Answer:
Power is the rate at which work is done. It is the work/time ratio. Mathematically, it is computed using the following equation. The standard metric unit of power is the Watt.
Explanation:
4. When scientists calculate the trajectory a satellite takes on its way to
study a planet, what do you think they use?
5 points
A Speed and velocity
B. Velocity and acceleration
O C. Speed, velocity, and acceleration
O D. Speed only
When scientists calculate the trajectory a satellite takes on its way to
study a planet, they use C. Speed, Velocity, and acceleration.
A trajectory, often known as a flight path, is the route taken by an object moving under the influence of gravity. Typically, the phrase is applied when referring to projectiles or satellites. A parabola curve is usually a decent approximation of the trajectory form when an object is propelled for in a short distance.
When scientists calculate the trajectory a satellite takes on its way to
study a planet they take the speed, velocity, and acceleration into consideration.
The formula for calculating the trajectory can be expressed as:
[tex]\mathbf{y = h + xtan (\alpha) - \dfrac{gx^2 }{2V_o^2cos^2 (\alpha)}}[/tex]
where;
h = height show the distanceV = velocityg = acceleration due to gravityLearn more about trajectory here:
https://brainly.com/question/88554?referrer=searchResults
Surface tension is often calculated using a machine that lifts a wire ring from the surface of a liquid. In this case the ring and liquid have some cohesive forces and attract rather than repel. In order to lift a ring of radius 2.75 cm off of the surface of a pool of blood plasma, a vertical force of 2.00*10-2 N greater than the weight of the ring is required. Consider the situation just before the ring breaks contact with the blood plasma where the blood plasma makes a contact angle of approximately zero degrees along the circumference of the ring and is stretched down vertically on both sides of the ring.
Required:
Calculate the surface tension of blood plasma from this information.
Answer:
0.116 N/m
Explanation:
Since the net force acting on the ring must be greater than 2.00 × 10⁻² N, and the surface tension T = F/L where F = net force = 2.00 × 10⁻² N and L = circumference of ring = 2πr where r = radius of ring = 2.75 cm = 2.75 × 10⁻² m.
So, T = F/L
= F/2πr
= 2.00 × 10⁻² N ÷ 2π(2.75 × 10⁻² m)
= 1/2.75π N/m
= 1/8.64 N/m
= 0.116 N/m
a cat is being chased by a dog both are running in a straight line at constant speed. The cat has a headstart
A 3.0-kg and a 1.0-kg box rest side-by-side on a smooth, level floor. A horizontal force of 32 N is applied to the 1.0-kg box pushing it against the 3.0-kg box, and, as a result, both boxes slide along the floor. How hard do the two boxes push against each other
Considering both boxes as one body, it would have a total mass of 4.0 kg. By Newton's second law, the 32 N force applies an acceleration a such that
∑ F = 32 N = (4.0 kg) a → a = 8.0 m/s²
and both boxes share this acceleration. (There is no friction, so the given force is the only one involved in the direction of the boxes' motion.)
Now consider just the smaller box. It is feeling the effect of the 32 N push in one direction and, as it comes into contact with the larger box, a normal force that points in the opposite direction. Let n be the magnitude of this normal force; this is what you want to find. By Newton's second law,
∑ F = 32 N - n = (1.0 kg) (8.0 m/s²)
n = 32 N - 8.0 N
n = 24 N
Just to make sure that this is consistent: by Newton's third law, the larger box feels the same force but pointing in the opposite direction. On the smaller box, n opposes the pushing force, so points backward. So from the larger box's perspective, n acts on it in the forward direction. This is the only force acting on the larger box, so Newton's second law gives
∑ F = 24 N = (3.0 kg) (8.0 m/s²)
Based on the image which parachuter will fall fastest
A
B
Or C
Explanation:
c willl fall fast then a and b
A man whose mass is 69 kg and a woman whose mass is 52 kg sit at opposite ends of a canoe 5 m long, whose mass is 20 kg. Suppose that the man moves quickly to the center of the canoe and sits down there. How far does the canoe move in the water
Answer:
the canoe moved 1.2234 m in the water
Explanation:
Given that;
A man whose mass = 69 kg
A woman whose mass = 52 kg
at opposite ends of a canoe 5 m long, whose mass is 20 kg
now let;
x1 = position of the man
x2 = position of canoe
x3 = position of the woman
Now,
Centre of mass = [m1x1 + m2x2 + m3x3] / m1 + m2 + m3
= ( 69×0 ) + ( 52×5) + ( 20× 5/2) / 69 + 52 + 20
= (0 + 260 + 50 ) / ( 141 )
= 310 / 141
= 2.19858 m
Centre of mass is 2.19858 m
Now, New center of mass will be;
52 × 2.5 / ( 69 + 52 + 20 )
= 130 / 141
= 0.9219858 m { away from the man }
To get how far, the canoe moved;
⇒ 2.5 + 0.9219858 - 2.19858
= 1.2234 m
Therefore, the canoe moved 1.2234 m in the water
The canoe move in the water will be 1.2234 m. The canoe move depending on the center of mass of the bodies.
