Answer:
[tex]V_{CO_2}=16.0mL[/tex]
Explanation:
Hello,
In this case, given that the same temperature and pressure is given for all the gases, we can notice that 16.0 mL are related with two moles of carbon monoxide by means of the Avogadro's law which allows us to understand the volume-moles relationship as a directly proportional relationship. In such a way, since in the chemical reaction:
[tex]2CO(g)+O_2(g)\rightarrow 2CO_2(g)[/tex]
We notice two moles of carbon monoxide yield two moles of carbon dioxide, therefore we have the relationship:
[tex]n_{CO}V_{CO}=n_{CO_2}V_{CO_2}[/tex]
Thus, solving for the yielded volume of carbon dioxide we obtain:
[tex]V_{CO_2}=\frac{n_{CO}V_{CO}}{n_{CO_2}} =\frac{2mol*16.0mL}{2mol}\\ \\V_{CO_2}=16.0mL[/tex]
Best regards.
What is the Percent composition of a pure substance that contains 7.22g of nickel, 2.53g of phosphorus and 5.25 g oxygen
Answer:
Explanation:
Total mass of substance = 7.22 + 2.53 + 5.25 g
= 15 g
percentage of nickel = 7.22 x 100 / 15
= 48.13
= 48.1 %
percentage of phosphorus = 2.53 x 100 / 15
= 16.87%
= 16.9%
percentage of oxygen = 5.25 x 100 / 15
= 35 %
The percent composition of the pure substance should be 48.1%, 16.9%, and 35%.
Calculation of the percent composition:
Total mass of substance = 7.22 + 2.53 + 5.25 g
= 15 g
Now
percentage of nickel = 7.22 x 100 / 15
= 48.13
= 48.1 %
And,
percentage of phosphorus = 2.53 x 100 / 15
= 16.87%
= 16.9%
And, finally
percentage of oxygen = 5.25 x 100 / 15
= 35 %
learn more about oxygen here: https://brainly.com/question/11820632
help please i have 5 minutes to do this !!!
Answer:
A) One that occurs on its own
Which type of rock is formed from existing rock or organisms?
Answer:
Sedimentary rocks
Explanation:
My explanation is that when an animal decomposes it body returns to the ground eventually being used in the rock cycle and rocks form this through the rock cycle when broken down by weathering and erosion.
Hope this helps you
Answer:
sedimentary rocks
They form from deposits that accumulate on the Earth's surface.
Which of the following is NOT one of the types of bonds? A. Ionic B. Metallic C. Covalent D. Valence
Considering the definition of bond and the different type of bonds, valence is not one of the types of bonds.
What is a chemical bondA chemical bond is defined as the force by which the atoms of a compound are held together. These are electromagnetic forces that give rise to different types of chemical bonds.
In other words, a chemical bond is the force that joins atoms to form chemical compounds and confers stability to the resulting compound.
Covalent bondThe covalent bond is the chemical bond between atoms where electrons are shared, forming a molecule. Covalent bonds are established between non-metallic elements, such as hydrogen H, oxygen O and chlorine Cl. These elements have many electrons in their outermost level (valence electrons) and have a tendency to gain electrons to acquire the stability of the electronic structure of noble gas. The shared electron pair is common to the two atoms and holds them together.
Ionic bondAn ionic bond is produced between metallic and non-metallic atoms, where electrons are completely transferred from one atom to another. During this process, one atom loses electrons and another one gains them, forming ions.
Metallic bondMetallic bonds are a type of chemical bond that occurs only between atoms of the same metallic element. In this way, metals achieve extremely compact, solid and resistant molecular structures, since the atoms that share their valence electrons.
SummaryIn summary, valence is not one of the types of bonds. The types of bonds are covalent, ionic and metallic.
