Answer:
a.
[tex]M_{Co^{2+}}=0.5M\\ \\M_{NO_3^{-}}=1.0M[/tex]
b.
[tex]M_{Fe^{3+}}=1.0M\\ \\M_{ClO_4^{-}}=3.0M[/tex]
Explanation:
Hello,
a. In this case, the ions are cobalt (II) and nitrate, for which, one mole of cobalt (II) nitrate contains one mole of cobalt (II) and two moles of nitrate (see subscripts), therefore, concentrations turn out:
[tex]M_{Co^{2+}}=0.5\frac{molCo(NO_3)_2}{L}* \frac{1molCo}{1molCo(NO_3)_2}=0.5M\\ \\M_{NO_3^{-}}=0.5\frac{molCo(NO_3)_2}{L}* \frac{2molNO_3^{-}}{1molCo(NO_3)_2}=1.0M[/tex]
b. In this case, the ions are iron (III) and chlorate, for which one mole of iron (III) is contained in one mole of iron (III) chlorate and three moles of chlorate are in one mole of iron (III) chlorate (see subscripts), therefore, the concentrations turn out:
[tex]M_{Fe^{3+}}=1.0\frac{molFe(ClO_4)_3}{L}* \frac{1molFe^{3+}}{1molFe(ClO_4)_3}=1.0M\\ \\M_{ClO_4^{-}}=0.5\frac{molFe(ClO_4)_3}{L}* \frac{3molClO_4^{-}}{1molFe(ClO_4)_3}=3.0M[/tex]
Regards.
Five mol of calcium carbide are combined with 10 mol of water in a closed, rigid, high-pressure vessel of 1800 cm3 internal empty volume. Acetylene gas is produced by the reaction:
Answer:
CaC₂ + 2H₂O → C₂H₂ + Ca(OH)₂
Explanation:
In order to find out the reaction, we must know the reactants.
For this situation, we make acetylene gas from carbide calcium CaC₂ and H₂O (water); therefore the reactants are:
- CaC₂ and H₂O
Acetylene is one of the products made → C₂H₂
So the reaction can be formed as this: CaC₂ + H₂O → C₂H₂
We missed the calcium, and this reaction also makes, Calcium Hydroxide, so the complete equation must be:
CaC₂ + H₂O → C₂H₂ + Ca(OH)₂
This is unbalanced, because we have 1 O in left side and 2 in right side so we add 2 in water so now, we get the complete reaction:
1 mol of calcium carbide reacts to 2 mol of water in order to produce 1 mol of acetylene and 1 mol of calcium hydroxide.
Sort the resources into the correct categories.
are replaced by natural processes
Renewable Resources
Nonrenewable Resources
cannot be replaced in a short time
are used more quickly than replaced
have fixed amounts
are considered unlimited
are replaced faster than used
Intro
✓ Done
Answer:
Renewable Resources: are considered unlimited, are replaced faster than used.
Nonrenewable Resources: are used more quickly than replaced, have fixed amounts, cannot be replaced in a short time.
Explanation:
Renewable resources are natural resources that are able to naturally regenerate themselves, hence, they are considered to be unlimited. They are usually replaced faster than they are used because they have a short regeneration time. A good example is the solar energy.
Nonrenewable resources are those natural resources that cannot naturally regenerate and when they do, it takes a very long time (usually millions of years). They are therefore used at a much faster rate than they are being replaced and their natural deposits are more or less fixed due to the long regeneration time. A good example is the crude oil deposit.
Hence:
Renewable Resources: are considered unlimited, are replaced faster than used.
Nonrenewable Resources: are used more quickly than replaced, have fixed amounts, cannot be replaced in a short time.
Answer: !
Explanation:
the molar solubility of Zn(OH)2 is 5.7x 10^-3 mol/L at a certain temperature. Calculate the value of Ksp for Zn(OH)2 at this temperataure
Answer:
Ksp = 7.4x10⁻⁷
Explanation:
Molar solubility of a substance is defined as the amount of moles of that can be dissolved per liter of solution.
