At a depth of 1030 m in Lake Baikal (a fresh water lake in Siberia), the pressure has increased by 100 atmospheres (to about 107 N/m2). By what volume has 1.0 m3 of water from the surface of the lake been compressed if it is forced down to this depth? The bulk modulus of water is 2.3 × 109 Pa.

Answers

Answer 1

Answer:

A volume of a cubic meter of water from the surface of the lake has been compressed in 0.004 cubic meters.

Explanation:

The bulk modulus is represented by the following differential equation:

[tex]K = - V\cdot \frac{dP}{dV}[/tex]

Where:

[tex]K[/tex] - Bulk module, measured in pascals.

[tex]V[/tex] - Sample volume, measured in cubic meters.

[tex]P[/tex] - Local pressure, measured in pascals.

Now, let suppose that bulk remains constant, so that differential equation can be reduced into a first-order linear non-homogeneous differential equation with separable variables:

[tex]-\frac{K \,dV}{V} = dP[/tex]

This resultant expression is solved by definite integration and algebraic handling:

[tex]-K\int\limits^{V_{f}}_{V_{o}} {\frac{dV}{V} } = \int\limits^{P_{f}}_{P_{o}}\, dP[/tex]

[tex]-K\cdot \ln \left |\frac{V_{f}}{V_{o}} \right| = P_{f} - P_{o}[/tex]

[tex]\ln \left| \frac{V_{f}}{V_{o}} \right| = \frac{P_{o}-P_{f}}{K}[/tex]

[tex]\frac{V_{f}}{V_{o}} = e^{\frac{P_{o}-P_{f}}{K} }[/tex]

The final volume is predicted by:

[tex]V_{f} = V_{o}\cdot e^{\frac{P_{o}-P_{f}}{K} }[/tex]

If [tex]V_{o} = 1\,m^{3}[/tex], [tex]P_{o} - P_{f} = -10132500\,Pa[/tex] and [tex]K = 2.3\times 10^{9}\,Pa[/tex], then:

[tex]V_{f} = (1\,m^{3}) \cdot e^{\frac{-10.1325\times 10^{6}\,Pa}{2.3 \times 10^{9}\,Pa} }[/tex]

[tex]V_{f} \approx 0.996\,m^{3}[/tex]

Change in volume due to increasure on pressure is:

[tex]\Delta V = V_{o} - V_{f}[/tex]

[tex]\Delta V = 1\,m^{3} - 0.996\,m^{3}[/tex]

[tex]\Delta V = 0.004\,m^{3}[/tex]

A volume of a cubic meter of water from the surface of the lake has been compressed in 0.004 cubic meters.


Related Questions

During a particular time interval, the displacement of an object is equal to zero. Must the distance traveled by this object also equal to zero during this time interval? Group of answer choices

Answers

Answer: No, we can have a displacement equal to 0 while the distance traveled is different than zero.

Explanation:

Ok, let's write the definitions:

Displacement: The displacement is equal to the difference between the final position and the initial position.

Distance traveled: Total distance that you moved.

So, for example, if at t = 0s, you are in your house, then you go to the store, and then you return to your house, we have:

The displacement is equal to zero, because the initial position is your house and the final position is also your house, so the displacement is zero.

But the distance traveled is not zero, because you went from you traveled the distance from your house to the store two times.

So no, we can have a displacement equal to zero, but a distance traveled different than zero.

The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of positions measured with the best Earth-based optical telescopes. If you cannot measure an angle smaller than this, what is the maximum distance at which a star can be located and still have a measurable parallax

Answers

Answer:

The distance is  [tex]d = 1.5 *10^{15} \ km[/tex]

Explanation:

From the question we are told that

        The smallest shift is [tex]d = 0.2 \ grid \ units[/tex]

Generally a grid unit is  [tex]\frac{1}{10}[/tex] of  an arcsec

  This implies that  0.2 grid unit is  [tex]k = \frac{0.2}{10} = 0.02 \ arc sec[/tex]

The maximum distance at which a star can be located and still have a measurable parallax is mathematically represented as

           [tex]d = \frac{1}{k}[/tex]

substituting values

           [tex]d = \frac{1}{0.02}[/tex]

           [tex]d = 50 \ parsec[/tex]

Note  [tex]1 \ parsec \ \to 3.26 \ light \ year \ \to 3.086*10^{13} \ km[/tex]

So  [tex]d = 50 * 3.08 *10^{13}[/tex]

     [tex]d = 1.5 *10^{15} \ km[/tex]

In 1898, the world land speed record was set by Gaston Chasseloup-Laubat driving a car named Jeantaud. His speed was 39.24 mph (63.15 km/h), much lower than the limit on our interstate highways today. Repeat the calculations of Example 2.7 (assume the car accelerates for 6 miles to get up to speed, is then timed for a one-mile distance, and accelerates for another 6 miles to come to a stop) for the Jeantaud car. (Assume the car moves in the +x direction.)
Find the acceleration for the first 6 miles.

Answers

Answer:

the acceleration [tex]a^{\to} = (0.0159 \ \ m/s^2 )i[/tex]

Explanation:

Given that:

the initial speed v₁ = 0 m/s i.e starting from rest ; since the car accelerates at a distance Δx = 6 miles in order to teach that final speed v₂ of 63.15 km/h.

So;  the acceleration for the first 6 miles can be calculated by using the formula:

v₂² = v₁² + 2a (Δx)

Making acceleration  a the subject of the formula in the above expression ; we have:

v₂² - v₁² = 2a (Δx)

[tex]a = \dfrac{v_2^2 - v_1^2 }{2 \Delta x}[/tex]

[tex]a = \dfrac{(63.15 \ km/s)^2 - (0 \ m/s)^2 }{2 (6 \ miles)}[/tex]

[tex]a = \dfrac{(17.54 \ m/s)^2 - (0 \ m/s)^2 }{2 (9.65*10^3 \ m)}[/tex]

[tex]a =0.0159 \ m/s^2[/tex]

Thus;

Assume the car moves in the +x direction;

the acceleration [tex]a^{\to} = (0.0159 \ \ m/s^2 )i[/tex]


1- A 30 gram bullet travels at 300 m/s. How much kinetic energy does it have?