What is the center of mass?The center of mass of an item or set of objects is a place specified relative to it. It's the average location of all the system's components, weighted by their mass.
The centroid is the location of the center of mass for simple rigid objects with homogeneous density. The center of mass of a uniform disc shape, for example, would be at its center.
The given data in the problem is;
m₁ is the mass of man = 69 kg
m₂ is the mass of woman whose= 52 kg
m₃ is the mass of canoe = 20 kg
L is the length of canoe = 5 m
x₁ is the position of the man
x₂ is the position of the canoe
x₃ is the position of the woman
The center of mass will be;
[tex]\rm COM= \frac{[m_1x_1 + m_2x_2 + m_3x_3]}{ m1 + m2 + m3} \\\\ \rm COM= \frac{[69 \times 0 +52 \times 5 + 20 \times 2.5]}{ 69+ 52 + 20} \\\\ \rm COM= (0 + 260 + 50 ) / ( 141 )\\\\ \rm COM = 310 / 141 \\\\ \rm COM = 2.19858 m[/tex]
The new center of mass is;
[tex]\rm COM= \frac{52 \times 2.5 }{69+52+20} \\\\ \rm COM=\frac{130}{141} \\\\ \rm COM= 0.9219 m[/tex]
The distance to find how the canoe moved will be found by;
[tex]\rm x= 2.5+0.9219-2.1985 = 1.2234[/tex]
Hence the canoe move in the water will be 1.2234 m.
To learn more about the center of mass refer to the link;
https://brainly.com/question/8662931
Brainliest!!! Write: Forces are all around us. Imagine that your teacher has asked you to teach a lesson to your peers about forces. Explain, in detail, how you experience forces in your everyday life. Give 3 examples
If you drag a bag across floor, you are experiencing a friction force
if you throw a paper or feather up, it floats side ways slowly. It is called air Resistance.
if you push or pull a Door, it is Normal force.
I hope this helped!
have an amazing Day!!
A graduated beaker with 375 mL of water is sitting on a scale which measures the weight of the glass and water to be 7.60 N. When a rock is put into the glass, the volume level of the water changes to 450 mL and the scale reading changes to 9.22 N. What is the specific gravity of the rock
Answer:
Volume of water displaced = 450 - 375 = 75 ml
Vr = volume of rock = 75 ml
Wr = 9.22 - 7.60 = 1.62 N weight of 75 ml of rock
Density of rock = 1.62 N / 75 ml = .0216 N / ml
Density of water = 1000 g / 1000 ml = 9.8 N / 1000 ml = .0098 N / ml
Density of rock / density of water = .0216 / .0098 = 2.20
The specific gravity of the rock in the given water volume is 0.2.
The given parameters;
initial volume of the water, = 375 mlweight of the water, = 7.6 Nfinal volume of water = 450 mlchange in scale reading = 9.22 NThe specific gravity of the rock is calculated as follows;
[tex]S.G = \frac{weight \ in \ air}{Weight \ in \ water} \\\\S.G = \frac{450 - 375}{375} \\\\S.G = 0.2[/tex]
Thus, the specific gravity of the rock in the given water volume is 0.2.
Learn more here:https://brainly.com/question/19142897
An ice cube in a glass of water is pushed to the bottom of the glass and held there with a straw. Consequently, the buoyant force on the ice cube is now a. the same as when the cube was floating at the top. b. exactly balanced by the weight of the ice cube. c. exactly balanced by the force exerted by the straw. d. greater than when the cube was floating at the top.