Learn more about chemical bonds:
https://brainly.com/question/25385832
https://brainly.com/question/13178368
#SPJ1
A 5.024 mg sample of an unknown organic molecule containing carbon, hydrogen, and nitrogen only was burned and yielded 13.90 mg of CO2 and 6.048 mg of H2O. What is the empirical formula
Answer:
C8H17N
Explanation:
Mass of the unknown compound = 5.024 mg
Mass of CO2 = 13.90 mg
Mass of H2O = 6.048 mg
Next, we shall determine the mass of carbon, hydrogen and nitrogen present in the compound. This is illustrated below:
For carbon, C:
Molar mass of CO2 = 12 + (2x16) = 44g/mol
Mass of C = 12/44 x 13.90 = 3.791 mg
For hydrogen, H:
Molar mass of H2O = (2x1) + 16 = 18g/mol
Mass of H = 2/18 x 6.048 = 0.672 mg
For nitrogen, N:
Mass N = mass of unknown – (mass of C + mass of H)
Mass of N = 5.024 – (3.791 + 0.672)
Mass of N = 0.561 mg
Now, we can obtain the empirical formula for the compound as follow:
C = 3.791 mg
H = 0.672 mg
N = 0.561 mg
Divide each by their molar mass
C = 3.791 / 12 = 0.316
H = 0.672 / 1 = 0.672
N = 0.561 / 14 = 0.040
Divide by the smallest
C = 0.316 / 0.04 = 8
H = 0.672 / 0.04 = 17
N = 0.040 / 0.04 = 1
Therefore, the empirical formula for the compound is C8H17N
If 3.10 moles of P4010 reacted with excess water, how many grams of H3PO4
would be produced?
P4010 +6H20 + 4H3PO4
You Answered
126 g
0 0.007918
Correct Answer
O 1220 g
0.1278
75.98
Answer:
1.22 × 10³ g
Explanation:
Step 1: Write the balanced equation
P₄O₁₀ + 6 H₂O ⇒ 4 H₃PO₄
Step 2: Calculate the moles of H₃PO₄ produced by 3.10 moles of P₄O₁₀
The molar ratio of P₄O₁₀ to H₃PO₄ is 1:4. The moles of H₃PO₄ produced are 4/1 × 3.10 mol = 12.4 mol
Step 3: Calculate the mass corresponding to 12.4 moles of H₃PO₄
The molar mass of H₃PO₄ is 97.99 g/mol.
[tex]12.4 mol \times \frac{97.99g}{mol} = 1.22 \times 10^{3} g[/tex]
When 75.5 grams of phosphorus pentachloride react with an excess of water, as shown in the unbalanced chemical equation below, how many moles of hydrochloric acid will be produced? Please show all your work for the calculations for full credit. PCl5 + H2O --> H3PO4 + HC
Answer:
Explanation: M(PCL5)= 31 + 5(35.5)
=208.5g/mol
M(H20)= 18g/mol
n(PCL5) = 75.5÷208.5
= 0.362mol
n(HCl)/n(PCL5)= 5/1
n(HCl)= 5×0.362
=1.81mol of HCl
1. What form of matter is made from only one type of atom?
A molecule
B compound
C element
6.66%
D material
Answer:
A molecule is the answer.
How did Ernest Rutherford change the atomic model?
A. He showed that the atom could be divided into smaller particles.
B. He showed that electrons were located within an atom's nucleus.
C. He showed that the atom contained both positive and negative
charges
D. He showed that most of an atom's mass was located in the atom's
nucleus.
Answer:
D. He showed that most of an atom's mass was located in the atom's
nucleus.
Explanation:
Ernest Rutherford changed the atomic model because of his experiment which was the gold foil experiment. A beam of alpha particles was aimed at a piece of gold foil, most particles passed through but some were scattered backward which showed that the middle of an atom (nucleus) is the where most of the mass is located.
Rutherford's model of atoms is the improved version of Thomson's model. In the model, it is stated that most of an atom's mass is located in the nucleus. Thus, option D is correct.
What is Rutherford's model?Ernest Rutherford gave the improved atomic model that postulated the failure of Thomson's model. Rutherford's model described the atom to consist of a sub-atomic particle with a positively charged nucleus.
The nucleus is in the center of the atom and had nearly all mass concentrated in it due to the presence of the protons and neutrons. The electrons were called negatively charged species that were present in the shells around the nucleus like the planets around the Sun.
