Answer:
Side photo
A small still is separating propane and butane at 135 °C, and initially contains 10 kg moles of a mixture whose composition is x = 0.3 (x = mole fraction butane). Additional mixture (x = 0.3) is fed at the rate of 5 kg mole/hr. The total volume of the liquid in the still is constant, and the concentration of the vapor from the still (xp) is related to x, as follows: Xp = How long will it take for X, to change from 0.3 to 0.35.
Answer: A swimming pool at 40°C is at a lower temperature than a cup of tea at 90°C. However, the swimming pool contains a lot more water. Therefore, the pool has more thermal energy than the cup of tea even though the tea is hotter than the water in the pool.
Explanation: Heat and Temperature do not mean the same thing. ... A swimming pool at 40°C is at a lower temperature than a cup of tea at 90°C. However, the swimming pool contains a lot more water. Therefore, the pool has more thermal energy than the cup of tea even though the tea is hotter than the water in the pool.
How many moles of silver are equivalent to 2.408 x 10^24 atoms
The mole is used to measure small particles like atoms and molecules. The 4 moles of silver is equivalent to [tex]\bold{2.408 x 10^2^4 }[/tex] atoms.
Given here,
The number of atoms
[tex]\bold{2.408 x 10^2^4 }[/tex]
Number of moles = ?
1 mol of substance = [tex]\bold{ 6.02 x10^2^3}[/tex]
Hence,
moles of silver,
[tex]\bold {= \dfrac {2.408 x 10^2^4 } { 6.02 x10^2^3} }}\\\\\bold {= 4 mol}[/tex]
Therefore, the 4 moles of silver is equivalent to [tex]\bold{2.408 x 10^2^4 }[/tex] atoms.
To know more about mole concept, refer to the link:
https://brainly.com/question/20483253
How does the government control scientific research
Answer:
The government allocates a budget for research every year. The spending of that money is determined by government priorities. Some of the money is spent directly, in government-funded research centers.
Other money is distributed to other research institutions.
Money spent by other institutions for research has no government oversight.
Explanation:
A 75 lb (34 kg) boy falls out of a tree from a height of 10 ft (3 m). i. What is the kinetic energy of the boy when he hits the ground? Round your answer to the nearest joule. ii. What is the speed of the boy when he hits the ground? Round your answer to two significant figures. iii. Using the conversion factors of 1 m = 1.094 yd and 1 mi = 1760 yd, calculate the speed of the boy in miles per hour when he hits the ground.
Answer:
Kinetic energy of boy just before hitting the ground is [tex]\approx[/tex]1000 J.
Speed of boy just before hitting the ground is 7.67 m/s
or 17.16 mi/hr.
Explanation:
Given that:
Mass of boy = 75lb = 34 kg
Height, h = 10ft = 3m
To find:
Kinetic energy of boy when he hits the ground.
As per law of conservation of energy The potential energy gets converted to kinetic energy.
[tex]\therefore[/tex] Kinetic energy at the time boy hits the ground = Initial potential energy of the boy when he was at the Height 'h'
The formula for potential energy is given as:
[tex]PE = mgh[/tex]
Where m is the mass
g is the acceleration due to gravity, g = 9.8 [tex]m/s^2[/tex]
h is the height of object
Putting all the values:
PE = [tex]34 \times 9.8 \times 3 \approx 1000\ J[/tex]
Hence, Kinetic energy is [tex]\approx[/tex]1000 J.
Formula for Kinetic energy is:
[tex]KE = \dfrac{1}{2}mv^2[/tex]
where m is the mass and
v is the speed
Putting the values and finding v:
[tex]1000 = \dfrac{1}{2}\times 34 \times v^2\\\Rightarrow v^2 = 58.82\\\Rightarrow v = 7.67\ m/s[/tex]
Given that:
1 m = 1.094 yd and 1 mi = 1760 yd
[tex]\Rightarrow 1609\ m = 1\ mi[/tex]
Converting 7.67 m/s to miles/hour:
[tex]\dfrac{7.67 \times 3600}{1609}=17.16\ mi/h[/tex]
Which consists of only one type of atom?
Answer:
A chemical element
Explanation:
A chemical element consists of only one type of atom.
En la electrólisis del Cloruro de plomo se han depositado 2.6 gramos del metal en 20 minutos el peso atómico del plomo es 206 calculo la intensidad de la corriente eléctrica empleada AYUDENNNNN PLISSSS es para hoy!!!!!
Answer:
2.01 A
Explanation:
Para esta pregunta debemos empezar por la semi-reaccion del plomo:
[tex]Pb^+^2~_(_a_q_)~+~2e^-~->~Pb_(_s_)[/tex]
Se intercambian dos electrones en la semi-reacción del plomo. Si tenemos en cuenta la ecuación:
[tex]n=\frac{I*t}{z*F}[/tex]
Donde:
n= Moles depositados
I= Intensidad de corriente (en Amperios)
z= Numero de electrones intercambiados
F= Constante de faraday = 96484 C/mol
t=tiempo (en segundos)
Que conocemos de esta ecuación?
Los moles (se pueden calcular a partir de la masa atómica del plomo, 207.2 g/mol)
[tex]2.6~g~Pb\frac{1~mol~Pb}{207.2~g~Pb}=0.0125~mol~Pb[/tex]
El tiempo (hay que convertirlo a segundos):
[tex]20~min\frac{60~s}{1~min}=1200~s[/tex]
Z (Numero de electrones)
De acuerdo a la semi-reacción son intercambiados 2 electrones.
Por lo tanto podemos resolver para "I":
[tex]I=\frac{n*z*F}{t}=\frac{0.0125~mol*2*96484\frac{C}{mol}}{1200~s}[/tex]
[tex]I~=~2.01~\frac{C}{s}=2.01~A[/tex]
Espero que sea de ayuda!