Answers

Answer:

1.35 kJ  

Explanation:

KE = ½mv² = ½ × 0.030  kg × (300 m·s⁻¹)² = 1350 J = 1.35 kJ

Given:-

Mass (m) of the bullet = 30 gramsVelocity of the bullet (v) = 300 m/s

To Find: Kinetic energy of the bullet.

We know,

E = ½mv²

where,

Eₖ = Kinetic energy,m = Mass &v = Velocity.

thus,

Eₖ = ½(30 g)(300 m/s)²

= (15 g)(90000 m²/s²)

= 1350000 g m²/s²

= 1350 kg m²/s²

= 1350 J

= 1.35 kJ (Ans.)

1. The smallest shift you can reliably measure on the screen is about 0.2 grid units. This shift corresponds to the precision of positions measured with the best Earth-based optical telescopes. If you cannot measure an angle smaller than this, what is the maximum distance at which a star can be located and still have a measurable parallax

Answers

Answer:

Explanation:

each grid corresponding  0.1s⁻¹.

0.2grid unit = 0.2×0.1 =0.02s⁻¹

distance of the star from telescope

d = 1/p

d= 1/0.02= 50 par sec

1par sec = 3.26 light year

1 light year = 9.5×10¹²km

3.26ly=3.084×10¹³km

d= 50×3.084×10¹³=1.55×10¹⁵km

An unknown charged particle passes without deflection through crossed electric and magnetic fields of strengths 187,500 V/m and 0.1250 T, respectively. The particle passes out of the electric field, but the magnetic field continues, and the particle makes a semicircle of diameter 25.05 cm.
Part A. What is the particle's charge-to-mass ratio?
Part B. Can you identify the particle?
a. can't identify
b. proton
c. electron
d. neutron

Answers

Answer:

Explanation:

Given that

The electric fields of strengths E = 187,500 V/m and

and The magnetic  fields of strengths B = 0.1250 T

The diameter d is 25.05 cm which is converted to 0.2505m

The radius is (d/2)

= 0.2505m / 2 = 0.12525m

The given formula to find the magnetic force is [tex]F_{ma}=BqV---(i)[/tex]

The given formula to find the electric force is [tex]F_{el}=qE---(ii)[/tex]

The velocity of electric field and magnetic field is said to be perpendicular

Electric field is equal to magnectic field

Equate equation (i) and equation (ii)

[tex]Bqv=qE\\\\v=\frac{E}{B}[/tex]

[tex]v=\frac{187500}{0.125} \\\\v=15\times10^5m/s[/tex]

It is said that the particles moves in semi circle, so we are going to consider using centripetal force

[tex]F_{ce}=\frac{mv^2}{r}---(iii)[/tex]

magnectic field is equal to centripetal force

Lets equate equation (i) and (iii)

[tex]Bqr=\frac{mv^2}{r} \\\\\frac{q}{m}=\frac{v}{Br} \\\\\frac{q}{m} =\frac{15\times 10^5}{0.125\times0.12525} \\\\=\frac{15\times10^5}{0.015656} \\\\=95808383.23\\\\=958.1\times10^5C/kg[/tex]

Therefore,  the particle's charge-to-mass ratio is [tex]958.1\times10^5C/kg[/tex]

b)

To identify the particle

Then 1/ 958.1 × 10⁵ C/kg

The charge to mass ratio is very close to that of a proton, which is about 1*10^8 C/kg

Therefore the particle is proton.

A person is standing on an elevator initially at rest at the first floor of a high building. The elevator then begins to ascend to the sixth floor, which is a known distance h above the starting point. The elevator undergoes an unknown constant acceleration of magnitude a for a given time interval T. Then the elevator moves at a constant velocity for a time interval 4T. Finally the elevator brakes with an acceleration of magnitude a, (the same magnitude as the initial acceleration), for a time interval T until stopping at the sixth floor.

Answers

Answer:

The found acceleration in terms of h and t is:

[tex]a=\frac{h}{5(t_1)^2}[/tex]

Explanation:

(The complete question is given in the attached picture. We need to find the acceleration in terms of h and t in this question)

We are given 3 stages of movement of elevator. We'll first model them each of the stage one by one to find the height covered in each stage. After that we'll find the total height covered by adding heights covered in each stage, and equate it to Total height h. From that we can find the formula for acceleration.

Stage 1

Constant acceleration, starts from rest.

Distance = [tex]y = \frac{1}{2}a(t_1)^2[/tex]

Velocity = [tex]v_1=at_1[/tex]

Stage 2

Constant velocity where

Velocity = [tex]v_o=v_1=at_1[/tex]

Distance =

[tex]y_2=v_2(t_2)\\\text{Where~}t_2=4t_1 ~\text{and}~ v_2=v_1=at_1\\y_2=(at_1)(4t_1)\\y_2=4a(t_1)^2\\[/tex]Stage 3

Constant deceleration where

Velocity = [tex]v_0=v_1=at_1[/tex]

Distance =

[tex]y_3=v_1t_3-\frac{1}{2}a(t_3)^2\\\text{Where}~t_3=t_1\\y_3=v_1t_1-\frac{1}{2}a(t_1)^2\\\text{Where}~ v_1t_1=a(t_1)^2\\y_3=a(t_1)^2-\frac{1}{2}a(t_1)^2\\\text{Subtracting both terms:}\\y_3=\frac{1}{2}a(t_1)^2[/tex]

Total Height

Total height = y₁ + y₂ + y₃

Total height = [tex]\frac{1}{2}a(t_1)^2+4a(t_1)^2+\frac{1}{2}a(t_1)^2 = 5a(t_1)^2[/tex]

Acceleration

Find acceleration by rearranging the found equation of total height.