Therefore, Rutherford's model showed mass concentrated in the center of the nucleus.
Learn more about Rutherford's model here:
https://brainly.com/question/11847851
#SPJ5
a solution of unknown molecular substance is prepared by dissolving 0.50g of the unknown in 8.0g of benzene. the solution freezes at 3.9. determine the molar mass of the unknown
Answer:
THE MOLAR MASS OF THE UNKNOWN MOLECULAR SUBSTANCE IS 200 G/MOL.
Explanation:
Mass of the unknown substance = 0.50 g
Freezing point of the solution = 3.9 °C
Freezing point of pure benzene = 5.5 °C
Freezing point dissociation constant Kf = 5.12°C/m
First, calculate the temperature difference between the freezing point of pure benzene and the final solution freezing point.
Change in temperature = 5.5 -3.9 = 1.6 °C
Next is to calculate the number of moles or molarity of the compound that dissolved.
Using the formula:
Δt = i Kf m
Assume i = 1
So,
1.6 °C = 1 * 5.12 * x/ 0.005 kg of benzene
x = 1.6 * 0.008 / 5.12
x = 0.0128 / 5.12
x = 0.0025 moles.
Next is to calculate the molar mass using the formula, molarity = mass / molar mass
Molar mass = mass / molarity
Molar mass = 0.50 g /0.0025
Molar mass = 200 g/mol
Hence, the molar mass of the unknown compound is 200 g/mol
If 5.00 mL of a 0.5 M solution is diluted to a final volume of 100.0 mL, what is the concentration of the final dilute solution?
Answer:
0.025 M
Explanation:
The following data were obtained from the question:
Initial volume (V1) = 5 mL
Initial concentration (C1) = 0.5 M
Final volume (V2) = 100 mL
Final concentration (C2) =..?
Using the dilution formula, we can obtain the final concentration of the diluted solution as follow:
C1V1 = C2V2
0.5 x 5 = C2 x 100
Divide both side by 100
C2 = (0.5 x 5)/100
C2 = 0.025 M
Therefore, the final concentration of the diluted solution is 0.025 M
The concentration of the final diluted solution is 0.025M
The dilution formula is expressed according to the formula:
[tex]C_1V_1=C_2V_2[/tex]
Given the following parameters
[tex]C_1=0.5M\\V_1=5.00mL\\V_2=100.0mL\\C_2=?[/tex]
Substitute the given parameters into the formula:
[tex]C_1V_1=C_2V_2\\0.5(5)=100C_2\\2.5=100C_2\\C_2=\frac{2.5}{100}\\C_2= 0.025M[/tex]
Hence the concentration of the final diluted solution is 0.025M
Learn more here: https://brainly.com/question/6103588
The density of a pure substance is its mass per unit volume. The density of cresol has been measured to be 1024 g/L . Calculate the mass of 405mL of cresol.
Answer: The mass of 405 ml of cresol is 415 grams
Explanation:
Density is defined as the mass contained per unit volume.
[tex]Density=\frac{mass}{volume}[/tex]
Given : Density of cresol = 1024 g/L
Volume of cresol = 405 ml = 0.405 L ( 1L=1000ml)
Putting in the values we get:
[tex]1024g/L=\frac{mass}{0.405L}[/tex]
[tex]mass=1024g/L\times 0.405L=415g[/tex]
Thus mass of 405 ml of cresol is 415 grams
Why is the separation of mixtures into pure or relatively pure substances so important when performing a chemical analysis?
Answer:
It is important to separate mixture into pure or relatively pure substances when performing a chemical analysis SO AS TO KNOW THE PROPERTIES COMING FROM EACH PART MIXTURE WHICH MAY INTERFERE WITH THE SEPARATION.
Explanation:
In chemistry, Mixture is the combination of two or more substances which are not combine chemically.
Mixture contain different substances with different physical and chemical properties.
It is important to purify the substances in a mixture so as to identify what properties are coming from each mixture and also some part of the mixture can interfere with the properties of other mixture present for skewing analysis.