Ksp of Zn(OH)₂ is:
Zn(OH)₂(s) ⇄ Zn²⁺ + 2OH⁻
Ksp = [Zn²⁺] [OH⁻]²
And the molar solubility, X, is:
Zn(OH)₂(s) ⇄ Zn²⁺ + 2OH⁻
⇄ X + 2X
Because X are moles of substance dissolved.
Ksp = [X] [2X]²
Ksp = 4X³
As molar solubility, X, is 5.7x10⁻³mol/L:
Ksp = 4X³
Ksp = 4 (5.7x10⁻³mol/L)³
Ksp = 7.4x10⁻⁷How much energy in joules will be required to raise the temperature of 50.0 g of water from 20 degrees C to 60 degree C
Answer: 8368 Joules
Explanation:
The quantity of heat required to raise the temperature of a substance by one degree Celsius is called the specific heat capacity.
[tex]Q=m\times c\times \Delta T[/tex]
Q = Heat absorbed or released =?
c = specific heat capacity of water = [tex]4.184J/g^0C[/tex]
Initial temperature of water = [tex]T_i[/tex] = [tex]20^0C[/tex]
Final temperature of water = [tex]T_f[/tex] = [tex]60^0C[/tex]
Change in temperature ,[tex]\Delta T=T_f-T_i=(60-20)^0C=40^0C[/tex]
Putting in the values, we get:
[tex]Q=50.0g\times 4.184J/g^0C\times 40^0C=8368J[/tex]
Thus energy in Joules required is 8368.
Question 39 (1 point)
What is the volume (in L) of 4.20 grams of CO2 gas at STP? (
molar masses are,
Carbon = 12.01 g/mol, and oxygen - 16.00 g/mol)
Your Answer:
Answer:
volume = 2128L
Explanation:
volume at stp = 22.4dm³ =22400L
CO2 = 12 + 2(16) = 44
4.20/44 = volume/22400L
0.095 = volume/22400L
volume = 0.095 x 22400
volume = 2128L
The element nitrogen would be expected to form covalent bond(s) in order to obey the octet rule. Use the octet rule to predict the formula of the compound that would form between nitrogen and hydrogen , if the molecule contains only one nitrogen atom and only single bonds are formed. Formula:
Answer:
The compound formula will be "NF₃". The further explanation is given below.
Explanation:
Nitrogen seems to have an electrical structure consisting of 1S², 2S² as well as 3S² and it requires three electrons to fulfill or conclude the octet. This will, therefore, form three bonds (covalent). Even though only single nitrogen has been present, that can only represent a single bond including fluorine. Therefore the methodology for something like the compound would be NF₃.So that the above would be the right answer.
If iron metal reacts with an aqueous solution of silver nitrate and zinc reacts with an aqueous solution of iron sulfate, rank these three metals Fe Zn Ag in order of decreasing reactivity.
Answer:
yes!you are right a cloudy formation will be formed when they will react.its because if nitrogen.
A sample of an unknown substance has a mass of 0.158kg. If 2,520.0 j of heat is required to heat the substance from 32.0C to 61.0C what is the specific heat of the substance
Which of the following cannot have hydrogen bonds? Select one: A. NH3 B. H2O C. HF D. CH3NH2 E. Which of the following cannot have hydrogen bonds? Select one: A. NH3 B. H2O C. HF D. CH3NH2 E. HCl
Answer:
E. HCl
Explanation:
Cl atom does not have enough electronegativity to make enough positive charge on H.
HCl is the compound which doesn't have hydrogen bonds. This is because of
the higher size of the chlorine atom.
There is no hydrogen bond because of the high size of the chlorine.
Chlorine have electrons with a very low density. It is also very
electronegative which explains why the formation of hydrogen bonds in the
compound HCl is not possible.
Instead, HCl has covalent bonds in which electron is shared between the
hydrogen and chlorine to achieve a stable configuration.
