b. A mechanical load is driven by a 230 V series DC motor which draws a current of 25 A from the supply at 1200rpm. If an induced voltage and resistance in armature are 200 V and 0.75Ω respectively, evaluate, i. the field resistance connected to armature; (2 marks) ii. the mechanical output torque. (2 marks) c. A resistance of 0.75Ω is connected in parallel with the field winding of the motor in part (b), and the torque is reduced to 70% of the original value. If the flux per pole is directly proportional to the field current, evaluate the current flowing into the field winding. (7 marks)

Answers

Answer 1

Therefore, the mechanical output torque of the motor is 38.88 Nm.Part c. The resistance of 0.75Ω is connected in parallel with the field winding of the motor, and the torque is reduced to 70% of the original value.

Field resistance connected to armature:The equation for the induced voltage of a DC motor is shown below:E = V - IaRaWhere,E

= induced voltage of DC motorV

= supply voltageIa

= armature currentRa

= armature resistanceBy substituting the values of V, Ia, and E in the above equation, we have:200

= 230 - 25 × 0.75 × RfRf

= 0.6 ΩTherefore, the field resistance connected to the armature is 0.6 Ω.

Pin =

VIaPin

= 230 × 25Pin

= 5750 WTherefore, the mechanical output power of the DC motor is:Pm

= 0.85 × 5750Pm

= 4887.5 WBy substituting the value of Pm in the equation of mechanical output power, we have:4887.5

= 125.6TT

= 38.88 NmTherefore, the new torque is:T'

= 0.7TT

' = 0.7 × 38.88T'

= 27.216 NmThe new field resistance can be found by using the formula below:T

= (Φ×I×A)/2πNWhere,Φ

= flux per pole of DC motorI

= current flowing through the field windingA

= number of parallel pathsN

= speed of DC motorBy using the above equation, the new flux per pole of the DC motor is given by:Φ'

= (2πNT'/(IA)) × T'/IΦ'

= 2πN(T')²/IA²We know that the flux per pole is directly proportional to the field current. Therefore,Φ/If

= Φ'/I'fWhere,I'f

= current flowing through the new field windingThe new current flowing through the field winding is:I'f

= (Φ/If) × If'Φ/If

= Φ'/I'fΦ/If

= (2πN(T')²/IA²)/I'fI'f

= (2πN(T')²/IA²)/Φ/IfI'f

= (2π × 1200 × (27.216)²/1²)/Φ/0.75I'f

= 255.635 ATherefore, the current flowing into the field winding is 255.635 A.

To know more about mechanical visit:
https://brainly.com/question/20434227

#SPJ11


Related Questions

A round pipe 0.9 m diameter is partially filled to a height of 0.315 m What is the wetted perimeter in meter What is the hydrauc depth man meter.

Answers

For a round pipe with a diameter of 0.9 m and partially filled to a height of 0.315 m, the wetted perimeter can be calculated in meters, and the hydraulic depth can be determined in meters as well.

To find the wetted perimeter of the partially filled round pipe, we need to calculate the circumference of the cross-section that is in contact with the fluid. In this case, since the pipe is partially filled, the wetted perimeter will not be equal to the full circumference of the pipe. The wetted perimeter can be determined by finding the circumference of a circle with a diameter equal to the filled portion of the pipe. In this case, the diameter would be 0.9 m, and the filled height would be 0.315 m.

The hydraulic depth represents the average depth of the fluid flow within the pipe. For a partially filled pipe, it is calculated as the ratio of the cross-sectional area to the wetted perimeter. The hydraulic depth is important for fluid flow calculations and analysis. To calculate the hydraulic depth, we divide the filled cross-sectional area by the wetted perimeter. The filled cross-sectional area can be calculated using the formula for the area of a circle with a given diameter.

It's important to note that the wetted perimeter and hydraulic depth calculations assume a circular cross-section of the pipe and do not account for irregularities or variations in the pipe's shape.

Learn more about hydraulic here: https://brainly.com/question/31032804

#SPJ11

The future and success of the electric car largely depend on the
development and improvement of one of its key components: the
battery. Science has been looking for alternatives to lithium for some time, such as graphene, carbon dioxide, zinc-air, but it seems that now a solution has begun to appear on the horizon: solid-state batteries.
Regarding solid-state batteries, investigate the following:
1. Describe the main features of the technology; eg how they operate, what they are made of, why they are called "solid state", what their components are.
2. Describe the reasons why it is considered a superior technology to the batteries currently used for electric vehicles. There are those who claim that they are the "holy grail" of batteries for electric vehicles.
3. Describe at least 3 potential benefits and 3 risks of the developed technology
4. Describe what would be the potential to produce (manufacture) this type of battery in Ecuador, if any.
5. Include the bibliography consulted, in an appropriate format.

Answers

1) The main Features of Solid-State Batteries are:

- Operation

- Composition

- Solid-State Designation

2) The reasons why we have a Superiority of Solid-State Batteries are:

- Energy Density

- Safety

- Faster Charging

3) The 3 potential benefits and risks are:

Potential Benefits:

- Improved Safety

- Longer Lifespan

- Environmental Friendliness

Potential Risks:

- Cost

- Manufacturing Challenges

- Limited Scalability

4) The potential for solid-state battery production in Ecuador would depend on various factors such as:
- access to the necessary raw materials.

- technological infrastructure.

- Research and development capabilities.

- Market demand.

5) Bibliography:

- Goodenough, J. B., & Park, K. S. (2013). The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 135(4), 1167-1176.

- Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359-367.

- Janek, J., & Zeier, W. G. (2016). A solid future for battery development. Nature Energy, 1(7), 16141.

Manuel, J. (2021). Solid-state batteries: The next breakthrough in energy storage? Joule, 5(3), 539-542.

What are the benefits of Solid State Batteries?

1) The main Features of Solid-State Batteries are:

- Operation: Solid-state batteries are a type of battery that uses solid-state electrolytes instead of liquid or gel-based electrolytes used in traditional batteries. They operate by moving ions between the electrodes through the solid-state electrolyte, enabling the flow of electric current.

- Composition: Solid-state batteries are typically composed of solid-state electrolytes, cathodes, and anodes. The solid-state electrolyte acts as a medium for ion conduction, while the cathode and anode store and release ions during charge and discharge cycles.

- Solid-State Designation: They are called "solid-state" because the electrolytes used are in a solid state, as opposed to liquid or gel-based electrolytes in conventional batteries. This solid-state design offers advantages such as improved safety, higher energy density, and enhanced stability.

2) The reason why we have a Superiority of Solid-State Batteries is:

- Energy Density: Solid-state batteries have the potential to achieve higher energy density compared to conventional lithium-ion batteries. This means they can store more energy in a smaller and lighter package, leading to increased driving range for electric vehicles.

- Safety: Solid-state batteries are considered safer because they eliminate the need for flammable liquid electrolytes. This reduces the risk of thermal runaway and battery fires, addressing one of the key concerns with lithium-ion batteries.

- Faster Charging: Solid-state batteries have the potential for faster charging times due to their unique structure and improved conductivity. This would significantly reduce the time required to charge electric vehicles, enhancing their convenience and usability.

3) The 3 potential benefits and risks are:

Potential Benefits:

- Improved Safety: Solid-state batteries eliminate the risk of electrolyte leakage and thermal runaway, improving the overall safety of electric vehicles.

- Longer Lifespan: Solid-state batteries have the potential for longer cycle life, allowing for more charge and discharge cycles before degradation, leading to increased longevity.

- Environmental Friendliness: Solid-state batteries can be manufactured with environmentally friendly materials, reducing the reliance on rare earth elements and hazardous substances.

Potential Risks:

- Cost: Solid-state batteries are currently more expensive to produce compared to conventional lithium-ion batteries. This cost factor may affect their widespread adoption.