Use the balanced combustion reaction above to calculate the enthalpy of combustion for C8H16. C8H16(1)= -174.5kJ/mol. I have no clue how to start this question and need help including the formulas so I know how to do it and some step by step commentary.
Answer:
Explanation:
C₈H₁₆ + 12O₂ = 8 CO₂ + 8H₂O.
a )
Heat of formation of C₈H₁₆
[tex]\triangle H_f (C_6H_{16})=-174.5 kJ[/tex]
[tex]\triangle H_f (CO_2)=-393.5 kJ[/tex]
[tex]\triangle H_f (O_2)= 0[/tex]
[tex]\triangle H_f (H_2O)=-285.82 kJ[/tex]
[tex]\triangle H_{reaction} =[/tex] 8 x - 393.5 - 8 x 285.82 + 174.5x 1
= - 5260.06 kJ
b ) Energy required = 2.905 x 10¹⁵kJ
moles of C₈H₁₆ require to be burnt
= 2.905 x 10¹⁵ / 5260.06
= 55.23 x 10¹⁰ moles
= 55.23 x 10¹⁰ x mol weight of C₈H₁₆ g
= 55.23 x 10¹⁰ x 112 g
= 6185.5 x 10¹⁰ g
= 6185.5 x 10⁷ kg
c )
No of litres of CO₂ produced at NTP = 8 x 22.4 x 55.23 x 10¹⁰ L
= 9897.22 x 10¹⁰ L
At 1520 mm of Hg pressure and 250°C
volume of CO₂
= 9897.22 x 10¹⁰ x 760 x ( 273 + 250) / ( 1520 x 273 )
= 9480.3 x 10¹⁰ L .
4. If 13 percent of the carbon-14 in a sample of cotton cloth remains, what's the approximate age of the cloth? Show your work
The approximate age of the cloth is 17190 years.
We'll begin by calculating the number of half-lives that has elapsed. This can be obtained as follow:
Original amount (N₀) = 100%Amount remaining (N) = 13%Number of half-lives (n) =?2ⁿ = 100 / 13
2ⁿ = 8
2ⁿ = 2³
n = 3
Finally, we shall determine the age of the cloth.
Half-life (t½) = 5730 yearsNumber of half-lives (n) = 3Time (t) =?t = n × t½
t = 3 × 5730
t = 17190 years
Thus, the approximate age of the cloth is 17190 years
Learn more about half life:
https://brainly.com/question/25960173
Write a balanced equation for the single-displacement reaction of Al(s) with CuSO4(aq). Include states of matter in your answer.
Answer:
2 Al(s) + 3 CuSO₄(aq) ⇒ 3 Cu(s) + Al₂(SO₄)₃(aq)
Explanation:
Let's consider the single displacement reaction of Al(s) with CuSO₄(aq). Copper has a higher reduction potential than aluminum, so aluminum will take the place of copper to form aluminum sulfate and metallic copper. The corresponding balanced chemical equation is:
2 Al(s) + 3 CuSO₄(aq) ⇒ 3 Cu(s) + Al₂(SO₄)₃(aq)
The chemical equation is 2 Al(s) + 3 CuSO₄(aq) ⇒ 3 Cu(s) + Al₂(SO₄)₃(aq)
Chemical equation:
here we considered the single displacement reaction of Al(s) with CuSO₄(aq). Also, Copper contained a higher reduction potential as compared to aluminum, due to this aluminum will take the place of copper to create aluminum sulfate and metallic copper. So the above should be the balance chemical equation.
Learn more about reaction here: https://brainly.com/question/4417455
Homolysis, or homolytic bond dissociation, produces a very specific type of product under certain reaction conditions. In Part 1, select all the products (in formulae and general chemical terms) that could result from homolysis. In Part 2, select the reaction conditions that are most likely to promote homolysis.
Part 1. Choose all that may occur as possible products of a homolysis reaction.
Choose one or more:_______.
a. hydride ion
b. R3CO
c. Br2
d. H
e. a carbocation
f. H3C
g. H3CO-
h. hydrogen ion
i. a carbon free radical
Part 2. Choose the conditions under which homolysis is likely to occur.