Read more on https://brainly.com/question/10462894
1. List the conjugate acid or conjugate base for each chemical. a. The acid HF b. The base KOH c. The base NH3 d. The acid HNO3 e. The acid HCOOH f. The base CH3NH2
Answer:
a) Conjugate base F– b) Conjugate acid K+ c) Conjugate acid NH4+ d) Conjugate base NO2- e) Conjugate base HCOO– f) Conjugate acid CH4+
Explanation:
Acid will produce Conjugate base
Base will produce Conjugate acid.
Answer:
a. The acid HF: F-
b. The base KOH: H2O
c. The base NH3: NH4+
d. The acid HNO3: NO3-
e. The acid HCOOH: COOH-
f. The base CH3NH2: CH3NH3+
Explanation:
Calculate the grams of solute needed to prepare 107 mL of a 2.75 M magnesium
chloride solution
Your Answer:
Answer
Answer: 28.02 g
Explanation:
The M stands for molarity. It is moles of solute/liters of solution. We can use the molarity to convert liters to mL, then make a proportion to find the grams.
[tex]\frac{2.75 mol}{L} *\frac{1L}{1000mL} =\frac{2.75 mol}{1000mL}[/tex]
Now that we have molarity in moles and mL, we can use the 107mL to get moles.
[tex]\frac{2.75moles}{1000mL} *107mL=0.29425mol[/tex]
We would multiply moles by molar mass to get grams. The molar mass of magnesium chloride is 95.211 g/mol.
[tex]0.29425mol*\frac{95.211g}{mol} =28.02g[/tex]
Using the determined equivalence point from question 2 and the balanced reaction of acetic acid and sodium hydroxide, calculate the molarity of the acetic acid in your hot sauce packet.
Equivalance point is 3.0 mL NaOH, 0.6 g hot sauce, 0.1 M NaoH.
Answer:
Molarity of the packet is 0.5M
Explanation:
In the reaction of acetic acid with NaOH:
CH₃COOH + NaOH → CH₃COO⁻ + H₂O + Na⁺
1 mole of acetic acid reacts with 1 mole of NaOH.
When you are titrating the acid with NaOH, you reach equivalence point when moles of acid = moles of NaOH.
Moles of NaOH are:
3.0mL = 3.0x10⁻³L ₓ (0.1 mol / L) = 3.0x10⁻⁴ moles of NaOH = moles of CH₃COOH.
Now, you find the moles of acetic acid in the hot sauce packet. But molarity is the ratio between moles of the acid and liters of solution.
As you don't know the volume of your packet, you can assume its density as 1g/mL. Thus, volume of 0.6g of hot sauce is 0.6mL = 6x10⁻⁴L.
And molarity of the packet is:
3.0x10⁻⁴ moles acetic acid / 6x10⁻⁴L =
0.5Mg what would happen to the solubility of a gas in a solution if the pressure above the solution is increased
Answer: The solubility of gas increases in a solution if the pressure above the solution is increased
Explanation:
Henry's law states that the amount of gas dissolved or molar solubility of gas is directly proportional to the partial pressure of the liquid.
To calculate the molar solubility, we use the equation given by Henry's law, which is:
[tex]C=K_H\times p[/tex]
where,
C = solubility
[tex]K_H[/tex] = Henry's constant
p = partial pressure
As the solubility is directly proportional to the pressure, thus increasing the pressure increases the solubility.
The complete combustion of ethanol, C2H5OH(l), to form H2O(g) and CO2(g) at constant pressure releases 1235 kJ of heat per mole of C2H5OH.
Write a balanced equation for this reaction.
Express your answer as a chemical equation. Identify all of the phases in your answer.
For the reaction Ca(s)+Cl2(g)→CaCl2(s) calculate how many grams of the product form when 14.4 g of Ca completely reacts. Assume that there is more than enough of the other reactant.