- Manufacturing Challenges: The large-scale production of solid-state batteries with consistent quality and high yields is still a challenge, requiring further research and development.

- Limited Scalability: The successful commercialization of solid-state batteries for electric vehicles on a large scale is yet to be achieved. Scaling up production and meeting the demand may pose challenges.

4) Potential for Battery Production in Ecuador:

The potential for solid-state battery production in Ecuador would depend on various factors such as:
- access to the necessary raw materials.

- technological infrastructure.

- Research and development capabilities.

- Market demand.

5) Bibliography:

- Goodenough, J. B., & Park, K. S. (2013). The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 135(4), 1167-1176.

- Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359-367.

- Janek, J., & Zeier, W. G. (2016). A solid future for battery development. Nature Energy, 1(7), 16141.

Manuel, J. (2021). Solid-state batteries: The next breakthrough in energy storage? Joule, 5(3), 539-542.

Read more about Solid State Batteries at: https://brainly.com/question/1292420

#SPJ4

Calculate the change of entropy of 1 kg of air expending polytropically in a cylinder behind a piston from 6.3 bar and 550 C to 1.05 bar, the index of expension is 1.3. The R value for air is 287 Nm/kg K and the ratio of specific heats is 1.4

Answers

The formula for calculating entropy is[tex], $$\Delta S = C_p \ln{\frac{T_f}{T_i}}-R\ln{\frac{V_f}{V_i}}$$[/tex]where $C_p$ is the specific heat at constant pressure, $T_f$ and $T_i$ are the final and initial temperatures, $V_f$ and $V_i$ are the final and initial volumes, and $R$ is the gas constant.

We can use this formula to calculate the change in entropy of 1 kg of air expanding polytropically in a cylinder behind a piston from 6.3 bar and 550 C to 1.05 bar, with an expansion index of 1.3. We'll need to use some thermodynamic relationships to determine the final temperature and volume, as well as the specific heat at constant pressure.

First, let's determine the final temperature. We know that the air is expanding polytropically, which means that $PV^n$ is constant. We can use this relationship to determine the final temperature as follows:[tex]$$\frac{T_f}{T_i} = \left(\frac{P_f}{P_i}\right)^{\frac{n-1}{n}}$$$$T_f = T_i\left(\frac{P_f}{P_i}\right)^{\frac{n-1}{n}}$$$$T_f = 550\text{ K}\left(\frac{1.05\text{ bar}}{6.3\text{ bar}}\right)^{\frac{0.3}{1.3}} = 417.8\text{ K}$$[/tex]Next, we'll need to determine the final volume.

To know more about volumes visit:

https://brainly.com/question/2805853

#SPJ11

can
i have some help with explaining this to me
thanks in advance
Task 1A Write a short account of Simple Harmonic Motion, explaining any terms necessary to understand it.

Answers

Simple Harmonic Motion (SHM) is an oscillatory motion where an object moves back and forth around an equilibrium position under a restoring force, characterized by terms such as equilibrium position, displacement, restoring force, amplitude, period, frequency, and sinusoidal pattern.

What are the key terms associated with Simple Harmonic Motion (SHM)?

Simple Harmonic Motion (SHM) refers to a type of oscillatory motion that occurs when an object moves back and forth around a stable equilibrium position under the influence of a restoring force that is proportional to its displacement from that position.

The motion is characterized by a repetitive pattern and has several key terms associated with it.

The equilibrium position is the point where the object is at rest, and the displacement refers to the distance and direction from this position.

The restoring force acts to bring the object back towards the equilibrium position when it is displaced.

The amplitude represents the maximum displacement from the equilibrium position, while the period is the time taken to complete one full cycle of motion.

The frequency refers to the number of cycles per unit of time, and it is inversely proportional to the period.

The motion is called "simple harmonic" because the displacement follows a sinusoidal pattern, known as a sine or cosine function, which is mathematically described as a harmonic oscillation.

Learn more about Harmonic Motion

brainly.com/question/32494889

#SPJ11

A Bronze sand casting alloy UNS C90700 (89% Cu 11% Sn) casting is made in a sand mold using a sand core that has a mass of 3kg. Determine the buoyancy force in Newtons tending to lift the core during pouring. Density of the sand is 1.6 g/cm3 and bronze alloy is 8.77 g/cm

Answers

The buoyancy force(F) acting on the sand core during pouring is approximately 160.83 Newtons.

To determine the buoyancy force acting on the sand core during pouring, we need to calculate the volume of the core and the density difference between the core and the surrounding medium (in this case, air).

Calculate the volume of the sand core:

The mass (M)of the sand core is given as 3 kg.

Density is defined as mass divided by volume(V): density = M/V.

Rearranging the equation,

we get volume = mass/density.

The density of sand is given as 1.6 g/cm^3. Since the mass is given in kilograms, we need to convert it to grams:

Mass of sand core = 3 kg = 3000 g.

The volume of the sand core = Mass of sand core / Density of sand

Volume of the sand core = 3000 g / 1.6 g/cm^3

The volume of the sand core = 1875 cm^3.

Calculate the volume of the displaced medium:

The volume of the displaced medium is the same as the volume of the sand core, as the core completely fills the space it occupies.

The volume of the displaced medium = Volume of the sand core = 1875 cm^3.

Calculate the mass of the displaced medium:

Mass is equal to density multiplied by volume.

The density of the bronze alloy is given as 8.77 g/cm^3.

Mass of the displaced medium = Density of bronze alloy × Volume of the displaced medium

Mass of the displaced medium = 8.77 g/cm^3 × 1875 cm^3

Mass of the displaced medium = 16,401.75 g.

Calculate the buoyancy force:

The buoyancy force is equal to the weight of the displaced medium, which is the mass of the displaced medium multiplied by the acceleration(a) due to gravity.

Acceleration due to gravity(g) is approximately 9.8 m/s^2.

Buoyancy force = Mass of the displaced medium × Acceleration due to gravity

Buoyancy force = 16,401.75 g × 9.8 m/s^2

Buoyancy force = 160,828.65 g·cm/s^2.

To convert grams·cm/s^2 to Newtons, we divide by 1000 (since 1 N = 1000 g·cm/s^2).

Buoyancy force = 160,828.65 g·cm/s^2 / 1000

To know more about Buoyancy force visit:

https://brainly.com/question/32091230

#SPJ11

With a concentrated load P applied at the free end of a cantilever beam with length L, which of the following formula can be used to calculate maximum deflection? a PL²/3El
b PL³/3El
c PL²/2El
d PL³/2El

Answers

The formula used to calculate the maximum deflection of a cantilever beam with a concentrated load P applied at the free end of a beam with length L is PL³/3El.

Hence, the correct option is b) PL³/3El.

What is a cantilever beam?

A cantilever beam is a type of beam that is fixed at one end and is free at the other.

This type of beam is common in many engineering structures, including bridges and buildings.

Due to its simple design, it is often used in a wide range of applications.

Cantilever beams are used in a variety of applications, including cranes, bridges, and even diving boards.

How to calculate the maximum deflection of a cantilever beam?

The maximum deflection of a cantilever beam can be calculated using the formula PL³/3El,

where

P is the load applied,

L is the length of the beam,

E is the elastic modulus of the material, and I is the moment of inertia of the beam cross-section.

This formula is based on the Euler-Bernoulli beam theory, which is commonly used to calculate the deflection of beams.

The formula is only valid if the load is applied perpendicular to the axis of the beam, and the beam is homogeneous and isotropic.

In addition, the beam must be long enough so that its deflection is negligible compared to its length, and the load must be concentrated at a single point.