Choose one or more:_______.
a. strong base
b. ultraviolet irradiation
c. high temperature
d. strong acid
e. infrared irradiation
f. low temperature
Answer:
1) R₃CO , H, H₃C, a carbon free radical
2) high temperature, ultraviolet irradiation
Explanation:
1) Homolysis leads to the formation of free radicals (species having a free electron). Thus, answer is :
R₃CO
H
H₃C
a carbon free radical
2) Homolysis require high temperature, ultraviolet irradiation.
Silver crystallizes in a face-centered cubic structure. What is the edge length of the unit cell if the atomic radius of silver is 144 pm?
Answer:
Edge length of the unit cell is 4.07x10⁻¹⁰m
Explanation:
In a face-centered cubic structure, the edge, a, could be obtained using pythagoras theorem knowing the hypotenuse of the unit cell, b, is equal to 4r:
a² + a² = b² = (4r)²
2a² = 16r²
a = √8 r
That means edge lenght is = √8 r
adius
As radius of Silver is 144pm = 144x10⁻¹²m:
a = √8 r
a = √8 ₓ 144x10⁻¹²m
a = 4.07x10⁻¹⁰m
Edge length of the unit cell is 4.07x10⁻¹⁰mWhich example involves a phase change in which heat energy is released by the substance?
Ofreezing ice cream
O cooking a pot of soup
O melting ice under sunlight
O watching frost disappear into air
Answer:
Cooking a pot of soup
Explanation:
id say that because when you freeze ice cream, its already frozen, so no heat is being released. melting ice wouldn't be the answer because, once again, it is already frozen, and no heat is being released.
Answer:
the correct answer is freezing ice cream
Explanation:
i took the test & got this question correct. also, heat energy is released when freezing because there is no heat energy involved.
Answer these questions, please.
Answer:
1a. 0.89 gcm¯³
1b. Yes.
1c. Tetrahydrofuran.
2. 0.54 g/mL
Explanation:
1. Data obtained from the question include:
Volume = 0.988 L = 988 cm³
Mass = 879 g
1a. Determination of the density
Density = mass /volume
Density = 879/ 988
Density = 0.89 gcm¯³
Therefore, the density of the liquid is 0.89 gcm¯³
1b. From the given data, it is possible to determine the identity of the liquid.
1c. The density of the liquid is 0.89 gcm¯³. Comparing the density of the liquid obtained with those given in the table, the liquid is tetrahydrofuran
2. Data obtained from the question include:
Mass of empty cylinder = 5.25 g
Mass of cylinder and sodium thiosulfate = 75.82 g
Volume = 130.63 mL
Next, we shall determine the mass of sodium thiosulfate. This can be obtain as follow:
Mass of empty cylinder = 5.25 g
Mass of cylinder and sodium thiosulfate = 75.82 g
Mass of sodium thiosulfate =.?
Mass of sodium thiosulfate = Mass of cylinder and sodium thiosulfate – Mass of empty cylinder
Mass of sodium thiosulfate = 75.82 – 5.25
Mass of sodium thiosulfate = 70.57 g
Finally, we shall determine the concentration of the sodium thiosulfate as follow:
Mass = 70.57 g
Volume = 130.63 mL
Concentration =?
Concentration = mass /volume
Concentration = 70.57/130.63
Concentration = 0.54 g/mL
The concentration of the solution is 0.54 g/mL
The element potassium forms a _______ with the charge . The symbol for this ion is , and the name is . The number of electrons in this ion is
Answer:
The element potassium forms a cation with the charge +1 . The symbol for this ion is K⁺, and the name is potassium ion. The number of electrons in this ion is 18.
Explanation:
Potassium is a metal. It belongs to the group 1 elements. Metals form cations by losing electrons. Since potassium is a group element, it forms a cation by losing one electron. The charge it has is +1 due to the excess of the protons compared t the electrons by 1.
Potassium has 19 electrons. Potassium io on the other hand has 19-1 = 18 electrons.
