Assume the three blocks (m1 = 1.0 kg, m2 = 2.0 kg, and m3 = 4.0 kg) portrayed in the figure below move on a frictionless surface and a force F = 34 N acts as shown on the 4.0-kg block. Answer parts a-c.

Assume The Three Blocks (m1 = 1.0 Kg, M2 = 2.0 Kg, And M3 = 4.0 Kg) Portrayed In The Figure Below Move

Answers

Answer 1

(a) The acceleration of the system is 8.5 m/s².

(b) The tension in the cord connecting the 4.0 kg and 1.0 kg blocks is 42.5 N.

(c) The force exerted by the 1.0 kg block on the 2.0 kg block is 59.5 N.

To solve this problem, we can use Newton's second law of motion (F = ma) and consider the forces acting on each block individually.

(a) Determine the acceleration given this system:

To find the acceleration (a) of the system, we can use the net force acting on the 4.0 kg block (m3). The only force acting on m3 is the applied force (F = 34 N).

F = m3 * a

34 N = 4.0 kg * a

Solving for a, we find:

a = 34 N / 4.0 kg

a = 8.5 m/s²

Therefore, the acceleration of the system is 8.5 m/s².

(b) Determine the tension in the cord connecting the 4.0-kg and the 1.0-kg blocks:

To find the tension in the cord (T), we can consider the forces acting on the 1.0 kg block (m1).

T - F = m1 * a

T - 34 N = 1.0 kg * 8.5 m/s²

T - 34 N = 8.5 N

T = 42.5 N

Therefore, the tension in the cord connecting the 4.0 kg and 1.0 kg blocks is 42.5 N.

(c) Determine the force exerted by the 1.0-kg block on the 2.0-kg block:

To find the force exerted by the 1.0 kg block (m1) on the 2.0 kg block (m2), we can consider the forces acting on the 2.0 kg block.

F - T = m2 * a

F - 42.5 N = 2.0 kg * 8.5 m/s²

F - 42.5 N = 17 N

F = 59.5 N

Therefore, the force exerted by the 1.0 kg block on the 2.0 kg block is 59.5 N.

for more questions on acceleration
https://brainly.com/question/460763
#SPJ8


Related Questions

deduce an expression, in terms of m, c, and V, for the contribution of P to the pressure exerted on W. Refer to appropriate Newton’s laws of motion.

Answers

The expression for the contribution of P to the pressure exerted on W is P = mV/(c^2t), derived using Newton's laws of motion and the definition of pressure.

In order to deduce an expression, in terms of m, c, and V, for the contribution of P to the pressure exerted on W, we can use the appropriate Newton’s laws of motion. Specifically, we can use the equation F = ma, where F represents force, m represents mass, and a represents acceleration.We know that pressure (P) is defined as force per unit area, or P = F/A. Rearranging this equation, we can solve for force: F = PA.Substituting this into the equation F = ma, we get PA = ma. Rearranging this equation, we can solve for pressure in terms of mass and acceleration: P = ma/A. Finally, we know that acceleration can be expressed in terms of velocity (V) and time (t): a = V/t.Substituting this into our equation for pressure, we get P = mV/(At). Since c represents the speed of sound, we can express A as [tex]A = c^2[/tex]. Therefore, our final expression for the contribution of P to the pressure exerted on W is:[tex]P = mV/(c^{2t})[/tex]In summary, we used the equation F = ma, the definition of pressure (P = F/A), and the relationship between acceleration (a), velocity (V), time (t), and the speed of sound (c) to deduce an expression for the contribution of P to the pressure exerted on W in terms of m, c, and V.

For more questions on pressure

https://brainly.com/question/28012687

#SPJ8

An object of mass M = 14.0 kg is attached to a cord that is wrapped around a wheel of radius r = 12.0 cm (see figure). The acceleration of the object down the frictionless incline is measured to be a = 2.00 m/s2 and the incline makes an angle = 37.0° with the horizontal. Assume the axle of the wheel to be frictionless. Answer parts a-c.