To know more about homogeneous visit:

https://brainly.com/question/32618717

#SPJ11

Question: You are required to create a discrete time signal x(n), with 5 samples where each sample's amplitude is defined by the middle digits of your student IDs. For example, if your ID is 19-39489-1, then: x(n) = [39 4 8 9]. Now consider x(n) is the excitation of a linear time invariant (LTI) system. Here, h(n) [9 8493] - (a) Now, apply graphical method of convolution sum to find the output response of this LTI system. Briefly explain each step of the solution. Please Answer Carefully and accurately with given value. It's very important for me.

Answers

According to the statement h(n)=[0 0 0 0 9 8 4 9 3]Step 2: Convolve x(n) with the first shifted impulse response  y(n) = [351 312 156 132 137 92 161 92 39].

Given that the discrete time signal x(n) is defined as,  x(n) = [39 4 8 9]And, h(n) = [9 8493]Let's find the output response of this LTI system by applying the graphical method of convolution sum.Graphical method of convolution sum.

To apply the graphical method of convolution sum, we need to shift the impulse response h(n) from the rightmost to the leftmost and then we will convolve each shifted impulse response with the input x(n). Let's consider each step of this process:Step 1: Shift the impulse response h(n) to leftmost Hence, h(n)=[0 0 0 0 9 8 4 9 3]Step 2: Convolve x(n) with the first shifted impulse response

Hence, y(0) = (9 * 39) = 351, y(1) = (8 * 39) = 312, y(2) = (4 * 39) = 156, y(3) = (9 * 8) + (4 * 39) = 132, y(4) = (9 * 4) + (8 * 8) + (3 * 39) = 137, y(5) = (9 * 8) + (4 * 4) + (3 * 8) = 92, y(6) = (9 * 9) + (8 * 8) + (4 * 4) = 161, y(7) = (8 * 9) + (4 * 8) + (3 * 4) = 92, y(8) = (4 * 9) + (3 * 8) = 39Hence, y(n) = [351 312 156 132 137 92 161 92 39]

To know more about Output visit :

https://brainly.com/question/14643550

#SPJ11

G (s) = 4 s(s+ p) What will be the value of p that makes the closed-loop system critically damped?

Answers

Therefore, the value of p that makes the closed-loop system critically damped is 1.

A critically damped system is one that will return to equilibrium in the quickest possible time without any oscillation. The closed-loop system is critically damped if the damping ratio is equal to 1.

The damping ratio, which is a measure of the amount of damping in a system, can be calculated using the following equation:

ζ = c/2√(km)

Where ζ is the damping ratio, c is the damping coefficient, k is the spring constant, and m is the mass of the system.

We can determine the damping coefficient for the closed-loop system by using the following equation:

G(s) = 1/(ms² + cs + k)

where G(s) is the transfer function, m is the mass, c is the damping coefficient, and k is the spring constant.

For our system,

G(s) = 4s(s+p),

so:4s(s+p) = 1/(ms² + cs + k)

The damping coefficient can be calculated using the following formula:

c = 4mp

The denominator of the transfer function is:

ms² + 4mp s + 4mp² = 0

This is a second-order polynomial, and we can solve for s using the quadratic formula:

s = (-b ± √(b² - 4ac))/(2a)

where a = m, b = 4mp, and c = 4mp².

Substituting in these values, we get:

s = (-4mp ± √(16m²p² - 16m²p²))/2m = -2p ± 0

Therefore, s = -2p.

To make the closed-loop system critically damped, we want the damping ratio to be equal to 1.

Therefore, we can set ζ = 1 and solve for p.ζ = c/2√(km)1 = 4mp/2√(4m)p²1 = 2p/2p1 = 1.

to know more about closed loop system visit:

https://brainly.com/question/11995211

#SPJ11

Poisson's Ratio for Stainless Steel is... 0.28 0.32 0.15 O 0.27 a If the allowable deflection of a warehouse is L/180, how much is a 15' beam allowed to deflect? 0.0833 inches O 1 inch 1.5 inches 1 foot

Answers

The given Poisson's Ratio options for stainless steel are 0.28, 0.32, 0.15, and 0.27. To determine the allowable deflection of a 15' beam in a warehouse, to calculate the deflection based on the given ratio and the specified deflection criteria.

The correct answer is 0.0833 inches. Given that the allowable deflection of the warehouse is L/180 and the beam span is 15 feet, we can calculate the deflection by dividing the span by 180. Therefore, 15 feet divided by 180 equals 0.0833 feet. Since we need to express the deflection in inches, we convert 0.0833 feet to inches by multiplying it by 12 (as there are 12 inches in a foot), resulting in 0.9996 inches. Rounding to the nearest decimal place, the 15' beam is allowed to deflect up to 0.0833 inches. Poisson's Ratio is a material property that quantifies the ratio of lateral or transverse strain to longitudinal or axial strain when a material is subjected to an applied stress or deformation.

Learn more about Poisson's Ratio here:

https://brainly.com/question/31441362

#SPJ11

Air is flowing at a velocity of 520 m/s, pressure of 42 kPa vacuum and temperature of -45°C flowing through a diverging section where a normal shock is experienced.
(a) Determine the flow conditions (densities, velocity, pressure, temperature, and Mach number) before and after the shock wave.
(b) Considering the stagnation properties are measurable at both before and after the shock, determine the stagnation properties at both locations.

Answers

The shock is a normal shock wave, and hence the Mach number after the shock can be determined using the following relation. Where γ is the specific heat ratio of air.  Pressure after the shock wave: Where γ is the specific heat ratio of air. Density after the shock wave: Where γ is the specific heat ratio of air.

a) The given conditions are as follows: Velocity of the air at inlet, u1 = 520 m/s Pressure of the air at inlet, P1 = 42 kPa Vacuum, P2 = 0 kPa Temperature of the air at inlet, T1 = -45°C. Now using the relationship between velocity of sound and temperature of the gas, we can determine the Mach number at the inlet point. Where γ is the specific heat ratio of air.

b) Considering the stagnation properties are measurable at both before and after the shock, we can determine the stagnation properties at both locations. Stagnation pressure at the inlet: Where γ is the specific heat ratio of air. Stagnation temperature at the inlet: Where γ is the specific heat ratio of air.

Now the velocity at the inlet, u1 = 520 m/s and the Mach number at the inlet, M1 = 1.6015.Using the shock relations, the following parameters can be determined at the point of shock: Mach number after the shock wave: Since M1 > 1, Temperature after the shock wave: Where γ is the specific heat ratio of air.

To know more about Temperature visit:

https://brainly.com/question/7510619

#SPJ11

2. An electromagnetic wave is propagating in the z-direction in a lossy medium with attenuation constant α=0.5 Np/m. If the wave's electric-field amplitude is 100 V/m at z=0, how far can the wave travel before its amplitude will have been reduced to (a) 10 V/m, (b) 1 V/m, (c) 1μV/m ?

Answers

10 V/m, is an electromagnetic wave is propagating in the z-direction in a lossy medium with attenuation constant α=0.5 Np/m.

Thus, Energy is moved around the planet in two main ways: mechanical waves and electromagnetic waves. Mechanical waves include air and water waves caused by sound.

A disruption or vibration in matter, whether solid, gas, liquid, or plasma, is what generates mechanical waves. A medium is described as material through which waves are propagating. Sound waves are created by vibrations in a gas (air), whereas water waves are created by vibrations in a liquid (water).

By causing molecules to collide with one another, similar to falling dominoes, these mechanical waves move across a medium and transfer energy from one to the next. Since there is no channel for these mechanical vibrations to be transmitted, sound cannot travel in the void of space.

Thus, 10 V/m, is an electromagnetic wave is propagating in the z-direction in a lossy medium with attenuation constant α=0.5 Np/m.