Answer:d
Explanation:
Given
Initially, the ice cube is floating over the water
When the cube is pressed to touch the bottom, it is submerged fully
Therefore more buoyant force is acting on it
At first, a part of the volume is submerged in the water, so the buoyant force is less, but as the entire cube is immersed in the water, the buoyant force increases.
HELP ITS DUE IN 4 MINUTES
Answer:
the nephew
Explanation:
because we need to First find the trails that is on top of all the others in order to find who was the last to leave, since the person that was last to leave would most likely step on another person's trail that has been theirs before them.
by looking at this picture I noticed that the butler's footprint was the latest one but the dogs footprint steps over it therefore making it the last to leave, and the person who owns a dog is her nephew so therefore the nephew is the one that stole the butterfly trophy.
Which of the following is an
example of thermal energy?
A. turning on a lamp so you can read
B. rubbing your hands together to get warm
C. kicking a ball
Which of the following statements is NOT correct about sea breezes?
A) In a sea breeze, the sand is much warmer than the water, therefore creating a low pressure above the sand.
B) The breeze/wind moves from the sea to the land.
C) The breeze/wind moves from the land to the sea.
D) There is high pressure above the sea, and low pressure above the sand.
The breeze/wind moves from the land to the sea. This statement is NOT correct about sea breezes.
What is sea breeze?Local wind patterns known as sea breezes flow from the sea to land during the day. When there is no strong large-scale wind system and it is very hot or very cold during the day or at night, sea breezes and land breezes alternate along the coasts of large lakes or oceans.
Because the sea breeze's surface flow ends over land, an area of low-level air convergence is created. Locally, this convergence frequently causes air to rise, which promotes the formation of clouds. Showers over land in the afternoon may result from such clouds.
Hence, the sea breeze/wind moves from the land to the sea. This statement is NOT correct about sea breezes.
Learn more about sea breeze here:
https://brainly.com/question/13015619
#SPJ6
In Bohr's model, the position of the electron (with the monochromatic light on)... Group of answer choices is restricted to orbits or certain radii, but the electron may be observed between these orbits when it moves. is restricted to orbits of certain radii around the nucleus. The position may change, but it must be in one of these orbits. is not constrained. The electron may be found anywhere outside of the nucleus.
Answer:
True. it is restricted to the orbits of certain radii around the nucleus.
The position can change, but it must be in one of these orbits
Explanation:
In this exercise some affirmations are given and you must select which ones are correct, for this we review the Bohr atomic model that has the following postulates:
* the orbits are circular
* Only certain orbits are stable, stationary state
* the radiation emitted is the difference in energy between two stable orbits
* the size of the orbit is given by the quantization of the angular momentum
L = n [tex]\hbar[/tex]
When reviewing the different statements, the correct one is:
* it is restricted to the orbits of certain radii around the nucleus.
The position can change, but it must be in one of these orbits
How can parents help children to gain friends?
Answer:
You could try finding a familiar peer to join the activity with your child. Or ask your child who their friends are at school, or what they look for in a friend at school.
Answer:
Let the parents their Children to play outside
Explanation:
I HOPE I HELP YOU
What is energy transfer in a car crash
Force energy- kinetic energy
Answer:
Kinetic and thermal
Explanation:
Kinetic because a moving car is transferring movement energy into the other one. Thermal because, in a car crash, the touching surfaces of both cars friction and that produces heat.
How does increasing the number of resistors in a parallel branch change the total resistance of the system?
Increasing the number of resistors in a parallel branch, decreases the total resistance of the system.
What is parallel branch?Parallel resistive circuit is one where the resistors are connected to the same two points (or nodes) and is identified by the fact that it has more than one current path connected to a common voltage source.
As more and more resistors are added in parallel to a circuit, the equivalent resistance of the circuit decreases and the total current of the circuit increases.
To learn more about Parallel circuit here
https://brainly.com/question/11409042
#SPJ2
I need help with science o.o:
Question 1:
An egg yolk is unicellular.
True
False
___________________________
Question 2:
Your body has more than a billion cells.
True
False
_____________________
Question 3:
Almost all cells are not microscopic.
True
False
please dont steal my points :>
Answer:
TrueTrueFalseExplanation:
this is the answer
Answer:
1.true
2true
3.false
Explanation:
espero que te ayude
Why is the answer (A)?