The half-life of element X is 500 years. If there are initially 8 g of X, how much will remain after 1500 years
Answer:
1 g
Explanation:
From the formula;
N/No = (1/2)^t/t1/2
Where;
N= mass of radioactive element left after a time t = the unknown
No= mass of radioactive element originally present in the sample = 8g
t= time taken for N mass of the sample to remain = 1500
t1/2= half-life of the radioactive element = 500 years
Substituting values, we have;
N/8 = (1/2)^1500/500
N/8 = (1/2)^3
N/8 = 1/8
N= 1/8 ×8
N= 1 g
Therefore; mass of radioactive element left after 1500 years is 1 g
The percent errors of your experimental values of the specific heats may be quite large. Identify several sources of experimental error.
Answer:
The various sources of such errors are given below.
Explanation:
Sources of uncertainty or error could include necessary splattering of water leading to reduced cold water density as well as elevated temperatures of equilibration.The temperature might not have been reasonably stable when developers evaluated at every phase of the investigation or research.So that the percentage of someone specific produces heat exploratory value systems inaccuracies can be somewhat massive.
Write the balanced equation for the half reaction for the single replacement
reaction involving iron. This equation considers only the iron cations and the
elemental iron, and it shows how the iron cation (Fe3+) is reduced to become
elemental iron (Fe). How many electrons are represented in this equation? How
does this number of electrons help show a balance of charge on both sides of the
equation? (3 points)
Answer:
Explanation:
The half reaction required
Fe⁺³ + 3 e = Fe
This is a balanced equation
No of atom of Fe on both side = 1
Total charge on the left side = + 3 - 3 = 0
Total charge on the right = 0
three electrons will be required to neutralise +3 charge on the single iron ion .
Erbium metal (Er) can be prepared by reacting erbium(III) fluoride with magnesium; the other product is magnesium fluoride. Write and balance the equation.
Answer:
2ErF3 + 3Mg → 2Er + 3MgF2
Explanation:
Erbium metal is a member of the lanthaniod series. It reacts with halogens directly to yield erbium III halides such as erbium III chloride, Erbium III fluoride etc.
Erbium metal (Er) can be prepared by reacting erbium(III) fluoride with magnesium; the products are erbium metal and magnesium fluoride. This is a normal redox process in which the Erbium metal is reduced while the magnesium is oxidized. The balanced reaction equation of this process is; 2ErF3 + 3Mg → 2Er + 3MgF2
Select the correct answer
What determines the average kinetic energy of the particles in a gas?
ОА
the number of collisions
OB.
the number of particles
OC. the size of the particles
OD. the temperature
Answer:
Temperature
Explanation:
Kinetic energy of gass molecules is directly propotional to the temperature.
you mix 45 ml of .20M KOH in calorimeter. The temperature of both reactions before mixing is 21.5 C. The Cp of the calorimeter was 36 J/K. If the final temperature of the mixture is 23.6 C, what is the enthalpy change per mole of water produced?
Answer:
THE ENTHALPY CHANGE PER MOLE OF KOH IS 8400 Joules/ mole OF HEAT.
Explanation:
Heat = heat capacity * change in temperature
Heat capacity = 36 J/K
Temperature of the mixture before mixing = 21.5 C
Temperature of mixtire after mixing = 23.6 C
Calculate the change in temperature:
Change in temperature = 23.6 C - 21.5 C = 2.1 C
Heat = 36 * 2.1
Heat = 75.6 J of heat
In essence, 45 ml of 0.20 M of KOH produces 75.8 J of heat
The enthalpy change per mole of water:
It is important t obtain the number of moles involved in the reaction of 45 mL of 0.20 M of KOH
n = C V
n = 0.20 M * 45 *10^-3
n = 0.009 moles
Since number of moles = mass / molar mass
The mass of 45 ml of 0.20 M of KOH is then:
Molar mass = ( 39 + 16 + 1) g/mol = 56 g/mol
Mass = number of moles * molar mass
Mass = 0.009 * 56
Mass = 0.504 g
So therefore 0.504 g of KOH produces 75.6 J of heat
1 mole of KOH will produce x J of heat
1 mole of KOH = 56 g of KOH
0.504 g = 75.6 J
56 g = x J
x J = 56 * 75.6 / 0.504
x J = 8400 J / mole of KOH
When silver nitrate is added to the Fe/SCN equilibrium, why is the colorless intense and a precipitate forms?