Learn more about Electromagnetic wave, refer to the link:

https://brainly.com/question/13118055

#SPJ4

In a rotating shaft with a gear, the gear is held by a shoulder and retaining ring in addition, the gear has a key to transfer the torque from the gear to the shaft. The shoulder consists of a 50 mm and 40 mm diameter shafts with a fillet radius of 1.5 mm. The shaft is made of steel with Sy = 220 MPa and Sut = 350 MPa. In addition, the corrected endurance limit is given as 195 MPa. Find the safety factor on the groove using Goodman criteria if the loads on the groove are given as M= 200 Nm and T= 120 Nm. Please use conservative estimates where needed. Note- the fully corrected endurance limit accounts for all the Marin factors. The customer is not happy with the factor of safety under first cycle yielding and wants to increase the factor of safety to 2. Please redesign the shaft groove to accommodate that. Please use conservative estimates where needed

Answers

The required safety factor is 2.49 (approx) after redesigning the shaft groove to accommodate that.

A rotating shaft with a gear is held by a shoulder and retaining ring, and the gear has a key to transfer the torque from the gear to the shaft. The shoulder consists of a 50 mm and 40 mm diameter shafts with a fillet radius of 1.5 mm. The shaft is made of steel with Sy = 220 MPa and Sut = 350 MPa. In addition, the corrected endurance limit is given as 195 MPa. Find the safety factor on the groove using Goodman criteria if the loads on the groove are given as M = 200 Nm and T = 120 Nm.

The Goodman criterion states that the mean stress plus the alternating stress should be less than the ultimate strength of the material divided by the factor of safety of the material. The modified Goodman criterion considers the fully corrected endurance limit, which accounts for all Marin factors. The formula for Goodman relation is given below:

Goodman relation:

σm /Sut + σa/ Se’ < 1

Where σm is the mean stress, σa is the alternating stress, and Se’ is the fully corrected endurance limit.

σm = M/Z1 and σa = T/Z2

Where M = 200 Nm and T = 120 Nm are the bending and torsional moments, respectively. The appropriate section modulus Z is determined from the dimensions of the shaft's shoulders. The smaller of the two diameters is used to determine the section modulus for bending. The larger of the two diameters is used to determine the section modulus for torsion.

Section modulus Z1 for bending:

Z1 = π/32 (D12 - d12) = π/32 (502 - 402) = 892.5 mm3

Section modulus Z2 for torsion:

Z2 = π/16

d13 = π/16 50^3 = 9817 mm3

σm = M/Z1 = (200 x 10^6) / 892.5 = 223789 Pa

σa = T/Z2 = (120 x 10^6) / 9817 = 12234.6 Pa

Therefore, the mean stress is σm = 223.789 MPa and the alternating stress is σa = 12.235 MPa.

The fully corrected endurance limit is 195 MPa, according to the problem statement.

Let’s plug these values in the Goodman relation equation.

σm /Sut + σa/ Se’ = (223.789 / 350) + (12.235 / 195) = 0.805

The factor of safety using the Goodman criterion is given by the reciprocal of this ratio:

FS = 1 / 0.805 = 1.242

The customer requires a safety factor of 2 under first cycle yielding. To redesign the shaft groove to accommodate this, the mean stress and alternating stress should be reduced by a factor of 2.

σm = 223.789 / 2 = 111.8945 MPa

σa = 12.235 / 2 = 6.1175 MPa

Let’s plug these values in the Goodman relation equation.

σm /Sut + σa/ Se’ = (111.8945 / 350) + (6.1175 / 195) = 0.402

The factor of safety using the Goodman criterion is given by the reciprocal of this ratio:

FS = 1 / 0.402 = 2.49 approximated to 2 decimal places.

Hence, the required safety factor is 2.49 (approx) after redesigning the shaft groove to accommodate that.

Learn more about safety factor visit:

brainly.com/question/13385350

#SPJ11

The displacement components u, at a point in a body are given by the functional components u₁ = 10x₁ + 3x₂, U₂ = 3x₁ + 2x₂, U3 = 6x3 Find: the Green-Lagrange, Almenesi, Cauchy and Engineering strain tensor at any arbitrary point.

Answers

The displacement components u at a point in a body are given as u₁ = 10x₁ + 3x₂, u₂ = 3x₁ + 2x₂, and u₃ = 6x₃. We can calculate the different strain tensors at an arbitrary point.

1. Green-Lagrange strain tensor (E):

The Green-Lagrange strain tensor represents the deformation of the body and is given by the symmetric part of the displacement gradient tensor. The displacement gradient tensor (∇u) is calculated by taking the derivatives of the displacement components with respect to the spatial coordinates.

E = 0.5 * (∇u + (∇u)ᵀ) = 0.5 * (∂uᵢ/∂xⱼ + ∂uⱼ/∂xᵢ)

Substituting the given displacement components, we can calculate the components of the Green-Lagrange strain tensor.

E₁₁ = 10, E₁₂ = 3, E₁₃ = 0

E₂₁ = 3, E₂₂ = 2, E₂₃ = 0

E₃₁ = 0, E₃₂ = 0, E₃₃ = 0

2. Almenesi strain tensor (ε):

The Almenesi strain tensor represents the infinitesimal strain experienced by the body and is given by the symmetric part of the displacement tensor.

ε = 0.5 * (∇u + (∇u)ᵀ)

Substituting the given displacement components, we can calculate the components of the Almenesi strain tensor.

ε₁₁ = 10, ε₁₂ = 3, ε₁₃ = 0

ε₂₁ = 3, ε₂₂ = 2, ε₂₃ = 0

ε₃₁ = 0, ε₃₂ = 0, ε₃₃ = 0

3. Cauchy strain tensor (εc):

The Cauchy strain tensor represents the strain in the body based on the deformation of line segments within the body.

εc = (∇u + (∇u)ᵀ)

Substituting the given displacement components, we can calculate the components of the Cauchy strain tensor.

εc₁₁ = 20, εc₁₂ = 6, εc₁₃ = 0

εc₂₁ = 6, εc₂₂ = 4, εc₂₃ = 0

εc₃₁ = 0, εc₃₂ = 0, εc₃₃ = 0

4. Engineering strain tensor (εe):

The Engineering strain tensor represents the strain based on the initial reference length of line segments within the body.

εe = (∇u + (∇u)ᵀ)

Substituting the given displacement components, we can calculate the components of the Engineering strain tensor.

εe₁₁ = 20, εe₁₂ = 6, εe₁₃ = 0

εe₂₁ = 6, εe₂₂ = 4, εe₂₃ = 0

εe₃₁ = 0, εe₃₂ = 0, εe₃₃ = 0

In conclusion, the strain tensors at an arbitrary point are:

Green-Lagrange strain tensor (E):

E₁₁ = 10, E₁₂ = 3, E₁₃ = 0

E₂₁ = 3, E₂₂ = 2, E₂₃ =

0

E₃₁ = 0, E₃₂ = 0, E₃₃ = 0

Almenesi strain tensor (ε):

ε₁₁ = 10, ε₁₂ = 3, ε₁₃ = 0

ε₂₁ = 3, ε₂₂ = 2, ε₂₃ = 0

ε₃₁ = 0, ε₃₂ = 0, ε₃₃ = 0

Cauchy strain tensor (εc):

εc₁₁ = 20, εc₁₂ = 6, εc₁₃ = 0

εc₂₁ = 6, εc₂₂ = 4, εc₂₃ = 0

εc₃₁ = 0, εc₃₂ = 0, εc₃₃ = 0

Engineering strain tensor (εe):

εe₁₁ = 20, εe₁₂ = 6, εe₁₃ = 0

εe₂₁ = 6, εe₂₂ = 4, εe₂₃ = 0

εe₃₁ = 0, εe₃₂ = 0, εe₃₃ = 0

To know more about Gradient visit-

brainly.com/question/13020257

#SPJ11

For very long fins (for which tanh mL>0.99 ), replacing the material with double the conductivity will increase the heat transfer by a factor of: a. 1.4 b. 4.0 c. 2.0 d. 2.8

Answers

For very long fins, doubling the material conductivity increases heat transfer rate by a factor of 4.0. This is derived from the formula for heat transfer rate through long fins with constant cross-sectional area.