In details please
Explanation:
resistance of wire can be determined by this equation
R = Rho . L / A
L = the length of wire
A = the Area, A = πr²
Rho = density of resictance
we can do some rational
R1/R2 = ( Rho L1/A1) / (Rho L2/A2)
L2 is the condition when the length is doubled and
L2 = 2 x L
A2 is the condition when the diameter is doubled
A2 = 4A1
R/R2 = (L1/A1)/(L2/A2)
R/R2 = (L/A) / (2L/4A)
R/R2 = 1 / ½
R2 = ½ R.
then we use formula of Voltage
V = I R
1st condition
V = 0.3 R
2nd condition ( V is constant)
V = I2 R2
0.3 R = I2 x ½R
i2 = 0.3/ ½
i2 = 0.6 Ampere
A vessel having a capacity of 0.05 m³ contains a mixture of saturated water an saturated steam at a temperature 245°C the mass of the liquid present is 10 kg. find the following: i- The pressure. ii- The mass. iii- The specific volume. iv- The specific enthalpy. v- The specific internal energy.
The chemical energy in your food is
transformed into what type of energy in
your moving muscles?
A. Light
B. Mechanical
C. Sound
D. Electromagnetic
Answer:
Electromanetic
Explanation:ESPERO TE AYUDE
can someone help me with science:
The cells within a multicellular organism are of a uniform shape.
True
or False
Answer:
trur
Explanation:
gvidttcyhjddgdhjfjdjsjs
A solid sphere of radius R, a solid cylinder of radius R, and a rod of length R all have the same mass, and all three are rotating with the same angular velocity The sphere is rotating around an axis through its center. The cylinder is rotating around its long axis, and the rod is rotating around an axis through its center but perpendicular to the rod. Which one has the greatest rotational kinetic energy? a. the sphere b. the cylinder c. the rod d. the rod and the cylinder have the same rotational kinetic energy e. they all have the same kinetic energy
Answer:
b. the cylinder
Explanation:
From the information given:
We understood that the mass of the sphere, cylinder, and rod length is the same with the same angular speed.
Taking their moments:
For the solid sphere; [tex]\text{The moment of inertia :}[/tex] [tex]I_s[/tex] = [tex]\dfrac{2}{5} \times m \times r^2[/tex]
The moment of inertia of the cylinder, [tex]I_c = 0.5\times m \times r^2[/tex]
The moment of inertia of rod, [tex]I_r =\dfrac{ m * r^2 }{12}[/tex]
The rotational kinetic energy is directly corresponding to the moment of inertia.
Thus, the cylinder has the greatest rotational kinetic energy.
A 10 kg box initially at rest is pulled with a 50 N horizontal force for 4 m across a level surface. The force of friction acting on the box is a constant 20 N. How much work is done by the normal force pushing up on the box from the ground?
A. 10 J
B. 0 J
C. 100 J
D. 50 J
Answer: 0 j
Explanation:
It is given that,
Mass of the box, m = 10 kg
Force with which the box is pulled, F = 50 N
It is moved a distance of 4 m
Force of friction acting on the box, f = 20 N
We need to find the initial kinetic energy the box have. It is clear that the box is at rest initially. As there is no motion in the box at that time. The formula for the kinetic energy of the box is given by :
As v = 0
So, the initial kinetic energy of the box is 0. Hence, this is the required solution.
Which of the following represents a concave lens?
A. -di
B. +di
C. -f
D. +f
Answer:
The answer is option D. +f
Option D represents a concave lens. There are two types of lenses, one is a concave lens while the other is the convex lens.
What is the definition of a concave lens?A concave lens deviates a direct beam from the source into a reduced form. At minimum, one interior face of concave lenses is curved.
Because it is curved round inwards at the center and bulges outwards through the edges, causing the light to diverge, a concave lens is also known as a diverging lens.
It forms an upright , virtual picture both real and virtual pictures are formed from the concave lens.
The image formed from the positive side of the focus of the lens.+f shows the positive side of the focus of the lens.f is the focal length.
Hence, option D represents a concave lens
To learn more about the concave lens, refer to the link;
https://brainly.com/question/2919483
#SPJ2
Newton's law of cooling states that the temperature of an object changes at a rate proportional to the difference between its temperature and that of its surroundings. Suppose that the temperature of a cup of coffee obeys Newton's law of cooling. If the coffee has a temperature of 185 degrees Fahrenheit when freshly poured, and 3 minutes later has cooled to 172 degrees in a room at 78 degrees, determine when the coffee reaches a temperature of 147 degrees.