Answer:
Here's what I get
Explanation:
You have an equilibrium reaction between Fe³⁺/ SCN⁻ and FeSCN²⁺.
[tex]\underbrace{\hbox{Fe$^{3+}$}}_{\text{pale yellow-green}} +\underbrace{\hbox{SCN$^{-}$}}_{\text{colourless}} \, \rightleftharpoons \, \underbrace{\hbox{Fe(SCN)$^{2+}$}}_{\text{deep blood red}} \\[/tex]
When you add AgNO₃, the Ag⁺ reacts with the SCN⁻. It forms a colourless precipitate of Ag(SCN).
Ag⁺(aq) + SCN⁻(aq) ⟶ AcSCN(s)
According to Le Châtelier's Principle, when we apply a stress to a system at equilibrium, the system will respond in a way that tends to relieve the stress.
If you add Ag⁺ to the equilibrium solution, it removes the SCN⁻ [as an Ag(SCN) precipitate].
The system responds by trying to replace the missing SCN⁻:
The Fe(SCN)²⁺ dissociates to form SCN⁻, so the position of equilibrium shifts to the left,
You now have more Fe³⁺ and SCN⁻ and less of the highly coloured Fe(SCN)²⁺ at the new equilibrium.
The deep red colour becomes less intense.
When silver nitrate is added to the Fe/SCN equilibrium, the colourless intense and precipitate forms because it settles at the bottom.
What is chemical equilibrium?Chemical equilibrium is the condition in the course of a reversible chemical reaction in which no net change in the amounts of reactants and products occurs.
The added silver nitrate, [tex]AgNO_3[/tex] , effectively removes thiocyanate ions, [tex]SCN^{-1}[/tex], from the equilibrium system via a precipitation reaction when the [tex]Ag^{+1}[/tex] combines with [tex]SCN^{-1}[/tex] to produce insoluble silver thiocyanate, AgSCN, which settles to the bottom of the test tube.
Ag⁺(aq) + SCN⁻(aq) ⟶ AcSCN(s)
According to Principle, when we apply stress to a system at equilibrium, the system will respond in a way that tends to relieve the stress.
Adding Ag⁺ to the equilibrium solution, it removes the SCN⁻ [as an Ag(SCN) precipitate].
The system responds by trying to replace the missing SCN⁻:
The Fe(SCN)²⁺ dissociates to form SCN⁻, so the position of equilibrium shifts to the left,
You now have more Fe³⁺ and SCN⁻ and less of the highly coloured Fe(SCN)²⁺ at the new equilibrium.
The deep red colour becomes less intense.
Learn more about chemical equilibrium here:
https://brainly.com/question/4289021
#SPJ5
4Ga + 3S2 → 2Ga2S3
1. How many grams of Gallium burned if 200.0 grams of Gallium(III)Sulfide formed?
Answer:
118.4 g
Explanation:
4 Ga + 3 S₂ → 2 Ga₂S₃
According to the equation, for every 4 moles of gallium burned, 2 moles of gallium(III) sulfide.
First, convert grams of Ga₂S₃ to moles. The molar mass is 235.641 g/mol.
(200.0 g)/(235.641 g/mol) = 0.8487 mol
Use the relationship above to convert moles of Ga₂S₃ to moles of Ga.
(0.8487 mol Ga₂S₃) × (4 mol Ga)/(2 mol Ga₂S₃) = 1.697 mol Ga
Convert moles of Ga to grams. The molar mass is 69.723 g/mol.
(1.697 mol Ga) × (69.723 g/mol) = 118.4 g
If the vinegar were measured volumetrically (e.g., a pipet), what additional piece of data would be needed to complete the calculations for the experiment?
Answer:
the density if vinegar will also be needed
Explanation:
Because this is an experiment of volumetric analysis