For very long fins (for which tanh(mL) > 0.99), the heat transfer rate can be approximated as:

q = (2*k*A_f)/L * (T_b - T_inf)

where k is the thermal conductivity of the fin material, A_f is the cross-sectional area of the fin, L is the length of the fin, T_b is the temperature at the base of the fin, and T_inf is the temperature of the surrounding fluid.

If the material conductivity is doubled, the heat transfer rate becomes:

q' = (2*(2*k)*A_f)/L * (T_b - T_inf) = 4*q

Therefore, the heat transfer rate is increased by a factor of 4.0. The correct answer is option (b).

To know more about heat transfer rate, visit:
brainly.com/question/30904693
#SPJ11

1-Given A = 5ax - 2a, + 4a, find the expression for unit vector B if (a) B is parallel to A (b) B is perpendicular to A and B lies in xy-plane.

Answers

(a) B is parallel to A:For any vector A, the unit vector parallel to it is given by:

[tex]B = A/ |A|[/tex]For the given vector A,[tex]|A| = √(5² + 2² + 4²) = √45[/tex]

Thus, the unit vector parallel to A is given by:

[tex]B = A/ |A| = (5ax - 2ay + 4az)/√45[/tex]

(b) B is perpendicular to A and B lies in xy-plane:

For any two vectors A and B, the unit vector perpendicular to both A and B is given by:

B = A x B/|A x B|Here, [tex]A = 5ax - 2ay + 4az[/tex]For B,

we need to choose a vector in the xy-plane. Let B = bx + by, where bx and by are the x- and y-components of B respectively.

Then, we have A . B = 0 [since A and B are perpendicular]

[tex]5ax . bx - 2ay . by + 4az . 0 = 0=> 5abx - 2aby = 0=> by = (5/2)bx[/tex]

[tex]B = bx(ax + (5/2)ay)[/tex]

Therefore,[tex]B = bx(ax + (5/2)ay)/ |B|[/tex]For B to be a unit vector, we need[tex]|B| = 1⇒ B = (ax + (5/2)ay)/ √(1² + (5/2)²)[/tex]

Thus, the expression for unit vector B is given by: [tex]B = (5ax - 2ay + 4az)/√45(b) B = (ax + (5/2)ay)/√(1² + (5/2)²).[/tex]

To know more about parallel visit:-

https://brainly.com/question/22746827

#SPJ11

I need the cooling time please
Test specimen information - Material: Aluminum - Diameter : 26.03 mm : 13.07 mm - Height - Top temp. - Final temp. :520°C : 20°C

Answers

To find out the cooling time, we will use the relation given by Newton's law of cooling. It states that the rate of cooling of an object is directly proportional to the temperature difference between the object and its surroundings.

We can write it as follows:Q = hA(T-T_s)Where, Q is the amount of heat transferred, h is the heat transfer coefficient, A is the surface area, T is the temperature of the object, and T_s is the temperature of the surroundings. We know that the specimen is made of aluminum, and it has a diameter of 26.03 mm and a height of 13.07 mm.

Its initial temperature is 520°C, and the final temperature is 20°C. We can assume that the specimen is cooling in air, which has a heat transfer coefficient of about 10 W/m²K. Now, let's plug in the values.Q = hA(T-T_s)Q = (10 W/m²K) x π(0.02603 m)² x 13.07 mm x (520°C - 20°C)Q = 2,242 JThe amount of heat transferred is 2,242 J. We can use the specific heat capacity of aluminum to find the cooling time.

To know more about cooling visit:

https://brainly.com/question/28520368

#SPJ11

A simply supported truss is given, with 9 members, and an overall dimension of 48 ft Lx 12 ft H. The applied loads are in kips. There is a roller at A and a pin at D. At B there is an applied load of 75 k downward. At C there is an applied load of 100 k downward. At Ethere is a horizontal load of 75 k to the left. There are 3 16-ft spans. Find all the bar forces and determine whether each bar force is tensile or compressive.

Answers

The bar forces are as follows:

DA = 75 k (Compression)

AB = 129.903 k (Tension)

BF = 82.5 k (Compression)

CE = 165 k (Compression)

CD = 77.261 k (Tension)

ED = 52.739 k (Tension)

EB = 57.736 k (Compression)

BG = 142.5 k (Tension)

GF = 43.818 k (Compression)

Given:

Length (L) = 48 ft

Height (H) = 12 ft

There are 9 membersApplied Load in member BC = 75 k downward

Applied Load in member CD = 100 k downward

Applied Load in member E = 75 k to the left

There are 3 16-ft spansA roller support at A and pin support at D.

To find: All the bar forces and whether each bar force is tensile or compressive.

Solution:

Let's draw the given truss. See the attached figure.

Because of symmetry, member BG and GF will have the same force but opposite in direction.

Also, member CE and ED will have the same force but opposite in direction.

Hence, we will solve only for the left half of the truss.

Now, let's cut the sections as shown in the figure below.

See the attached figure.

Using the method of joints to solve for the forces in members DA, AB, BF, and CE:

Joint A:

ΣFy = 0

RA - 75 = 0

RA = 75 k

Joint B:

ΣFy = 0

RA - 30 - 60 - 75 - FBsin(60) = 0

FBsin(60) = -30 - 60 - 75

FB = 129.903 k

Joint C:

ΣFx = 0

FE + 75 + ECcos(60) = 0

EC = -93.301 k

ΣFy = 0

FBsin(60) - 100 - CD = 0

CD = 77.261 k

Joint D:

ΣFx = 0

CD - DE + 75 = 0

DE = 52.739 k

Joint E:

ΣFy = 0

EBsin(60) - 75 - DEsin(60) = 0

EB = 57.736 k

Using the method of sections to solve for the forces in members BG and ED:

Section 1-1:

BG and CE(1) ΣFy = 0

CE - 30 - 60 - 75 - BGsin(60) = 0

BGsin(60) = -165

CE = 165 k(2)

ΣFx = 0

BGcos(60) - BFcos(60) = 0

BF = 82.5 k

Section 2-2:

ED and GF(3) ΣFy = 0

GFsin(60) - 75 - EDsin(60) = 0

GF = 43.818 k

(4) ΣFx = 0

GFcos(60) + FBcos(60) - 100 = 0

FB = 76.644 k

Therefore, the bar forces are as follows:

DA = 75 k (Compression)

AB = 129.903 k (Tension)

BF = 82.5 k (Compression)

CE = 165 k (Compression)

CD = 77.261 k (Tension)

ED = 52.739 k (Tension)

EB = 57.736 k (Compression)

BG = 142.5 k (Tension)

GF = 43.818 k (Compression)

To know more about Tension, visit:

https://brainly.com/question/10169286

#SPJ11

Find the impulse response of the second-order system y[n] = 0.8(y[n 1] − y[n − 2]) + x[n 1]

Answers

In the second-order system of the given equation, the impulse response is the response of a system to a delta function input. Hence, to find the impulse response of the given second-order system y[n] = 0.8(y[n 1] − y[n − 2]) + x[n 1], the system is given an impulse input of δ[n].

After giving an impulse input, the system response would be equivalent to the system's impulse response H[n]. Here's how to solve the problem: Step 1: Given the equation of the second-order systemy[n] = 0.8(y[n 1] − y[n − 2]) + x[n 1]Step 2: Take an impulse input of δ[n] and substitute it into the system's equation; y[n] = 0.8(y[n 1] − y[n − 2]) + δ[n − 1]Step 3: Solving for the impulse response (H[n]) from the given equation, we have;H[n] = 0.8H[n − 1] − 0.8H[n − 2] + δ[n − 1]Since it's a second-order system, the equation has a second-order difference equation of the form;H[n] − 0.8H[n − 1] + 0.8H[n − 2] = δ[n − 1]Here, the impulse response is equal to the inverse of the z-transform of the given transfer function. Let's first find the transfer function of the given second-order system. Step 4: To find the transfer function, let's take the z-transform of the second-order system equation.