Total Height = h

h = 5a(t₁)²

[tex]a=\frac{h}{5(t_1)^2}[/tex]

A uniformly charged sphere has a potential on its surface of 450 V. At a radial distance of 8.1 m from this surface, the potential is 150 V. What is the radius of the sphere

Answers

Answer:

The radius of the sphere is 4.05 m

Explanation:

Given;

potential at surface, [tex]V_s[/tex] = 450 V

potential at radial distance, [tex]V_r[/tex] = 150

radial distance, l = 8.1 m

Apply Coulomb's law of electrostatic force;

[tex]V = \frac{KQ}{r} \\\\V_s = \frac{KQ}{r} \\\\V_r = \frac{KQ}{r+ l}[/tex]

[tex]450 = \frac{KQ}{r} ------equation (i)\\\\150 = \frac{KQ}{r+8.1} ------equation (ii)\\\\divide \ equation (i)\ by \ equation \ (ii)\\\\\frac{450}{150} = (\frac{KQ}{r} )*(\frac{r+8.1}{KQ} )\\\\3 = \frac{r+8.1}{r} \\\\3r = r + 8.1\\\\2r = 8.1\\\\r = \frac{8.1}{2} \\\\r = 4.05 \ m[/tex]

Therefore, the radius of the sphere is 4.05 m

A circuit contains two elements, but it is not known if they are L, R, or C. The current in this circuit when connected to a 120-V 60 Hz source is 5.3 A and lags the voltage by 65∘.
Part A. What are the two elements?
Part B. What are their values?
Express your answer using two significant figures

Answers

Answer:

the two elements are resistor R and inductor L

answers in two significant figures

R = 9.6Ω

L = 54mH

Explanation:

A box on a ramp is connected by a rope to a winch. The winch is turned so that the box moves down the ramp at a constant speed. The box experiences kinetic friction with the ramp. Which forces on the box do zero work as the box moves down the ramp?

a. Weight (gravitational force)
b. Normal force
c. Kinetic friction force
d. Tension force
e. None

Answers

Answer:

Option B:

The normal force

Explanation:

The normal force does no work as the box slides down the ramp.

Work can only be done when the force succeeds in moving the object in the direction of the force.

All the other forces involved have a component that is moving the box in their direction.

However, the normal force does not, as it points downwards into the ramp. Since the normal force is pointing into the ramp, and the box is sliding down the ramp, we can say that no work is being done by the normal force because the box is not moving in its direction (which would have been the box moving into the ramp)

4. How much force is required to stop a 60 kg person traveling at 30 m/s during a time of a)
5.0 seconds
b) 0.50 seconds
c) 0.05 seconds

Answers

Explanation:

F = ma, and a = Δv / Δt.

F = m Δv / Δt

Given: m = 60 kg and Δv = -30 m/s.

a) Δt = 5.0 s

F = (60 kg) (-30 m/s) / (5.0 s)

F = -360 N

b) Δt = 0.50 s

F = (60 kg) (-30 m/s) / (0.50 s)

F = -3600 N

c) Δt = 0.05 s

F = (60 kg) (-30 m/s) / (0.05 s)

F = -36000 N

360N, 3600N and 36000N forces are required to stop a 60 kg person traveling at 30 m/s during a time of a)5.0 seconds, b) 0.50 seconds, c)0.05 seconds respectively.

To find the force, we need to know about the mathematical formulation of force.

What is force?According to Newton's second law of motion, force is defined as mass times acceleration. Its SI unit is Newton (N).What is the mathematical formulation of force?

Mathematically, it is written as

F= m×a= m×(∆V/∆t)

What is the force needed to stop 60 kg person traveling at 30 m/s during a time of a)5.0 seconds, b) 0.50 seconds, c)0.05 seconds?

Here, initially the velocity of the person is 30m/s. But after applying the force, he came to rest. So his final velocity is 0 m/s. ∆V= 30m/s

When ∆t=5 seconds, F= 60×(30/5)=360N

When ∆t=0.5 seconds, F= 60×(30/0.5)=3600N

When ∆t=0.05 seconds, F= 60×(30/0.05)=36000N

Thus, we can conclude that 360N, 3600N and 36000N forces are required to stop a 60 kg person traveling at 30 m/s during a time of a)5.0 seconds, b) 0.50 seconds, c)0.05 seconds respectively.

Learn more about force here:

brainly.com/question/12785175

#SPJ2

An electron of mass 9.11 x 10^-31 kg has an initial speed of 4.00 x 10^5 m/s. It travels in a straight line, and its speed increases to 6.60 x10^5 m/s in a distance of 5.40 cm. Assume its acceleration is constant.

Required:
a. Determine the magnitude of the force exerted on the electron.
b. Compare this force (F) with the weight of the electron (Fg), which we ignored.

Answers

Answer:

a.     F = 2.32*10^-18 N

b.     The force F is 2.59*10^11 times the weight of the electron

Explanation:

a. In order to calculate the magnitude of the force exerted on the electron you first calculate the acceleration of the electron, by using the following formula:

[tex]v^2=v_o^2+2ax[/tex]         (1)

v: final speed of the electron = 6.60*10^5 m/s

vo: initial speed of the electron = 4.00*10^5 m/s

a: acceleration of the electron = ?

x: distance traveled by the electron = 5.40cm = 0.054m

you solve the equation (2) for a and replace the values of the parameters:

[tex]a=\frac{v^2-v_o^2}{2x}=\frac{(6.60*10^5m/s)^2-(4.00*10^5m/s)^2}{2(0.054m)}\\\\a=2.55*10^{12}\frac{m}{s^2}[/tex]

Next, you use the second Newton law to calculate the force:

[tex]F=ma[/tex]

m: mass of the electron = 9.11*10^-31kg

[tex]F=(9.11*10^{-31}kg)(2.55*10^{12}m/s^2)=2.32*10^{-18}N[/tex]

The magnitude of the force exerted on the electron is 2.32*10^-18 N

b. The weight of the electron is given by:

[tex]F_g=mg=(9.11*10^{-31}kg)(9.8m/s^2)=8.92*10^{-30}N[/tex]

The quotient between the weight of the electron and the force F is:

[tex]\frac{F}{F_g}=\frac{2.32*10^{-18}N}{8.92*10^{-30}N}=2.59*10^{11}[/tex]

The force F is 2.59*10^11 times the weight of the electron

A 12,000-N car is raised using a hydraulic lift, which consists of a U-tube with arms of unequal areas, filled with oil and capped at both ends with tight-fitting pistons. The wider arm of the U-tube has a radius of 18.0 cm and the narrower arm has a radius of 5.00 cm. The car rests on the piston on the wider arm of the U-tube. The pistons are initially at the same level. What is the initial force that must be applied to the

Answers

Answer:

F₂ = 925.92 N

Explanation:

In a hydraulic lift the normal stress applied to one arm must be equally transmitted to the other arm. Therefore,

σ₁ = σ₂

F₁/A₁ = F₂/A₂

F₂ = F₁ A₂/A₁

where,

F₂ = Initial force that must be applied to narrow arm = ?