Answer:
[tex]m_{CaCl_2}=39.96gCaCl_2[/tex]
Explanation:
Hello,
In this case, for the undergoing reaction, we can compute the grams of the formed calcium chloride by noticing the 1:1 molar ratio between calcium and it (stoichiometric coefficients) and using their molar mass of 40 g/mol and 111 g/mol by using the following stoichiometric process:
[tex]m_{CaCl_2}=14.4gCa*\frac{1molCa}{40gCa} *\frac{1molCaCl_2}{1molCa} *\frac{111gCaCl_2}{1molCaCl_2}\\ \\m_{CaCl_2}=39.96gCaCl_2[/tex]
Clearly, chlorine is not used since it is said there is enough for the reaction to go to completion.
Best regards.
8. How many grams of SO2 are there in 2.5 mol of SO2? (Show Work)
Answer:
160g
Explanation:
Mass in grams is equal to product of moles and molar mass of compound.
NH4NO2(s)→N2(g)+H2O(l) ---------------- Express your answer as a chemical equation. Identify all of the phases in your answer.
Answer:
The balanced equation is :
NH4NO2(solid) = N2(gas) + 2 H2O(liquid)
Explanation:
A balanced chemical equation is an equation that has an equal number of atoms and charges on both sides of the equation. The given equation in question is imbalanced as the number of atoms not equal.
In this reaction, solid ammonium nitrite breaks into nitrogen gas and water, reaction known as decomposition.
The correct and balanced equation as follows :
NH4NO2(s) = N2(g) + 2 H2O(l)
If 8.23 g of magnesium chloride react completely with sodium phosphate, how many grams of magnesium phosphateare produced
Answer:
The correct answer is 7.57 grams of magnesium phosphate.
Explanation:
Based on the given question, the chemical reaction taking place is:
2Na₃PO₄ (aq) + 3MgCl₂ (aq) ⇒ Mg₃(PO₄)2 (s) + 6NaCl (aq)
From the given reaction, it is evident that two moles of sodium phosphate reacts with three moles of magnesium chloride to produce one mole of magnesium phosphate.
Based on the given information, 8.23 grams of magnesium chloride reacts completely with sodium phosphate, therefore, magnesium chloride in the given case is the limiting reagent.
In the given case, 3 moles of magnesium chloride produce 1 mole of magnesium phosphate. Therefore, 1 mole of magnesium chloride will produce 1/3 mole of magnesium phosphate.
The molecular mass of magnesium chloride is 95.21 grams per mole. So, 1 mole of magnesium chloride is equivalent to 95.21 grams of magnesium chloride.
On the other hand, the molecular mass of magnesium phosphate is 262.85 grams per mole. Therefore, 1 mole of magnesium phosphate is equal to 262.85 grams of magnesium phosphate.
As seen earlier that 1 mole of magnesium chloride = 1/3 moles of magnesium phosphate. So,
95.21 grams of magnesium chloride = 1/3 × 262.85 grams of magnesium phosphate
= 262.85 / 3 grams of magnesium phosphate
1 gram of magnesium chloride = 262.85 / 3 × 95.21 grams of magnesium phosphate
8.23 grams of magnesium chloride = 262.85 / 3 × 95.21 × 8.23 grams of magnesium phosphate
= 7.57 grams of magnesium phosphate
Hence, when 8.23 grams of magnesium chloride when reacts completely with sodium phosphate, it produces 7.57 grams of magnesium phosphate.
Organic chemistry too eazy but why 90% students avoid ?
Answer:
because it covers a large area as there are more then 1 lakh compounds of organic chemistry.
➔ Which compound has both ionic and covalent bonds? A. Ammonium chloride B. Carbon dioxide C. Ethyl ethanoate D. Sodium chloride
Answer:
Choice A. Ammonium chloride.
Explanation:
Consider the bonds in each of the four compounds.
Ammonium chlorideAmmonium chloride [tex]\rm NH_4Cl[/tex] is an ionic compound. Each
The [tex]\rm {NH_4}^{+}[/tex] and [tex]\rm Cl^{-}[/tex] ions in [tex]\rm NH_4Cl[/tex] are connected with ionic bonds.