Answer:
6.77 minutes
Explanation:
172 degree - 78 degree = (185 degree - 78 degree)e−2 k
=> 94 = 107
e−2 k => 94 ÷ 107
k => ln (94÷107) / 2
147 - 78 = (185 - 78)e ^[ln (94÷107) / 2]
=> 69 = 107 e^ [ln (94÷107) / 2]
e^[ln (94÷107) / 2] =69 ÷ 107
=> t = [ln (69 ÷ 107)] ÷ [ln (94÷107) / 2]
t=> -0.4387 ÷ -0.0648
t => 6.77 minutes.
Therefore, the final answer to the question is 6.77 minutes.
The plates of a vacuum-gap parallel plate capacitor have a 100.0 mm2 area, a vacuum gap of 5.00 mm and are connected to a 1.5-volt battery. After the capacitor is charged, the battery is disconnected from the capacitor. After the battery is disconnected, the plates are pulled apart until the vacuum gap is 7.50 mm. a. What are the initial and final energies stored in the capacitor
Answer:
E₀ = 2.0*10⁻¹¹ J = 0.2 pJ
Ef = 3.0*10⁻¹¹ J = 0.3 pJ
Explanation:
The energy stored between the plates of a parallel plate capacitor can be expressed in terms of the capacitance C and the potential difference between plates V as follows:[tex]E = \frac{1}{2} * C * V^{2} (1)[/tex]
When the capacitor is fully charged, the potential difference between plates must be equal to the voltage of the battery, 1.5 V.In a parallel plate capacitor, the value of the capacitance is independent of the applied voltage, and depends only on geometric constants and the dielectric constant of the medium between plates, as follows:[tex]C = \frac{\epsilon_{o}*A}{d} (2)[/tex]
We can find the initial value of C replacing in (2) by the givens below:A = 100.0 mm2d= 5.00 mmε₀ = 8.85*10⁻¹² F/m[tex]C_{o} = \frac{\epsilon_{o}*A}{d} = \frac{(8.85*(10)^{-12} F/m)*(10^{-4} m2)}{5.0*(10)^{-3}m} = 1.77*10^{-13} F (3)[/tex]With this value of C₀, and the value of the initial potential difference between plates (1.5 V), we can find the initial charge on the capacitor, starting from the definition of capacitance:[tex]C =\frac{Q}{V} (4)[/tex]Solving for Q in (4):[tex]Q = C_{o}* V = 1.77*10^{-13} F * 1.5 V = 2.65*10^{-13} C (5)[/tex]Finally, we can find the initial energy stored in the capacitor, replacing (3) and V in (1):[tex]E_{o} = \frac{1}{2} * C_{o} * V_{o} ^{2} = \frac{1}{2} * 1.77*10^{-13}F*(1.5V)^{2} = 0.2 pJ (6)[/tex]
If we pull apart the plates until the vacuum gap is 7.50 mm, we will change the expression of C in (2), decreasing its value due to the expanded gap.Replacing in (2) the new value of the gap (7.50 mm), we can find the new value of C, as follows:[tex]C = \frac{\epsilon_{o}*A}{d} = \frac{(8.85*10^{-12}F/m)*10^{-4} m2}{7.5*10^{-3}m} = 1.18*10^{-13} F (7)[/tex] In order to find the final energy stored in the capacitor, we need also the value of the final potential difference between plates.Once disconnected from the battery, the charge on any of the plates must remain the same, due to the principle of conservation of the charge.So, since we have the value of Q from (5) and the new value of C from (7), we can find the new potential difference between plates as follows:[tex]V_{f} = \frac{Q}{C_{f}} = \frac{2.7*10^{-13}C}{1.18*10^{-13}F} = 2.25 V (8)[/tex]With the values of Vf and Cf, we can find the value of the final energy stored in the capacitor, replacing these values in (1):[tex]E_{f} = \frac{1}{2} * C_{f} * V_{f} ^{2} = \frac{1}{2} * 1.18*10^{-13}F*(2.25V)^{2} = 0.3 pJ (9)[/tex]
If an object is placed between the focal point and twice the focal length of a convex lens, which type of image will be produced?