F₁ = Load on Wider Arm to be raised = 12000 N

A₁ = Area of wider arm = πr₁² = π(18 cm)² = 324π cm²

A₂ = Area of narrow arm = πr₂² = π(5 cm)² = 25π cm²

Therefore,

F₂ = (12000 N)(25π cm²)/(324π cm²)

F₂ = 925.92 N

A spherical balloon is made from a material whose mass is 4.30 kg. The thickness of the material is negligible compared to the 1.54-m radius of the balloon. The balloon is filled with helium (He) at a temperature of 289 K and just floats in air, neither rising nor falling. The density of the surrounding air is 1.19 kg/m3. Find the absolute pressure of the helium gas.

Answers

Answer:

P = 5.97 × 10^(5) Pa

Explanation:

We are given;

Mass of balloon;m_b = 4.3 kg

Radius;r = 1.54 m

Temperature;T = 289 K

Density;ρ = 1.19 kg/m³

We know that, density = mass/volume

So, mass = Volume x Density

We also know that Force = mg

Thus;

F = mg = Vρg

Where m = mass of balloon(m_b) + mass of helium (m_he)

So,

(m_b + m_he)g = Vρg

g will cancel out to give;

(m_b + m_he) = Vρ - - - eq1

Since a sphere shaped balloon, Volume(V) = (4/3)πr³

V = (4/3)π(1.54)³

V = 15.3 m³

Plugging relevant values into equation 1,we have;

(3 + m_he) = 15.3 × 1.19

m_he = 18.207 - 3

m_he = 15.207 kg = 15207 g

Molecular weight of helium gas is 4 g/mol

Thus, Number of moles of helium gas is ; no. of moles = 15207/4 ≈ 3802 moles

From ideal gas equation, we know that;

P = nRT/V

Where,

P is absolute pressure

n is number of moles

R is the gas constant and has a value lf 8.314 J/mol.k

T is temperature

V is volume

Plugging in the relevant values, we have;

P = (3802 × 8.314 × 289)/15.3

P = 597074.53 Pa

P = 5.97 × 10^(5) Pa

What do behaviorism and cognitive psychology have in common?

O Both rely on the scientific method.

Both attempt to explain human behavior.

Both note the differences between human and animal behavior

Behaviorism focuses on actions only.

Answers

Answer:

Both attempt to explain human behavior

Explanation:

Psychology is generally regarded as the science of human behavior. Behaviourism is the psychological theory which holds that behaviour can be fully understood in terms of conditioning, without actually considering thoughts or feelings. The theory holds that psychological disorders can be aptly handled by simply altering the behavioural patterns of the individual. It involves the study of stimulus and responses.

Cognitive psychology attempts to decipher what is going on in people's minds. That is, it looks at the mind as a processor of information. Hence we can define cognitive psychology as the study of the internal mental processes. This according to behaviorists, cannot be studied in measurable terms as in behaviourism (stimulus response approach) even though mental processes are known to influence human behavior significantly.

Hence, both behaviourism and cognitive psychology attempt to study human behavior from different perspectives.

A harmonic wave is traveling along a rope. It is observed that the oscillator that generates the wave completes 43.0 vibrations in 33.0 s. Also, a given maximum travels 424 cm along the rope in 15.0 s. What is the wavelength

Answers

Answer:

0.218

Explanation:

Given that

Total vibrations completed by the wave is 43 vibrations

Time taken to complete the vibrations is 33 seconds

Length of the wave is 424 cm = 4.24 m

to solve this problem, we first find the frequency.

Frequency, F = 43 / 33 hz

Frequency, F = 1.3 hz

Also, we find the wave velocity. Which is gotten using the relation,

Wave velocity = 4.24 / 15

Wave velocity = 0.283 m/s

Now, to get our answer, we use the formula.

Frequency * Wavelength = Wave Velocity

Wavelength = Wave Velocity / Frequency

Wavelength = 0.283 / 1.3

Wavelength = 0.218

An enclosed amount of nitrogen gas undergoes thermodynamic processes as follows: from an initial state A to a state B to C to D and back to A, as shown in the P-V diagram. Assume that the gas behaves ideally. What is the change in internal energy of the gas for the entire process, A-B-C-D-A? (pressure at B is 10kPa)

Answers

Answer:

The total internal energy change for the entire process is  -0.94 kJ

Explanation:

Process A to B is an isothermal process, therefore, [tex]u_A[/tex] - [tex]u_B[/tex] = 0

Process B to C

P = -mV + C

When P = 12, V = 0.12

When P = 4, V = 0.135

Therefore, we have;

12 = -m·0.12 + C

4 = -m·0.135 + C

Solving gives

m = 533.33

C = 76

[tex]T = \dfrac{1}{nR} \times (-533.33 \times V^2 + 76 \times V)[/tex]

p₂ = p₁V₁/V₂ = 12*0.1/0.12 = 10 kPa

The work done = 0.5*(0.135 - 0.12)*(4 - 10.0) = -0.045 kJ = -45 J

For heat supplied

Assuming an approximate polytropic process, we have;

Work done = (p₃×v₃ - p₂×v₂)/(n - 1)

Which gives;

-45 = (4*0.135 - 10*0.12)/(n -1)

∴ n -1 = (4*0.135 - 10*0.12)/-45 =   14.67

n = 15.67

Q = W×(n - γ)/(γ - 1)

Q = -45*(15.67 - 1.4)/(1.4 - 1) = -1,605.375 J

u₃ - u₂ = Q + W = -1,605.375 J - 45 J = -1650 J = -1.65 kJ

For the constant pressure process D to C, we have;

[tex]Q = c_p \times \dfrac{p}{R} \times (V_4 -V_3) = \dfrac{5}{2} \times p \times (V_4 -V_3)[/tex]

Q₄₋₃ = (0.1 - 0.135) * 4*5/2 = -0.35 kJ

W₄₋₃ = 4*(0.1 - 0.135) = -0.14 kJ

u₄ - u₃ = Q₄₋₃ + W₄₋₃ = -0.14 kJ + -0.35 kJ = -0.49 kJ

For the process D to A, we have a constant volume process

[tex]Q_{1-4} = \dfrac{c_v}{R} \times V \times (p_1 - p_4) = \dfrac{3}{2} \times 0.1 \times (12 - 4) = 1.2 \ kJ[/tex]