What make [tex]\rm NH_4Cl[/tex] special is that its cation [tex]\rm {NH_4}^{+}[/tex] is polyatomic. In other words, each [tex]\rm {NH_4}^{+}[/tex] ion contains more than one atoms. These atoms (one [tex]\rm N[/tex] atom and four [tex]\rm H[/tex] atoms) are connected with covalent bonds. Therefore, [tex]\rm NH_4Cl[/tex] has both ionic and covalent bonds.
Carbon dioxideCarbon dioxide [tex]\rm CO_2[/tex] is a covalent compound. Each [tex]\rm CO_2[/tex] molecule contains two [tex]\rm C=O[/tex] double bonds in total. [tex]\rm CO_2[/tex] molecules have no ionic bond.
Ethyl ethanoateThe name "ethyl ethanoate" might sound like the name of a salt (think about sodium ethanoate.) However, in reality, ethyl ethanoate [tex]\rm CH_3COOCH_2CH3[/tex] is an ester. The "ethyl" here refers to the [tex]\rm -OCH_2CH3[/tex] part, originating from ethanol. On the other hand, "ethanoate" refers to the [tex]\rm CH_3C(O)-[/tex] part, which can be obtained from ethanoic acid.
These two parts are connected with a covalent [tex]\rm C-O[/tex] single bond. (The [tex]\rm C[/tex] in ethanoic acid is connected to the [tex]\rm O[/tex] in ethanol.) As a result, there's no ionic bond in ethyl ethanoate, either.
Sodium chlorideSodium chloride [tex]\rm NaCl[/tex] is an ionic compound. Both the [tex]\rm Na^{+}[/tex] ion and the [tex]\rm Cl^{-}[/tex] are monoatomic. While the [tex]\rm Na^{+}[/tex] and [tex]\rm Cl^{-}[/tex] in sodium chloride are connected with ionic bonds, neither [tex]\rm Na^{+}[/tex] nor [tex]\rm Cl^{-}[/tex] contains covalent bond.
How much MnO2(s) should be added to excess HCl(aq) to obtain 195 mL Cl2(g) at 25 °C and 715 Torr g
THIS IS THE COMPLETE QUESTION
Chlorine can be prepared in the laboratory by the reaction of manganese dioxide with hydrochloric acid, HCl(aq), as described by the chemical equation.
How much MnO2(s) should be added to excess HCl(aq) to obtain 185 mL of Cl2(g) at 25 °C and 715 Torr?
Answer:
0.62901mol of MnO2(s) should be added
Explanation:
Given:
P = 715/760 = 0.94078atm
v=195ml=0.195l
n = ? moles have to find
R = 0.0821 L atm/K/mole
T = 25 + 273 = 298 K
Then we will make use of below formula
PV = nRT
Insert the values
0.94078*0.195=n 0.0821*298
24.466n=0.1740443
n=0.174/24.466
n=0.007235 nb of moles of cl2
as 1 mole of Cl2 were obtained from 1 mole of MnO2
so 0.007235 of chlorine must have come from
0.007235 moles of MnO2
1 mole of MnO2 = 86.94 g/mole
so 0.007235 moles of MnO2== 86.94* 0.007235
=0.62901
Paper is stable at room temperature in the presence of oxygen (O2) because it requires ____________ to start the reaction.
Answer:
Energy
Explanation:
Paper is oxidized in the presence of oxygen. This reaction however proceeds very slowly until energy is supplied to the system. This implies that the reaction is not spontaneous at room temperature. A spontaneous reaction takes place without any need for external supply of energy.
The need for supply of external energy must be as a result of the high activation energy required for the reaction to go to completion. If a chemical reaction has a high activation energy, it will require an external supply of energy in order for such reaction to occur.