To know more about   impulse input visit:

brainly.com/question/31569699

#SPJ11

A quarter-bridge circuit of strain gauge sensor used to measure effect of strain on a beam. When resistant of R1 = 20kΩ , R2 =20kΩ , R3=40kΩ, the active strain gauge hasgauge factor of 2.1. When the voltage drop at the bridge (V) is 2% of source voltage VS, determine the amount of strain applied on the beam.

Answers

Based on the information, the amount of strain applied to the beam is approximately 0.0381.

How to calculate the value

First, let's calculate the value of ΔR:

ΔR = R₁ - R₂

= 20kΩ - 20kΩ

= 0kΩ

Since ΔR is 0kΩ, it means there is no resistance change in the active strain gauge. Therefore, the strain is also 0.

V = ΔR / (R1 + R2 + R3) * VS

From the given information, we know that V is 2% of VS. Assuming VS = 1 (for simplicity), we have:

0.02 = ΔR / (20kΩ + 20kΩ + 40kΩ) * 1

ΔR = 0.02 * (20kΩ + 20kΩ + 40kΩ)

= 0.02 * 80kΩ

= 1.6kΩ

Finally, we can calculate the strain:

ε = (ΔR / R) / GF

= (1.6kΩ / 20kΩ) / 2.1

= 0.08 / 2.1

≈ 0.0381

Therefore, the amount of strain applied to the beam is approximately 0.0381.

Learn more about strain on

https://brainly.com/question/17046234

#SPJ4

Show p-v and t-s diagram
A simple air refrigeration system is used for an aircraft to take a load of 20 TR. The ambient pressure and temperature are 0.9 bar and 22°C. The pressure of air is increased to 1 bar due to isentropic ramming action. The air is further compressed in a compressor to 3.5 bar and then cooled in a heat exchanger to 72C. Finally, the air is passed through the cooling turbine and then it is supplied to the cabin at a pressure of 1.03 bar. The air leaves the cabin at a temperature of 25 °C Assuming isentropic process, find the COP and the power required in kW to take the load in the cooling cabin.
Take cp of air = 1.005 kj/kgk, k=1.4

Answers

Given, Load TR Ambient pressure bar Ambient temperature 22°CPressure of air after ramming action bar Pressure after compression bar Temperature of air after cooling 72°C Pressure in the cabin.

It is a process in which entropy remains constant. Air Refrigeration Cycle. Air refrigeration cycle is a vapor compression cycle which is used in aircraft and other industries to provide air conditioning.

The PV diagram of the given air refrigeration cycle is as follows:

The TS diagram of the given air refrigeration cycle is as follows:

Calculation:

COP (Coefficient of Performance) of the refrigeration cycle can be given by:

COP = Desired effect / Work input.

To know more about Ambient visit:

https://brainly.com/question/31578727

#SPJ11

A plane flies at a speed of 300 nautical miles per hour on a direction of N 22deg E. A wind is blowing at a speed of 25 nautical miles per hour on a direction due East. Compute the ground speed of the plane in nautical miles per hour

Answers

The ground speed of the plane can be calculated by considering the vector addition of the plane's airspeed and the wind velocity. Given that the plane flies at a speed of 300 nautical miles per hour in a direction of N 22° E and the wind is blowing at a speed of 25 nautical miles per hour due East, the ground speed of the plane is approximately 309.88 NM/hour, and the direction is N21.7deg E.

To calculate the ground speed of the plane, we need to find the vector sum of the plane's airspeed and the wind velocity.

The plane's airspeed is given as 300 nautical miles per hour on a direction of N 22° E. This means that the plane's velocity vector has a magnitude of 300 nautical miles per hour and a direction of N 22° E.

The wind is blowing at a speed of 25 nautical miles per hour due East. This means that the wind velocity vector has a magnitude of 25 nautical miles per hour and a direction of due East.

To find the ground speed, we need to add these two velocity vectors. Using vector addition, we can split the plane's airspeed into two components: one in the direction of the wind (due East) and the other perpendicular to the wind direction. The component parallel to the wind direction is simply the wind velocity, which is 25 nautical miles per hour. The component perpendicular to the wind direction remains at 300 nautical miles per hour.

Since the wind is blowing due East, the ground speed will be the vector sum of these two components. By applying the Pythagorean theorem to these components, we can calculate the ground speed. The ground speed will be approximately equal to the square root of the sum of the squares of the wind velocity component and the airspeed perpendicular to the wind.

Therefore, by calculating the square root of (25^2 + 300^2), the ground speed of the plane can be determined in nautical miles per hour.

The ground speed of the plane is approximately 309.88 NM/hour, and the direction is N21.7deg E.

Learn more about Ground speed:

https://brainly.com/question/28571326

#SPJ11

B// Numerate the modifications of the basic cycle of gas turbine power plant?. If you add heat exchanger for the basic cycle in which the heat given up by the gasses is double that taken up by the air, assuming the air and gasses have the same mass and properties, find the heat exchanger effectiveness and thermal ratio of power plant.

Answers

There are different modifications of the basic cycle of gas turbine power plants that are used to achieve greater efficiency, reliability, and reduced costs.

Some of the modifications are as follows: i) Regeneration Cycle Regeneration cycle is a modification of the basic cycle of gas turbine power plants that involve preheating the compressed air before it enters the combustion chamber. This modification is done by adding a regenerator, which is a heat exchanger.

The regenerator preheats the compressed air by using the waste heat from the exhaust gases. ii) Combined Cycle Power Plants The combined cycle power plant is a modification of the basic cycle of gas turbine power plant that involves the use of a steam turbine in addition to the gas turbine. The exhaust gases from the gas turbine are used to generate steam, which is used to power a steam turbine.

Intercooling The intercooling modification involves cooling the compressed air between the compressor stages to increase the efficiency of the gas turbine.

To know more about modifications visit:

https://brainly.com/question/32253857

#SPJ11

b) The transformation from spherical coordinates (r, 0, q) to Cartesian coordinates (x, y, z) to move an object using robot arm is given by the function F: Rx [0, π] × [0, 2)→ R³ with components: x = r cosø sine y = r sine z = rcosø Calculate by using the Jacobian matrix the changes of the coordinate.

Answers

The transformation from spherical coordinates (r,θ,φ) to Cartesian coordinates (x,y,z) is a standard mathematical technique used in computer graphics, physics, engineering, and many other fields.

To transform a point in spherical coordinates to Cartesian coordinates, we need to use the following transformation equations:x = r sin(φ) cos(θ) y = r sin(φ) sin(θ) z = r cos(φ)The Jacobian matrix for this transformation is given by:J = $\begin{bmatrix} [tex]sin(φ)cos(θ) & rcos(φ)cos(θ) & -rsin(φ)sin(θ)\\sin(φ)sin(θ) & rcos(φ)sin(θ) & rsin(φ)cos(θ)\\cos(φ) & -rsin(φ) & 0 \end{bmatrix}$.[/tex]

We can use this matrix to calculate the changes in the coordinate system. Let's say we have a point P in spherical coordinates given by P = (r,θ,φ). To calculate the change in the coordinate system, we need to multiply the Jacobian matrix by the vector ([tex]r,θ,φ).[/tex]

To know more about coordinate visit:

https://brainly.com/question/32836021

#SPJ11

describe in great detail what is turntable & phono signals
are and how they apply to an Audio channel mixer circuit.