W₁₋₄ = 0 for constant volume process, therefore, u₁ - u₄ = 1.2 kJ

The total internal energy change Δ[tex]u_{process}[/tex] for the entire process is therefore;

Δ[tex]u_{process}[/tex] = u₂ - u₁ + u₃ - u₂ + u₄ - u₃ + u₁ - u₄ = 0  - 1.65 - 0.49 + 1.2 = -0.94 kJ.

a What CE describes the way energy is stored in a sandwich​

Answers

What is Potential Energy? You probably already know that without eating, your body becomes weak from lack of energy. Take a few bites of a turkey sandwich, and moments later, you feel much better. That's because food molecules contain potential energy, or stored energy, that can do work in the future. Hope it helps

Dr. Jones performed an experiment to monitor the effects of sunlight exposure on stem density in aquatic plants. In the study, Dr. Jones measured the mass and volume of stems grown in 5 levels of sun exposure. The data is represented below.
Sun exposure Stem mass (g) Stem volume (mL)
30 275 1100
45 415 1215
60 563 1425
75 815 1610
90 954 1742
a. Convert the mass measurements to kilograms (kg) and the volume measurements to cubic meters (mº).
b. Calculate the density of the samples using the equation d = m/v. d = density m = mass (kg) v = volume (m)
c. Convert the density values to scientific notation.

Answers

Given that,

Sun exposure = 30%, 45%, 60%, 75%, 90%

Stem mass (g) = 275, 415, 563, 815, 954

Stem volume (ml) = 1100, 1215, 1425, 1610, 1742

(a). We need to convert the mass measurements to kilograms (kg) and the volume measurements to cubic meters

Using conversion of mass

[tex]1\ g=0.001\ kg[/tex]

Conservation of volume

[tex]1\ Lt=0.001\ m^3[/tex]

[tex]1\ mL=1\times10^{-6}\ m^3[/tex]

So, mass in kg

Stem mass (kg) = 0.275, 0.415, 0.563, 0.815, 0.954

Volume in m³,

Stem volume (m³) = 0.0011, 0.001215, 0.001425, 0.001610, 0.001742

(b). We need to calculate the density of the samples

Using formula of density

[tex]\rho=\dfrac{m}{V}[/tex]

Where, m = mass

V = volume

If the m = 0.275 kg and V = 0.0011 m³

Put the value into the formula

[tex]\rho=\dfrac{0.275}{0.0011}[/tex]

[tex]\rho=250\ kg/m^3[/tex]

If the m = 0.415 kg and V = 0.001215 m³

Put the value into the formula

[tex]\rho=\dfrac{0.415}{0.001215}[/tex]

[tex]\rho=341.56\ kg/m^3[/tex]

[tex]\rho=342\ kg/m^3[/tex]

If the m = 0.563 kg and V = 0.001425 m³

Put the value into the formula

[tex]\rho=\dfrac{0.563}{0.001425}[/tex]

[tex]\rho=395.08\ kg/m^3[/tex]

If the m = 0.815 kg and V = 0.001610 m³

Put the value into the formula

[tex]\rho=\dfrac{0.815}{0.001610}[/tex]

[tex]\rho=506.21\ kg/m^3[/tex]

If the m = 0.954 kg and V = 0.001742 m³

Put the value into the formula

[tex]\rho=\dfrac{0.954}{0.001742}[/tex]

[tex]\rho=547.6\ kg/m^3[/tex]

[tex]\rho=548\ kg/m^3[/tex]

(c). We need to convert the density values to scientific notation

In scientific notation

The densities are

[tex]\rho\ (kg/m^3)= 2.50\times10^{2}, 3.42\times10^{2}, 3.95\times10^{2}, 5.06\times10^{2}, 5.48\times10^{2}[/tex]

Hence, This is required solution.

A 2.0-kg object moving at 5.0 m/s collides with and sticks to an 8.0-kg object initially at rest. Determine the kinetic energy lost by the system as a result of this collision.

Answers

Answer:

20 J

Explanation:

From the question, since there is a lost in kinetic energy, Then the collision is an inelastic collision.

m'u'+mu = V(m+m')........... Equation 1

Where m' = mass of the moving object, m = mass of the stick, u' = initial velocity of the moving object, initial velocity of the stick, V = common velocity after collision.

make V the subject of the equation above

V = (m'u'+mu)/(m+m')............. Equation 2

Given: m' = 2 kg, m = 8 kg, u' = 5 m/s, u = 0 m/s (at rest).

Substitute into equation 2

V = [(2×5)+(8×0)]/(2+8)

V = 10/10

V = 1 m/s.

Lost in kinetic energy = Total kinetic energy before collision- total kinetic energy after collision

Total kinetic energy before collision = 1/2(2)(5²) = 25 J

Total kinetic energy after collision = 1/2(2)(1²) +1/2(8)(1²) = 1+4 = 5 J

Lost in kinetic energy = 25-5 = 20 J

The collision is inelastic collision. As a result of collision the kinetic energy lost by the given system is 20 J.

Since there is a lost in kinetic energy, the collision is inelastic collision.  

m'u'+mu = V(m+m')

[tex]\bold {V =\dfrac { (m'u'+mu)}{(m+m')} }[/tex]  

Where

m' = mass of the moving object = 2 kg

m = mass of the stick = 8 kg,

u' = initial velocity of the moving object = 5 m/s

V = common velocity after collision= ?    

u = 0 m/s (at rest).

put the values in the formula,  

[tex]\bold {V = \dfrac {(2\times 5)+(8\times 0)}{(2+8)}}\\\\\bold {V = \dfrac {10}{10}}\\\\\bold {V = 1\\ m/s.}[/tex]

 

  kinetic energy before collision

[tex]\bold { = \dfrac 1{2} (2)(5^2) = 25 J}[/tex]  

kinetic energy after collision

[tex]\bold { = \dfrac 12(2)(1^2) + \dfrac 12(8)(1^2) = 5\ J}[/tex]  

Lost in kinetic energy = 25-5 = 20 J

Therefore, As a result of collision the kinetic energy lost by the given system is 20 J.