The Ksp of calcium sulfate, CaSO4, is 9.0 × 10-6. What is the concentration of CaSO4 in a saturated solution? A. 3.0 × 10-3 Molar B. 9.0 × 10-3 Molar C. 3.0 × 10-6 Molar D. 9.0 × 10-6 Molar
Answer: The concentration of [tex]CaSO_4[/tex] in a saturated solution is [tex]3.0\times 10^{-3}M[/tex]
Explanation:
Solubility product is defined as the equilibrium constant in which a solid ionic compound is dissolved to produce its ions in solution. It is represented as [tex]K_{sp}[/tex]
The equation for the ionization of [tex]CaSO_4[/tex] is given as:
[tex]K_{sp}[/tex] of [tex]CaSO_4[/tex] = [tex]9.0\times 10^{-6}[/tex]
By stoichiometry of the reaction:
1 mole of [tex]CaSO_4[/tex] gives 1 mole of [tex]Ca^{2+}[/tex] and 1 mole of [tex]SO_4^{2-}[/tex]
When the solubility of [tex]CaSO_4[/tex] is S moles/liter, then the solubility of [tex]Ca^{2+}[/tex] will be S moles\liter and solubility of [tex]SO_4^{2-}[/tex] will be S moles/liter.
[tex]K_{sp}=[Ca^{2+}][SO_4^{2-}][/tex]
[tex]9.0\times 10^{-6}=[s][s][/tex]
[tex]9.0\times 10^{-6}=s^2[/tex]
[tex]s=3.0\times 10^{-3}M[/tex]
Thus concentration of [tex]CaSO_4[/tex] in a saturated solution is [tex]3.0\times 10^{-3}M[/tex]
How much heat is absorbed when 52.39 H2O(l) at 100°C and 101.3 kPa is converted to steam at 100°C? (The molar heat of vaporization of water is
40.7 k/mol.)
2.09 x 1020
O 2.31% 10110
O 1.18 x 102 103
O 1.11% 1021)
Calculate the volume of 0.500 M C2H3O2H and 0.500 M C2H3O2Na required to prepare 0.100 L of pH 5.00 buffer with a buffer strength of 0.100 M. The pKa of C2H3O2H is 4.75.
Answer:
You require 12.8mL of the 0.500M C₂H₃O₂Na and 7.2mL of the 0.500M C₂H₃O₂H
Explanation:
It is possible to obtain pH of a weak acid using H-H equation:
pH = pKa + log₁₀ [A⁻] / [HA]
For the buffer of acetic acid/acetate, the equation is:
pH = pKa + log₁₀ [C₂H₃O₂Na] / [C₂H₃O₂H]
Replacing:
5.00 = 4.75 + log₁₀ [C₂H₃O₂Na] / [C₂H₃O₂H]
1.7783 = [C₂H₃O₂Na] / [C₂H₃O₂H] (1)
Buffer strength is the concentration of the buffer, that means:
0.1M = [C₂H₃O₂Na] + [C₂H₃O₂H] (2)
Replacing (2) in (1):
1.7783 = 0.1M - [C₂H₃O₂H] / [C₂H₃O₂H]
1.7783 [C₂H₃O₂H] = 0.1M - [C₂H₃O₂H]
2.7783 [C₂H₃O₂H] = 0.1M
[C₂H₃O₂H] = 0.036MAlso:
[C₂H₃O₂Na] = 0.1M - 0.036M
[C₂H₃O₂Na] = 0.064MThe moles of both compounds you require is:
[C₂H₃O₂Na] = 0.1L × (0.064mol / L) = 0.0064moles
[C₂H₃O₂H] = 0.1L × (0.036mol / L) = 0.0036moles
Your stock solutions are 0.500M, thus, volume of both solutions you require is:
[C₂H₃O₂Na] = 0.0064moles × (1L / 0.500M) = 0.0128L = 12.8mL
[C₂H₃O₂H] = 0.0036moles × (1L / 0.500M) = 0.0072mL = 7.2mL
You require 12.8mL of the 0.500M C₂H₃O₂Na and 7.2mL of the 0.500M C₂H₃O₂HGiven the information about each pair of acids fill in the correct answer.
a. Acid A has a lower % ionization than B:_______ is a stronger acid.
b. Acid B has a larger K_a than acid A._______ will have a larger percent ionization.
c. A is a stronger acid than B. Acid B will have________ percent ionization than A.