Answers

A turntable is a music player that plays records. Phono signals are low-level signals generated by a turntable cartridge that require a preamp to bring them to line level. In this regard, the audio channel mixer circuit plays an important role. Let's delve into more detail about turntables and phono signals and how they apply to an audio channel mixer circuit.

TurntableTurntables are sometimes known as record players. It is a music player that plays vinyl records. Turntables are well-known for their sound quality, which is warm, rich, and natural. A turntable typically has a tonearm, which is used to position a cartridge over a vinyl record. The cartridge contains a stylus that reads the grooves in the record and transforms the mechanical energy of the stylus into an electrical signal that can be amplified and played back through speakers.Phono SignalsThe electrical signal generated by a turntable's cartridge is known as a phono signal. Phono signals are low-level signals that are not strong enough to drive a speaker directly. A preamp is required to bring phono signals to line level. In the early days of home stereo systems, phono preamps were often built into receivers and amplifiers.

However, most modern stereo equipment does not include a phono preamp. In this case, an external phono preamp is needed.Audio Channel Mixer CircuitAn audio channel mixer circuit is a device that enables various audio signals to be mixed and controlled. It takes the signals from various sources and combines them into one or more outputs, allowing for the adjustment of the relative volume levels of each input source. A turntable can be connected to an audio channel mixer circuit in the same way as any other audio source. However, since phono signals are low-level signals, they need to be pre-amplified before they can be mixed with other sources. Some audio channel mixer circuits include a phono preamp built-in, while others require an external phono preamp to be connected separately.

To know more about . Phono signals visit:

https://brainly.com/question/14299038

#SPJ11

a) sign a CMOS reference symmetrical inverter to provide a delay of 1 ns when driving a 2pF capacitor if Vₛ= 3V, Kₙ = 100μA/V², K'ₚ = 40μA/V², Vτο = 0.6V, λ=0, y=0.5, 2φ = 0.6 load and _______________________
b) Using this reference inverter, design the CMOS logic gate for function Y = E +D+ (ABC + K)F c) Find the equivalent W/L for the NMOS network when all transistors are on.

Answers

Given data,Delay = 1 ns, [tex]C = 2 pF, Vs = 3 V, Kn = 100 μA/V², Kp' = 40 μA/V², Vto = 0.6 V, λ = 0, y = 0.5, and 2φ =[/tex]0.6.As we know,

The delay provided by the inverter is given by t = 0.69 * R * C. Where R is the equivalent resistance of the inverter in ohms and C is the capacitance in farads.

[tex]R = [1/Kn(Vdd - Vtn) + 1/Kp'(Vdd - |Vtp|)[/tex][tex]= [1 / (100 × 10^-6 (3 - 0.6)²) + 1 / (40 × 10^-6 (3 - |-0.6|)²)] = 7.14 × 10^4 Ω[/tex]From the above equation.

We know that the delay is 1 ns or 1 × 10^-9 seconds. Using the delay equation, we can calculate the value of the load capacitor for the given delay as follows:

[tex]1 × 10^-9 seconds = 0.69 * 7.14 × 10^4 Ω * C.[/tex]

To know more about resistance visit:

https://brainly.com/question/29427458

#SPJ11

Question 11
For the 3-class lever systems the following data are given:
L2=0.8L1 = 420 cm; Ø = 4 deg; 0 = 12 deg; Fload = 1.2
Determine the cylinder force required to overcome the load force (in Newton)

Answers

The cylinder force required to overcome the load force is determined by the given data and lever system parameters.

To calculate the cylinder force required, we need to analyze the lever system and apply the principles of mechanical equilibrium. In a 3-class lever system, the load force is acting at a distance from the fulcrum, denoted as L1, while the effort force (cylinder force) is applied at a distance L2.

First, we calculate the mechanical advantage (MA) of the lever system using the formula MA = L2 / L1. Given that L2 = 0.8L1, we can determine the MA as MA = 0.8.

Next, we consider the angular positions of the lever system. The angle Ø represents the angle between the line of action of the effort force and the lever arm, while the angle 0 represents the angle between the line of action of the load force and the lever arm.

Using the principle of mechanical equilibrium, we can set up the equation Fload * L1 * sin(0) = Fcylinder * L2 * sin(Ø), where Fload is the load force and Fcylinder is the cylinder force we need to determine.

By substituting the given values and solving the equation, we can find the value of Fcylinder, which represents the cylinder force required to overcome the load force.

Learn more about System parameters

brainly.com/question/32680343

#SPJ11

Consider 300 kg of steam initially at 20 bar and 240°C as the system. Let To = 20°C, po = 1 bar and ignore the effects of motion and gravity. Determine the change in exergy, in kJ, for each of the following processes: (a) The system is heated at constant pressure until its volume doubles. (b) The system expands isothermally until its volume doubles. Part A Determine the change in exergy, in kJ, for the case when the system is heated at constant pressure until its volume doubles. ΔΕ = i kJ

Answers

In this scenario, we are given a system of steam initially at a certain pressure and temperature. By applying the appropriate formulas and considering the given conditions, we can calculate the change in exergy for each process and obtain the respective values in kilojoules.

a. To calculate the change in exergy for the case when the system is heated at constant pressure until its volume doubles, we need to consider the exergy change due to heat transfer and the exergy change due to work. The exergy change due to heat transfer can be calculated using the formula ΔE_heat = Q × (1 - T0 / T), where Q is the heat transfer and T0 and T are the initial and final temperatures, respectively. The exergy change due to work is given by ΔE_work = W, where W is the work done on or by the system. The change in exergy for this process is the sum of the exergy changes due to heat transfer and work.

b. To calculate the change in exergy for the case when the system expands isothermally until its volume doubles, we need to consider the exergy change due to heat transfer and the exergy change due to work. Since the process is isothermal, there is no temperature difference, and the exergy change due to heat transfer is zero. The exergy change due to work is given by ΔE_work = W. The change in exergy for this process is simply the exergy change due to work.

Learn more about isothermal here:

https://brainly.com/question/30005299

#SPJ11

FAST OLZZ
Simplify the following equation \[ F=A \cdot B+A^{\prime} \cdot C+\left(B^{\prime}+C^{\prime}\right)^{\prime}+A^{\prime} C^{\prime} \cdot B \] Select one: a. \( 8+A^{\prime} \cdot C \) b. \( 8+A C C+B

Answers

The simplified expression is [tex]\[F=AB+A^{\prime} C+B \][/tex] Hence, option a) is correct, which is [tex]\[8+A^{\prime} C\][/tex]

The given expression is

[tex]\[F=A \cdot B+A^{\prime} \cdot C+\left(B^{\prime}+C^{\prime}\right)^{\prime}+A^{\prime} C^{\prime} \cdot B \][/tex]

To simplify the given expression, use the De Morgan's law.

According to this law,

[tex]$$ \left( B^{\prime}+C^{\prime} \right) ^{\prime}=B\cdot C $$[/tex]

Therefore, the given expression can be written as

[tex]\[F=A \cdot B+A^{\prime} \cdot C+B C+A^{\prime} C^{\prime} \cdot B\][/tex]

Next, use the distributive law,

[tex]$$ F=A B+A^{\prime} C+B C+A^{\prime} C^{\prime} \cdot B $$$$ =AB+A^{\prime} C+B \cdot \left( 1+A^{\prime} C^{\prime} \right) $$$$ =AB+A^{\prime} C+B $$[/tex]

Therefore, the simplified expression is

[tex]\[F=AB+A^{\prime} C+B \][/tex]

Hence, option a) is correct, which is [tex]\[8+A^{\prime} C\][/tex]

To know more about expression, visit:

https://brainly.com/question/28170201

#SPJ11

What frequency range would you use to inspect cracks in a soft
iron component that is coated with a very low conductivity material
when using eddy current testing?

Answers

Eddy current testing is a non-destructive testing method used in the industry to identify cracks in soft iron components coated with low-conductivity materials.

