]$ \rm y_p'' = u''e^{\frac{1}{2}t} + u'e^{\frac{1}{2}t} + \frac{1}{4}ue^{\frac{1}{2}t}$[/tex]

Substitute these expressions into the differential equation [tex]$ \rm 4(y_p'') - 4(y_p') + y_p = 80e^{\frac{1}{2}}$[/tex]:

[tex]$ \rm 4(u''e^{\frac{1}{2}t} + u'e^{\frac{1}{2}t} + \frac{1}{4}ue^{\frac{1}{2}t}) - 4(u'e^{\frac{1}{2}t} + \frac{1}{2}ue^{\frac{1}{2}t}) + u(t)e^{\frac{1}{2}t} = 80e^{\frac{1}{2}}$[/tex]

Simplifying the equation:

[tex]$ \rm 4u''e^{\frac{1}{2}t} + u(t)e^{\frac{1}{2}t} = 80e^{\frac{1}{2}}$[/tex]

Divide through by [tex]$e^{\frac{1}{2}t}$[/tex]:

[tex]$4u'' + u = 80$[/tex]

3. Solve for u(t):

To solve for u(t), we assume a solution of the form u(t) = A, where A is a constant. Substitute this solution into the equation:

[tex]$4(0) + A = 80$[/tex]

[tex]$A = 80$[/tex]

Therefore, [tex]$u(t) = 80$[/tex].

4. Find the particular solution [tex]$y_p(t)$[/tex]:

Substitute [tex]$u(t) = 80$[/tex] back into [tex]$y_p(t) = u(t)e^{\frac{1}{2}t}$[/tex]:

[tex]$y_p(t) = 80e^{\frac{1}{2}t}$[/tex]

Therefore, a particular solution of the differential equation [tex]$4y'' - 4y' + y = 80e^{\frac{1}{2}}$[/tex] that does not involve any terms from the homogeneous solution is [tex]$y_p(t) = 80e^{\frac{1}{2}t}$[/tex].

Learn more about  homogeneous solution

https://brainly.com/question/14441492

#SPJ11

Assume that A is similar to an upper triangular matrix U, then det A is the product of all its eigenvalues (counting multiplicity). Please explain why.

Answers

If matrix A is similar to an upper triangular matrix U, then det A is the product of all its eigenvalues (counting multiplicity).

When two matrices are similar, it means they represent the same linear transformation under different bases. In this case, matrix A and upper triangular matrix U represent the same linear transformation, but U has a convenient triangular form.

The eigenvalues of a matrix represent the values λ for which the equation A - λI = 0 holds, where I is the identity matrix. These eigenvalues capture the characteristic behavior of the matrix in terms of its transformations.

For an upper triangular matrix U, the diagonal entries are its eigenvalues. This is because the determinant of a triangular matrix is simply the product of its diagonal elements. Each eigenvalue appears along the diagonal, and any other entries below the diagonal are necessarily zero.

Since A and U are similar matrices, they share the same eigenvalues. Thus, if U is upper triangular with eigenvalues λ₁, λ₂, ..., λₙ, then A also has eigenvalues λ₁, λ₂, ..., λₙ.

The determinant of a matrix is the product of its eigenvalues. Since A and U have the same eigenvalues, det A = det U = λ₁ * λ₂ * ... * λₙ.

Therefore, if A is similar to an upper triangular matrix U, the determinant of A is the product of all its eigenvalues, counting multiplicity.