To know more about Kinetic energy,

https://brainly.com/question/12669551

Professional baseball player Nolan Ryan could pitch a baseball at approximately 160.0 km/h. At that average velocity, how long (in s) did it take a ball thrown by Ryan to reach home plate, which is 18.4 m from the pitcher's mound

Answers

Answer:

t = 0.414s

Explanation:

In order to calculate the time that the ball takes to reach home plate, you assume that the speed of the ball is constant, and you use the following formula:

[tex]t=\frac{d}{v}[/tex]         (1)

d: distance to the plate = 18.4m

v: speed of the ball = 160.0km/h

You first convert the units of the sped of the ball to appropriate units (m/s)

[tex]160.0\frac{km}{h}*\frac{1h}{3600s}*\frac{1000m}{1km}=44.44\frac{m}{s}[/tex]

Then, you replace the values of the speed v and distance s in the equation (1):

[tex]t=\frac{18.4m}{44.44m/s}=0.414s[/tex]

THe ball takes 0.414s to reach the home plate

In a hydraulic lift, if the pressure exerted on the liquid by one piston is increased by 100 N/m2 , how much additional weight can the other piston slowly lift if its cross sectional area is 25 m2

Answers

Answer:

The additional weight and mass needed for lifting the other piston slowly is 2500 N and 254.92 kg, respectively.

Explanation:

By means of the Pascal's Principle, the hydraulic lift can be modelled by the following two equations:

Hydraulic Lift - Before change

[tex]P = \frac{F}{A}[/tex]

Hydraulic Lift - After change

[tex]P + \Delta P = \frac{F + \Delta F}{A}[/tex]

Where:

[tex]P[/tex] - Hydrostatic pressure, measured in pascals.

[tex]\Delta P[/tex] - Change in hydrostatic pressure, measured in pascals.

[tex]A[/tex] - Cross sectional area of the hydraulic lift, measured in square meters.

[tex]F[/tex] - Hydrostatic force, measured in newtons.

[tex]\Delta F[/tex] - Change in hydrostatic force, measured in newtons.

The additional weight is obtained after some algebraic handling and the replacing of all inputs:

[tex]\frac{F}{A} + \Delta P = \frac{F}{A} + \frac{\Delta F}{A}[/tex]

[tex]\Delta P = \frac{\Delta F}{A}[/tex]

[tex]\Delta F = A\cdot \Delta P[/tex]

Given that [tex]\Delta P = 100\,Pa[/tex] and [tex]A = 25\,m^{2}[/tex], the additional weight is:

[tex]\Delta F = (25\,m^{2})\cdot (100\,Pa)[/tex]

[tex]\Delta F = 2500\,N[/tex]

The additional mass needed for the additional weight is:

[tex]\Delta m = \frac{\Delta F}{g}[/tex]

Where:

[tex]\Delta F[/tex] - Additional weight, measured in newtons.

[tex]\Delta m[/tex] - Additional mass, measured in kilograms.

[tex]g[/tex] - Gravitational constant, measured in meters per square second.

If [tex]\Delta F = 2500\,N[/tex] and [tex]g = 9.807\,\frac{m}{s^{2}}[/tex], then:

[tex]\Delta m = \frac{2500\,N}{9.807\,\frac{m}{s^{2}} }[/tex]

[tex]\Delta m = 254.92\,kg[/tex]

The additional weight and mass needed for lifting the other piston slowly is 2500 N and 254.92 kg, respectively.

At the local playground, a 21-kg child sits on the right end of a horizontal teeter-totter, 1.8 m from the pivot point. On the left side of the pivot an adult pushes straight down on the teeter-totter with a force of 151 N. Part A In which direction does the teeter-totter rotate if the adult applies the force at a distance of 3.0 m from the pivot?Part B
In which direction does the teeter-totter rotate if the adult applies the force at a distance of 2.5 m from the pivot?
(clockwise/counterclockwise)
Part C
In which direction does the teeter-totter rotate if the adult applies the force at a distance of 2.0 m from the pivot?
(clockwise/counterclockwise)

Answers

Answer:

By convention a negative torque leads to clockwise rotation and a positive torque leads to counterclockwise rotation.

here weight of the child =21kgx9.8m/s2 = 205.8N

the torque exerted by the child Tc = - (1.8)(205.8) = -370.44N-m ,negative sign is inserted because this torque is clockwise and is therefore negative by convention.

torque exerted by adult Ta = 3(151) = 453N , counterclockwise torque.

net torque Tnet = -370.44+453 =82.56N , which is positive means counterclockwise rotation.

b) Ta = 2.5x151 = 377.5N-m

Tnet = -370.44+377.5 = 7.06N-m , positive ,counterclockwise rotation.

c)Ta = 2x151 = 302N-m

Tnet = -370.44+302 = -68.44N-m, negative,clockwise rotation.

Two large rectangular aluminum plates of area 180 cm2 face each other with a separation of 3 mm between them. The plates are charged with equal amount of opposite charges, ±17 µC. The charges on the plates face each other. Find the flux (in N · m2/C) through a circle of radius 3.3 cm between the plates when the normal to the circle makes an angle of 4° with a line perpendicular to the plates. Note that this angle can also be given as 180° + 4°. N · m2/C

Answers

Answer:

Φ = 361872 N.m^2 / C

Explanation:

Given:-

- The area of the two plates, [tex]A_p = 180 cm^2[/tex]

- The charge on each plate, [tex]q = 17 * 10^-^6 C[/tex]

- Permittivity of free space, [tex]e_o = 8.85 * 10^-^1^2 \frac{C^2}{N.m^2}[/tex]

- The radius for the flux region, [tex]r = 3.3 cm[/tex]

- The angle between normal to region and perpendicular to plates, θ = 4°

Find:-

Find the flux (in N · m2/C) through a circle of radius 3.3 cm between the plates.

Solution:-

- First we will determine the area of the region ( Ar ) by using the formula for the area of a circle as follows. The region has a radius of r = 3.3 cm:

                             [tex]A_r = \pi *r^2\\\\A_r = \pi *(0.033)^2\\\\A_r = 0.00342 m^2[/tex]

- The charge density ( σ ) would be considered to be uniform for both plates. It is expressed as the ratio of the charge ( q ) on each plate and its area ( A_p ):

                           σ = [tex]\frac{q}{A_p} = \frac{17*10^-^6}{0.018} \\[/tex]

                           σ = 0.00094 C / m^2

- We will assume the electric field due to the positive charged plate ( E+ ) / negative charged plate ( E- ) to be equivalent to the electric field ( E ) of an infinitely large charged plate with uniform charge density.