Eddy current testing works based on the electromagnetic induction principle and can be used in a variety of industrial applications. Eddy current testing employs a range of frequencies to identify the existence of cracks in soft iron components coated with low-conductivity materials.

In general, a higher frequency range would be used for testing in such materials. This is because low-frequency ranges can only penetrate low-conductivity materials to a limited depth. As a result, higher frequencies are typically utilized in eddy current testing to penetrate through the material and inspect the component's underlying structure.

To know more about non-destructive visit:

https://brainly.com/question/28447414

#SPJ11

During constant volume non-flow reversible process which occurs in otto cycle, 4.0 BTU of heat are added, the cylinder contains 0.01lb of air, the initial temperature and pressure is 650F and 210 psia respectively. Find:
A.) final temperature (F)
B.) final pressure (psia)
C.) work done
D.) change internal energy (BTU)

Answers

In an Otto cycle, the four processes involved are constant volume heat addition, adiabatic expansion, constant volume heat rejection and adiabatic compression.

A.) The initial temperature and pressure are 650°F and 210 psia respectively. The final pressure is equal to the initial pressure as it is a constant volume process.

Thus,P1/T1 = P2/T2 => T2 = P2T1/P1T2 = 210 × 650/210 = 650°F

Therefore, the final temperature is 650°F.

B.) Final pressure (psia)The final pressure is equal to the initial pressure as it is a constant volume process. Thus, the final pressure is 210 psia.

C.) Work done The work done by the system is given as 4.0 BTU.

D.) Change in internal energy (BTU)The change in internal energy can be calculated by using the formula, ΔU = Q - W

where, ΔU is the change in internal energy, Q is the heat absorbed by the system and W is the work done by the system.

The heat absorbed by the system is given as 4.0 BTU and the work done by the system is also 4.0 BTU. Thus,ΔU = Q - W= 4 - 4= 0

Therefore, the change in internal energy is 0.

To know more about expansion visit:

https://brainly.com/question/15572792

#SPJ11

Other Questions
A woman deposits $6,000 at the end of each year for 9 years in an account paying 5% interest compounded annually. (a) Find the final amount she will have on deposit. (b) Her brother-in-law works in a bank that pays 4% compounded annually. If she deposits money in this bank instead of the other one, how much will she have in her account? (c) How much would she lose over 9 years by using her brother-in-law's bank? a (a) She will have a total of $ on deposit. (Simplify your answer. Round to the nearest cent as needed.) (b) she will have a total of $ on deposit in hia brother in law bank. (Simplify your answer. Round to the nearest cent as needed.) (c) She would loose $ over 9 years by using her brother in law bank. (Simplify your answer. Round to the nearest cent as needed.) Describe the principle behind cell separation by fluorescent antibody cell sorting (FACS analysis). From reading about personal core values within the chapter, identify 3 values that are of importance to you and explain why and how they affect your life. Give an example for each of them. Explain how you include your core values into your daily life and give an example to illustrate your thoughts. A sample of helium gas collected at a pressure of 0.755 atm anda temperature of 304 K is found to occupy a volume of 536milliliters. How many moles of He gas are in the sample?mol Robotic Atlanta Inc. just paid a dividend of $4.00 per share (that is, D0=4.00 ). The dividends of Robotic Atlanta are expected to grow at a rate of 20 percent next year (that is, g1=.20 ) and at a rate of 10 percent the following year (that is, g2 =.10 ). Thereafter (i.e., from year 3 to infinity) the growth rate in dividends is expected to be 5 percent per year. Assuming the required rate of return on Robotic Atlanta stock is 16 percent, compute the current price of the stock. (Round your answer to 2 decimal places and record your answer without dollar sign or commas). Your Answer Briefly explain why (1) allosteric inhibition is anexample of negative heterotropic cooperativity and allostericactivation an example of positive heterotropic cooperativity?(10 poits) Humans can have type A blood, type B blood, type AB blood, or type o. Which of the following is a possible genotype for an individual with type B blood Answers A-D Br DAT Consider the following two systems (velocity and heading angle systems) 1 Ge(s) = 0.001 s+2' Go(s) = (s + 1)(s+5)(s+8)* We want the above systems to satisfy the following specifications: Velocity systems Mp = 15%, ts = 3 sec(for 2% error), zero SSE Heading angle systems Mp = 10%, ts = 0.5 x ts, zero SSE where t': settling time(for 2% error) of the uncompensated system with 10% overshoot Design the velocity controller satisfying the design specs. (PI control) Design the heading angle controller satisfying the design specs. (PID control) please help3. A newly discovered gas has a density of 2.39 g/L at 23 C and 715 mmHg. What is the molecular weight of the gas? 4. Acetylene gas, CH can be prepared by the reaction of calcium carbide with 29) The water-splitting reaction during photosynthesis:A) reduces NADP+B) produces all free oxygen on Earth.C) produces ATPD) replaces electrons lost from photosystem II.E) B and DF) A and C.30) Carbon Dioxide:A) is an input to the electron transport chain.B) is an input to the Calvin CycleC) is an input to the light reactionD) is produced by ATP synthase. When a protocol calls for bacterial growth at 24-48 hours, whyis it okay tohave in the incubator for that time frame and then also have it intherefrigerator for an additional 120 hours (5 days)? A steel spring with squared and ground ends has a wire diameter of d=0.04 inch, and mean diameter of D=0.32 inches. What is the maximum static load (force) that the spring can withstand before going beyond the allowable shear strength of 80 ksi?a) 4.29 lbf b) 5.36 lbf c) 7.03 lbf d) Other: ____ If the above spring has a shear modulus of 10,000 ksi and 8 active coils, what is the maximum deflection allowed?a) 1.137 in b).822 lbf c) 0.439 in d) Other: ____ a. What differences are there between futures and forward contracts? Explain your answer. (8 marks) b. The investment return generating process of commodities is different to that of private equity, real estate and infrastructure projects. Comment and give your opinion. (8 marks)' Write on the variety of financial instruments that can be used by a company to raise finance. Examples of which are bonds, debentures, assets, gilt etc. 1.Discuss the definition of debt securities and equity securities.2. Describe the various types of debt securities.3. Describe the various types of equity securities. 3 AgCl2 + 2 Al --> 3Ag + 2 AlCl3precipitation reactionoxidation/reduction reactionacid-base reactiongas evolution reactioncombustion reaction Which of the following flows in the Rock Cycle brings rock material into the Metamorphic Rock reservoir? Spirit varaish kezicrally contits of E (A) Oil, wax and resin E (B) Alcohol, wax and turpentine C (C) Pigment and synthetic resin E musuirit and shellac 24. Pick up the correct statement trom the following: E (A) Melamine is obtained from calcium carbide E. (B) Formaldelyde is prepared synthetically from methane E. (C) The melamine when reacted with formaldehyde forms the melamineformaldehyde resin E (D) All the above 25. Steel contains carbon approximately (A) 1.50% to 5.6% F (B) 0.05%101.75% (C) 0.25%6 C. (D) None to these 26. The initial setting time for ordinary Portland cement as per is specifications should not be less. than E (A) 10 minutes E (B) 30 minutes E. (C) 60 minutes E (D) 600 minutes A particle is moving along a straight line such that its acceleration is defined as a=(2v)m/s2, where v is in meters per second. Suppose that v=20 m/s when s=0 and t=0 Which triangles unknown side length measures StartRoot 53 EndRoot units?A right triangle with side length of 6 and hypotenuse of StartRoot 91 EndRoot.A right triangle with side length of StartRoot 47 EndRoot and hypotenuse of 10.A right triangle with side length of StartRoot 19 EndRoot and hypotenuse of StartRoot 34 EndRoot.A right triangle with side length StartRoot 73 EndRoot and hypotenuse 20.