A.
real, upright, and magnified
B.
virtual, inverted, and smaller
C.
virtual, upright, and magnified
D.
real, inverted, and magnified
E.
real, upright, and smaller
Answer: I think its D
Explanation: Hope this was helpful...
An amateur blacksmith wants to cool off a 42kg glowing piece of iron, specific heat 470and decides to toss it into a 5.0 kg iron bucket with 10.0 kg of room temperature(23 C) water in it. To his surprise the water completely evaporates away (meaning once it vaporizes it is no longer part of the system) and after some time he goes to pick up the bucket but finds that the bucket is at 150 C.
Required:
What was the initial temperature of the glowing piece of iron?
Answer:
The right approach is "1479°C".
Explanation:
The given values are:
Mass of iron piece,
[tex]m_p=42 \ kg[/tex]
Mass of iron bucket,
[tex]m_I=5 \ kg[/tex]
Mass of water,
[tex]m_w=10 \ kg[/tex]
Iron's specific heat,
[tex]C_I=470 \ J/Kg^{\circ}C[/tex]
Water's specific heat,
[tex]C_w=4186 \ J/Kg^{\circ}C[/tex]
Initial temperature,
[tex]t_I=23^{\circ}C[/tex]
Final equilibrium temperature,
[tex]T=150^{\circ}C[/tex]
Latent heat,
[tex]L_v=2260\times 10^3 \ J/Kg[/tex]
As we know,
The heat lost by the glowing piece of iron will be equal to the heat gain by the iron bucket as well as water, then
⇒ [tex]m_IC_I \Delta T=m_wC_w(100-23)+m_wL_v+m_bC_I(150-23)[/tex]
On substituting the given values, we get
⇒ [tex]42\times 420\times \Delta T=10\times 4186(100-23)+10(2260\times 10^3)+5\times 420(150-23)[/tex]
⇒ [tex]17640 \Delta T=3.22\times 10^6+2.26\times 10^7+2.667\times 10^5[/tex]
⇒ [tex]\Delta T=\frac{2.60867\times 10^7}{17640}[/tex]
⇒ [tex]\Delta T=1479^{\circ}C[/tex]
A child makes a ramp to push his toy dump truck up to his sandbox. If he uses 5 newtons of force to push the 12-newton truck up the ramp, what is the mechanical advantage of his ramp?
Answer:
m = 2.4
Explanation:
Given that,
Input force, [tex]F_i=5\ N[/tex]
Output force, [tex]F_o=12\ N[/tex]
We need to find the mechanical advantage of the ramp. The ratio of output force to the input force is equal to mechanical advantage. So,
[tex]m=\dfrac{12}{5}\\\\m=2.4[/tex]
So, the mechanical advantage of his ramp is 2.4.
An ant crawls in a straight line at a constant speed of 0.24 m/s for a distance of 3.0 m, beginning in the corner of a square classroom. It then turns exactly 90 degrees to the right, and proceeds an additional 4.0 m, reaching the far corner of the same wall from which it began. If the second leg of the journey was crawled in half the amount of time as the first, what was the ant's average speed for the whole trip?
Answer:
vavg = 0.37 m/s
Explanation:
The average speed is just the relationship between the total distance traveled, and the total time required for that travel , as follows:[tex]v_{avg} = \frac{\Delta x}{\Delta t} (1)[/tex]
We know that for the first leg of the journey, the ant crawls at a constant speed of 0.24 m/s, moving 3.0 m.We can find the time required for this part, just applying the definition of average velocity, and solving for the time t (which we will call t₁), as follows:[tex]t_{1} =\frac{x_{1}}{v_{1} } = \frac{3.0m}{0.24m/s} = 12.5 s (2)[/tex]
From the givens, we know that the time for the second part is exactly the half of the value found in (2), so we can write the total time Δt as follows:[tex]\Delta t = t_{1} + \frac{t_{1} }{2} = 12.5 s + 6.25 s = 18.75 s (3)[/tex]
We also know that in the second leg of the journey, the ant traveled 4.0 m, which adds to the 3.0 m of the first part, making a total distance of 7.0 m.Per definition of average speed, we can write the following expression as in (1) replacing Δx and Δt by their values, as follows:[tex]v_{avg} = \frac{\Delta x}{\Delta t} = \frac{7.0m}{18.75m} = 0.37 m/s (4)[/tex]