                         [tex]E+ = E- = \frac{sigma}{2*e_o} \\\\[/tex]

- The electric field experienced by a region between two infinitely long charged plates with uniform charge density is the resultant effect of both plates. So from the principle of super-position we have the following net uniform electric field ( E_net ) between the two plates:

                        [tex]E_n_e_t = (E+) + ( E-)\\\\E_n_e_t = \frac{0.00094}{8.85*10^-^1^2} \\\\E_n_e_t = 106214689.26553 \frac{N}{C} \\[/tex]

- From the Gauss-Law the flux ( Φ ) through a region under uniform electric field ( E_net ) at an angle of ( θ ) is:

                        Φ = E_net * Ar * cos ( θ )

                        Φ = (106214689.26553) * (0.00342) * cos ( 5 )

                        Φ = 361872 N.m^2 / C

A double slit illuminated with light of wavelength 588 nm forms a diffraction pattern on a screen 11.0 cm away. The slit separation is 2464 nm. What is the distance between the third and fourth bright fringes away from the central fringe

Answers

Answer:

[tex]y_{4}-y_{3}=35.22-11.27=23.95 \mathrm{cm}[/tex]

Explanation:

Given that

Wavelength [tex]\lambda=588 \mathrm{nm}[/tex]

slit separation [tex]\mathrm{d}=2464 \mathrm{nm}[/tex]

slit screen distance [tex]\mathrm{D}=11 \mathrm{cm}[/tex]

We know that for double slit the maxima condition is that

[tex]\operatorname{dsin} \theta=m \lambda[/tex]

[tex]\sin \theta=\frac{m \lambda}{d}[/tex]

[tex]\theta=\sin ^{-1}\left(\frac{\mathrm{m} \lambda}{\mathrm{d}}\right)[/tex]

For small angle approximation, [tex]\sin \theta \approx \tan \theta \approx \theta[/tex]

[tex]\tan \theta=\frac{y_{m}}{D}[/tex]

[tex]y_{m}=D \times \tan \left[\sin ^{-1}\left(\frac{m \lambda}{d}\right)\right][/tex]

Now [tex]y_{4}[/tex] [tex]y_{4}=D \times \tan \left[\sin ^{-1}\left(\frac{4 \lambda}{d}\right)\right]=11 \times \tan \left[\sin ^{-1}\left(\frac{4 \times 588 \mathrm{nm}}{2464 \mathrm{nm}}\right)\right]=35.22 \mathrm{cm}[/tex]

Again [tex]y_{3}=D \times \tan \left[\sin ^{-1}\left(\frac{3 \lambda}{d}\right)\right]=11 \times \tan \left[\sin ^{-1}\left(\frac{3 \times 588 \mathrm{nm}}{2464 \mathrm{nm}}\right)\right]=11.27 \mathrm{cm}[/tex]

Hence [tex]y_{4}-y_{3}=35.22-11.27=23.95 \mathrm{cm}[/tex]

A 56.0 g ball of copper has a net charge of 2.10 μC. What fraction of the copper’s electrons has been removed? (Each copper atom has 29 protons, and copper has an atomic mass of 63.5.)

Answers

Answer:

The fraction of the cooper's electrons that is removed is [tex]8.5222\times 10^{-11}[/tex].

Explanation:

An electron has a mass of [tex]9.1 \times 10^{-31}\,kg[/tex] and a charge of [tex]-1.6 \times 10^{-19}\,C[/tex]. Based on the Principle of Charge Conservation, [tex]-2.10\times 10^{-6}\,C[/tex] in electrons must be removed in order to create a positive net charge. The amount of removed electrons is found after dividing remove charge by the charge of a electron:

[tex]n_{R} = \frac{-2.10\times 10^{-6}\,C}{-1.6 \times 10^{-19}\,C}[/tex]

[tex]n_{R} = 1.3125 \times 10^{13}\,electrons[/tex]

The number of atoms in 56 gram cooper ball is determined by the Avogadro's Law:

[tex]n_A = \frac{m_{ball}}{M_{Cu}}\cdot N_{A}[/tex]

Where:

[tex]m_{ball}[/tex] - Mass of the ball, measured in kilograms.

[tex]M_{Cu}[/tex] - Atomic mass of cooper, measured in grams per mole.

[tex]N_{A}[/tex] - Avogradro's Number, measured in atoms per mole.

If [tex]m_{ball} = 56\,g[/tex], [tex]M_{Cu} = 63.5\,\frac{g}{mol}[/tex] and [tex]N_{A} = 6.022\times 10^{23}\,\frac{atoms}{mol}[/tex], the number of atoms is:

[tex]n_{A} = \left(\frac{56\,g}{63.5\,\frac{g}{mol} } \right)\cdot \left(6.022\times 10^{23}\,\frac{atoms}{mol} \right)[/tex]

[tex]n_{A} = 5.3107\times 10^{23}\,atoms[/tex]

As there are 29 protons per each atom of cooper, there are 29 electrons per atom. Hence, the number of electrons in cooper is:

[tex]n_{E} = \left(29\,\frac{electrons}{atom} \right)\cdot (5.3107\times 10^{23}\,atoms)[/tex]

[tex]n_{E} = 1.5401\times 10^{23}\,electrons[/tex]

The fraction of the cooper's electrons that is removed is the ratio of removed electrons to total amount of electrons when net charge is zero:

[tex]x = \frac{n_{R}}{n_{E}}[/tex]

[tex]x = \frac{1.3125\times 10^{13}\,electrons}{1.5401\times 10^{23}\,electrons}[/tex]

[tex]x = 8.5222 \times 10^{-11}[/tex]

The fraction of the cooper's electrons that is removed is [tex]8.5222\times 10^{-11}[/tex].

according to newtons second law of motion, what is equal to the acceleration of an object

Answers

Answer: According to Newtons second Law of motion ;

F = ma (Force  equals  mass multiplied by acceleration.)

The acceleration is directly proportional to the net force; the net force equals mass times acceleration; the acceleration in the same direction as the net force; an acceleration is produced by a net force

Explanation:

A piston of small cross-sectional area a is used in a hydraulic press to exert a small force f on the enclosed liquid. A connecting pipe leads to a larger piston of cross sectional area A. a) What force F will the larger piston sustain

Answers

Answer:

force on larger piston = [tex]\frac{fA}{a}[/tex]

Explanation:

we label the pistons as piston A and piston B

small piston A:

area = a

force = f

large piston B:

area = A

force  = ?