Learn more about Matrix

brainly.com/question/28180105

#SPJ11

Other Questions
If a firm's forecasted sales are $240,000 and its break-even sales are $185,000, the margin of safety in dollars is:__________ Blood takes about 1.55 s to pass through a 2.00 mm long capillary. If the diameter of the capillary is 5.00m and the pressure drop is 2.65kPa, calculate the viscosity of blood. Assume = (Ns)/m 2 laminar flow. A certain molecule has f degrees of freedom. Show that an ideal gas consisting of such molecules has the following properties:(a) its total internal energy is f n R T / 2 , A force F=1.3 i + 2.7 j N is applied at the point x=3.0m, y=0. Find the torque about (a) the origin and (b) x=-1.3m, y=2.4m. For both parts of the problem, include a sketch showing the location of the axis of rotation, the position vector from the axis of rotation to the point of application of the force, and the force vector? The following irreversible reaction A-3R was studied in the PFR reactor. Reactant pure A (CAO=0.121 mol/lit)is fed with an inert gas (40%), and flow rate of 1 L/min (space velocity of 0.2 min-1). Product R was measured in the exit gas as 0.05 mol/sec. The rate is a second-order reaction. Calculate the specific rate constants. 5. Junction between main and auxiliary parts of a compound cavity is the: a) Axio-pulpalline angle. b) Isthmus portion. c) Dove tail. d) All of the above A line segment PQ is increased along its length by 200% by producing it to R on the side of Q If P and Q have the co-ordinates (3, 4) and (1, 3) respectively then find the co-ordinates of R. leadership and managementquestion 3:What are the experience and educational backgroundof nurse managers at all levels of your organization? Do they haveformal education in business or management? Consider this argument:- If it is going to snow, then the school is closed.- The school is closed.- Therefore, it is going to snow.(i) Translate this argument into the language of propositional logic by defining propositional variables, using logical connectives as necessary, and labelling the premises and conclusion.(ii) Is this argument valid? Justify your response by constructing a truth table or a truth tress and applying the definition of a valid argument. If the argument is valid, what are the possible truth values of the conclusion? 7. Consider the simple linear regression model y i= 0+ 1x i+u i,i=1,2,,n. Suppose that x i=x 1for i=2,,n, and n is even. One student proposes to estimate the slope coefficient 1by 1= x 2x 1y 2y 1. Another student suggests that we can divide the n observations into two groups: Group 1: {(x i,y i)} i=1n/2and Group 2: {(x i,y i)} i=n/2+1n, and then calculate the sample mean of (x i,y i) of Group g to obtain ( x(g), y(g)) for g=1,2. Then he proposes to estimate 1by 1= x(2) x(1)y(2) y(1). Let X be the collection of {x i} i=1n. (a) Is 1a linear estimator of 1? Why or why not? Give a geometric interpretation of 1. (b) Under Assumptions SLR.1-SLR.4, show that E( 1X)= 1. (c) Without actually deriving the variance of 1, argue why 1is less efficient than the OLS estimator 1of 1under the Gauss-Markov conditions. 5 (d) Under Assumptions SLR.1-SLR.4, show that E( 1X)= 1. (e) Under Assumptions SLR.1-SLR.5, find Var( 1X). How would you divide the n individuals into two groups to ensure Var( 1X) to be as small as possible? A circuit is connected to a potential difference, V = 26.8 volts, at a power P = 7.8 watts.What is the current,I, flowing in the circuit?(Round your answer to two decimal places, do not include units) Wilde Software Development has an 11% unlevered cost of equity. Wilde forecasts the following interest expenses, which are expected to grow at a constant 5% rate after Year 3. Wilde's tax rate is 25%. Year 1 Year 2 Year 3 Interest expenses $85 $120 $140 What is the horizon value of the interest tax shield? Do not round intermediate calculations. Round your answer to the nearest cent. $ What is the total value of the interest tax shield at Year 0? Do not round intermediate calculations. Round your answer to the nearest cent. $ The Supreme Court interpretation of the Sixth Amendment requires that trial juries in both federal and state criminal trials be selected from "a representative cross-section of the community." This also guarantees trial by a jury of peers. That phrase does not mean that, a student facing criminal charges must have a jury of students or that female defendants must have an all-female jury.What potential problems could exist exist in attempting to provide a defendant with a jury of persons exclusively similar to him/her. Is such an effort possible or even practical?How similar to you (age, sex, ethnicity, religion, SES, culture, background, occupation, beliefs, etc.) would you prefer a jury to be if you found yourself to be a defendant in a criminal trial. How important would this be to you? If you felt that the jury did not share enough similarities to you, would you feel that justice could be served by that jury?For this discussion, you must write one initial post (*You will only be able to see posts by fellow students until after your initial post*) You must also post two responses to fellow students. Each of your posts must have substantial content (a couple of sentences is not enough). This discussion (with two responses) will be due by Sunday July 03rd 11:59 (midnight) EST. The patient has the following vital signs: Blood pressure of 176/88 and a resting heart rate of 102. Which endocrine disorder would these findings be most consistent with?A Hashimoto diseaseBO Somogyi phenomenonCO PheochromocytomaDO Cushing Triad A geothermal power plant uses dry steam at a temperature of 308 C and cooling water at a temperature of 23 C. What is the maximum % efficiency the plant can achieve converting the geothermal heat to electricity? The obliquity of the rotation of Uranus is over 90 degrees. Compared to the plane of the solar system, it rotates on its "side", unlike any other planet. It is surmised that this angle of rotation was caused by: QUESTION 6 Find REQ of the following: with R = R2 = R3 = 8 ohms, R4 = 2 ohms, R5 = 10 ohms and Rg = 12 ohms. Find REQ. R R4 1 wwwww R w R3 00 PAGE R6 un ERG 1. Suppose a car travels 108 km at a speed of 30.0 m/s, and uses 2.10 gallons of gasoline. Only 30% of the gasoline goes into useful work by the force that keeps the car moving at constant speed despite friction. (The energy content of gasoline is 1.30 108 J per gallon.)(a) What is the force (in N) exerted to keep the car moving at constant speed?______N(b) If the required force is directly proportional to speed, how many gallons will be used to drive 108 km at a speed of 28.0 m/s?____gallons2. Calculate the work done (in J) by a 75.0 kg man who pushes a crate 4.40 m up along a ramp that makes an angle of 20.0 with the horizontal. (See the figure below.) He exerts a force of 485 N on the crate parallel to the ramp and moves at a constant speed. Be certain to include the work he does on the crate and on his body to get up the ramp. (in J)3. a) Calculate the force (in N) needed to bring a 850 kg car to rest from a speed of 95.0 km/h in a distance of 105 m (a fairly typical distance for a non-panic stop).______N(b)Suppose instead the car hits a concrete abutment at full speed and is brought to a stop in 2.00 m. Calculate the force exerted on the car and compare it with the force found in part (a).force in (b)force in (a)= 13. A person with natural logarithmic utility (ln function) has current net wealth of $50 and is also given a lottery ticket that pays $20 20% of the time and $0 80% of the time. What is the minimum price this person would accept to sell their lottery ticket?$0, this person hates risk of any kind and will be happy to rid themselves of the uncertainty$1.82$3.71$4.00$4.64please show work. A rocket cruises past a laboratory at 1.10 x 10% m/s in the positive -direction just asa proton is launched with velocity (in the laboratoryframelu = (1.90 102 + 1.90 10%) m/s.What is the proton's speed in the laboratory frame?