Answer:
a. Acid B
b. Acid B
c. lower
Hope this helps you
2 Points
Which element has the fewest valence electrons?
A. Magnesium (Mg)
B. Neon (Ne)
C. Chlorine (CI)
O D. Silicon (Si)
SUSNE
Answer:
A. Magnesium (Mg)Explanation:
As the elements go left in the periodic table, they have fewer valence electrons.
Magnesium has 2 valence electrons.
Neon has 8 valence electrons.
Chorine has 7 valence electrons.
Silicon has 4 valence electrons.
Magnesium has the fewest valence electrons.
Answer:
A
Explanation:
Magnesium
Calculate the mass in grams for 0.251 moles of Na2CO3
Answer:
Explanation:
the molar mass for Na2CO3 is 2*23+12+3*16=106 g/mole
106*0.251=26.606 grames
g The "Coulomb barrier" is defined to be the electric potential energy of a system of two nuclei when their surfaces barely touch. The probability of a nuclear reaction greatly increases if the energy of the system is above this barrier. What is the Coloumb barrier (in MeV) for the absorption of an alpha particle by a lead-208 nucleus
Answer:
The Coulomb Barrier U is 25.91 MeV
Explanation:
Given that:
Atomic Mass of lead nucleus A = 208
atomic mass of an alpha particle A = 4
Radius of an alpha particle [tex]R_\alpha = R_o A^{^{\dfrac{1}{3}}[/tex]
where;
[tex]R_\alpha = 1.2 \times 10 ^{-15} \ m[/tex]
[tex]R_\alpha = R_o A^{^{\dfrac{1}{3}}[/tex]
[tex]R_\alpha = 1.2 \times 10 ^{-15} \ m \times (4) ^{^{\dfrac{1}{3}}[/tex]
[tex]R_\alpha = 1.905 \times 10^{-15} \ m[/tex]
Radius of the Gold nucleus
[tex]R_{Au}= R_o A^{^{\dfrac{1}{3}}[/tex]
[tex]R_{Au}= 1.2 \times 10 ^{-15} \ m \times (208) ^{^{\dfrac{1}{3}}[/tex]
[tex]R_{Au} = 7.11 \times 10^{-15} \ m[/tex]
[tex]R = R_\alpha + R_{Au}[/tex]
[tex]R = 1.905 \times 10^{-15} \ m + 7.11 \times 10^{-15} \ m[/tex]
[tex]R = 9.105 \times 10 ^{-15} \ m[/tex]
The electric potential energy of the Coulomb barrier [tex]U = \dfrac{Ke \ q_{\alpha} q_{Au}}{R}[/tex]
[tex]U = \dfrac{8.99 \times 10^9 \ N.m \ ^2/C ^2 \ \times 2 ( 82) \times \(1.60 \times 10^{-19} C \ \ e } {9.105 \times 10^{-15} \ m }[/tex]
U = 25908577.7eV
U = 25.908577 × 10⁶ eV
U = 25.91 MeV
The Coulomb Barrier U is 25.91 MeV
Write empirical formula
Answer:
[tex]Pb(ClO_{3})_{4}\\Pb(MnO_{4})_{4}\\Fe(ClO_{3})_{3}\\\Fe(MnO_{4})_{3}\\[/tex]
Explanation:
[tex]Pb^{4+}(ClO_{3}^{-})_{4}--->Pb(ClO_{3})_{4}\\Pb^{4+}(MnO_{4}^{-})_{4}--->Pb(MnO_{4})_{4}\\Fe^{3+}(ClO_{3}^{-})_{3}--->Fe(ClO_{3})_{3}\\\Fe^{3+}(MnO_{4}^{-})_{3}--->Fe(MnO_{4})_{3}\\[/tex]