The maximum efficiency the geothermal power plant can achieve in converting geothermal heat to electricity is approximately 49.09%
The maximum efficiency of a heat engine is determined by the Carnot efficiency, which depends on the temperatures of the hot and cold reservoirs. In this case, the hot reservoir is the geothermal steam at 308 °C (581 K), and the cold reservoir is the cooling water at 23 °C (296 K).
The Carnot efficiency (η_Carnot) is given by the formula:
η_Carnot = 1 - (T_cold / T_hot)
where T_cold is the temperature of the cold reservoir and T_hot is the temperature of the hot reservoir.
Substituting the given temperatures:
η_Carnot = 1 - (296 K / 581 K)
η_Carnot ≈ 0.4909 or 49.09%
Therefore, the maximum efficiency the geothermal power plant can achieve in converting geothermal heat to electricity is approximately 49.09%
Learn more about geothermal power :
brainly.com/question/29108059
#SPJ11
Why did the flame of a candle go out when a jar was put on top of it
These byproducts can accumulate within the closed jar, further contributing to the depletion of oxygen and ultimately causing the flame to go out.
When a jar is placed on top of a candle, it creates a closed environment within the jar. This closed environment leads to a depletion of oxygen, which is necessary for combustion to occur. As the candle burns, it consumes oxygen from the surrounding air to sustain the flame.
When the jar is placed over the candle, it limits the availability of fresh air and restricts the flow of oxygen into the jar. As the candle burns and consumes the available oxygen, it eventually uses up the oxygen trapped inside the jar. Without sufficient oxygen, the combustion process cannot continue, and the flame extinguishes.
Additionally, the combustion process produces carbon dioxide and water vapor as byproducts. These byproducts can accumulate within the closed jar, further contributing to the depletion of oxygen and ultimately causing the flame to go out.
Learn more about byproducts here
https://brainly.com/question/32038503
#SPJ11