Pascal's law of pressure state that the pressure delivered to a liquid is transmitted undiminished to every portion of the fluid.

we know that pressure = force ÷ area

pressure of piston A = [tex]\frac{f}{a}[/tex]

pressure of piston B = [tex]\frac{(force on piston B)}{A}[/tex]

obeying Pascal's law, the system pressures must be equal. Therefore

[tex]\frac{f}{a} = \frac{(force on piston B)}{A}[/tex]

force on large piston (B) = F = [tex]\frac{fA}{a}[/tex]

The Pauli exclusion principle states that Question 1 options: the wavelength of a photon of light times its frequency is equal to the speed of light. no two electrons in the same atom can have the same set of four quantum numbers. both the position of an electron and its momentum cannot be known simultaneously very accurately. the wavelength and mass of a subatomic particle are related by . an electron can have either particle character or wave character.

Answers

Answer:

no two electrons in the same atom can have the same set of four quantum numbers

Explanation:

Pauli 's Theory of Exclusion specifies that for all four of its quantum numbers, neither two electrons in the same atom can have similar value.

In a different way, we can say that no more than two electrons can take up the identical orbital, and two electrons must have adversely spin in the identical orbital

Therefore the second option is correct

The Thomson model of a hydrogen atom is a sphere of positive charge with an electron (a point charge) at its center. The total positive charge equals the electronic charge e. Prove that when the electron is at a distance r from the center of the sphere of positive charge, it is attracted with a force F=\frac{e^2r}{4\pi\varepsilon_oR^3} where R is the radius of the sphere.

Answers

Answer:

E = (1 / 4π ε₀ )  q r / R³

Explanation:

Thomson's stable model that the negative charge is mobile within the atom and the positive charge is uniformly distributed, to calculate the force we can use Coulomb's law

       F = K q₁ q₂ / r²

we used law Gauss

Ф = ∫ E .dA = q_{int} /ε₀

E 4π r² = q_{int} /ε₀  

E = q_{int} / 4π ε₀ r²

we replace the charge inside  

E = (1 / 4π ε₀ r²) ρ 4/3 π r³  

E = ρ r / 3 ε₀

the density for the entire atom is  

ρ = Q / V  

V = 4/3 π R³  

we substitute  

E = (r / 3ε₀ ) Q 3/4π R³  

E = (1 / 4π ε₀ ) q r / R³

Other Questions
What was the tone of the poem The Childrens Hour At the end of 2018, we have a credit balance of $10,000 in allowance for doubtful accounts before the adjusting entry for bad debts expense. After analyzing the accounts in the accounts receivable using the aging of receivables method, the company's management estimates that uncollectible accounts will be $30,000. What will be the amount of bad debts expense reported on the income statement In the triangles, BC 2DE and AC FE.If mZc is greater than mZE, then AB isDFMAO congruent too longer thanshorter thanthe same length asACFE Find the product Enter the answer below Can anyone help me to solve this question Transform the following sentences as per the instruction .1. I am as strong as him. (change to comparative form)2. Mercury is the smallest planet in the Solar System. (use: smaller)3. Iron is the most useful metal. (Superlative, use as)4. Dechen is prettier than any other girl in the school. (change into superlative)5. He was greater than most other men. (change into superlative)6. No other fruit is as sweet as a mango. (change into superlative)7. Very few countries in the world are as large as China. (change into superlative)8. She was careful when she lifted the vase. (End: ...carefully.)9. Sing a song of bravery on the stage. (Begin: Let ...)10. He is as brave as a lion. (change into comparative) to reduce the impact of biofuelOklahoma scientists are experimenting with making biofuels out of crops such asproduction on food prices.A. switchgrassB. cornC. soybeansD. sugarcane Can somebody help me with this ?? :) Find the vertex of the graphed function.f(x) = |x-4| +3AY00642Y4The vertex is at The following adjusting journal entry does not include an explanation. Select the best explanation for the entry. Supplies Expense 730 Supplies 730 ppppppp?Record purchase of supplies. Adjust supplies inventory to actual. Record sale of supplies. Reduce supplies expense. What is the slope of the line shown below?(3, 8)(1, -2) Sulfur dioxide is released when fossil fuels burn. What does sulfur dioxide cause? ASAP PLZ Find the expected return for Jackson Corporation. Round to the nearset hundredth percent. Answer in the percent format. Do not include % sign in your answer (i.e. If your answer is 4.33%, type 4.33 without a % sign at the end.) A student said that the y-intercept of the function y = 3 4x is 4. What is their mistake? What is the actual y-intercept? What type of pronoun error is present in the underlined portion of the passage? Which revision fixes this error? Suppose that you add 27.6 g of an unknown molecular compound to 0.250 kg of benzene, which has a K f of 5.12 oC/m. With the added solute, you find that there is a freezing point depression of 3.69 oC compared to pure benzene. What is the molar mass of the unknown compound smear samples from patient admitted at the kole-teaching hospital with boils and abscesses were brought to the laboratory for staining and microscopic examination. As an upcoming microbiologist state the keeping steps you would to stain the smear using Gram stain.upon examination, you've found blue coloured graped-cluster berry round the cell1.what could be the outcome of the Gram staining reaction2.what could be this bacterium and why Hello I want a summary for this When you start a job, you can leave a bad impression on your new Coworkers very quickly without even realizing it. Because the workplace can be fast-paced and stressful, it can be easy to forget the people around you . But use your own words , and thank you so much. the radius of wheel of a bicycle is 40 cm. taking pie =3.14, a)find tthe circumference of the wheel.b) find the distance covered by the bicycle in 200 complete revolution of the wheel.please ans this question. i beg you Mr. Mole left his burrow and started digging his way down.A represents Mr. Mole's altitude relative to the ground (in meters) after t minutes.A= -2.3t 7How fast did Mr. Mole descend? What effect does the president's use of repetition in this passage have on theaudience?A. The repeated use of the phrase "maybe you'll decide is meant totrouble the students and make them anxious about their futurechoices.B. The repetition of the word "maybe" is meant to create doubt in thestudents, making them question whether they have the ability tosucceed.O C. The repeated use of the phrase "maybe you'll decide" is meant toempower students to make responsible decisions about theireducation.D. The repetition of the word "goal" is meant to evoke soccer orfootball, causing students to equate education with competitivesports.