Answers

a.  the tension in the rope is  91.5 N.

b.   the moment of inertia of the wheel is  0.1008 kg⋅m².

c.  the angular speed of the wheel 2.30 s after it begins rotating is  38.34 rad/s.

How do we calculate?

(a)

The tension in the rope can be found by considering the forces acting on the object.

ma = mg*sin(θ) - T

(14.0 kg)(2.00 m/s²)

= (14.0 kg)(9.8 m/s²)*sin(37°) - T

T = (14.0 kg)(9.8 m/s²)*sin(37°) - (14.0 kg)(2.00 m/s²)

T =  91.5 N

(b)

The moment of inertia of a wheel:

I = (1/2)MR²

I = (1/2)(14.0 kg)(0.12 m)²

I = 0.1008 kg⋅m²

(c)

The angular acceleration of the wheel:

α = a/R

α = angular acceleration,

a = linear acceleration of the object,

R =  radius of the wheel.

α = (2.00 m/s²)/(0.12 m)

α = 16.67 rad/s²

The angular speed (ω) of the wheel after time t is :

ω = ω₀ + αt

ω = 0 + (16.67 rad/s²)(2.30 s)

ω = 38.34 rad/s

Learn more about angular speed at:
https://brainly.com/question/25279049

#SPJ1

what type of force

a child on a sled slides down the hill

Answers

Answer:

Gravity.

Explanation:

Gravity causes the child on a sled to slide down the hill.

Hope this helps!

A 400 kg bomb sitting at rest on a table explodes into three pieces. A 150 kg piece moves off to the East with a velocity of 150 m/s. A 100 kg piece moves off with a velocity of 200 m/s at a direction of south 60° West.
What is the velocity of the third piece?

Answers

The velocity of the third piece is (81.25 m/s, -43.3 m/s).

To determine the velocity of the third piece, we can use the principle of conservation of momentum.

Given:

Mass of the first piece (m1) = 150 kg

Velocity of the first piece (v1) = 150 m/s (to the East)

Mass of the second piece (m2) = 100 kg

Velocity of the second piece (v2) = 200 m/s at a direction of south 60° West

Let's break down the velocities into their respective horizontal (x) and vertical (y) components.

For the first piece:

v1x = 150 m/s (since it's moving to the East)

v1y = 0 m/s (no vertical component)

For the second piece:

v2x = 200 m/s * cos(60°) = 200 m/s * 0.5 = 100 m/s (horizontal component)

v2y = -200 m/s * sin(60°) = -200 m/s * 0.866 = -173.2 m/s (vertical component, negative since it's moving downward)

Now, let's calculate the momentum of the first and second pieces:

The momentum of the first piece (p1) = m1 * v1

= 150 kg * 150 m/s

= 22,500 kg·m/s

The momentum of the second piece (p2) = m2 * v2

= 100 kg * (100 m/s, -173.2 m/s)

= (10,000 kg·m/s, -17,320 kg·m/s)

To find the total momentum after the explosion, we can add the momenta of the individual pieces:

Total momentum after the explosion = p1 + p2

= (22,500 kg·m/s, 0 kg·m/s) + (10,000 kg·m/s, -17,320 kg·m/s)

= (32,500 kg·m/s, -17,320 kg·m/s)

The total momentum after the explosion should also be equal to the momentum of the third piece:

The momentum of the third piece (p3) = m3 * v3

Given:

Mass of the third piece (m3) = 400 kg (calculated from the given mass of the bomb)

Let's assume the velocity of the third piece is (v3x, v3y).

Therefore, we have the equation:

(32,500 kg·m/s, -17,320 kg·m/s) = 400 kg * (v3x, v3y)

By equating the x and y components separately, we can solve for the velocity components of the third piece:

32,500 kg·m/s = 400 kg * v3x

-17,320 kg·m/s = 400 kg * v3y

Solving these equations, we find:

v3x = 81.25 m/s

v3y = -43.3 m/s

Therefore, the velocity of the third piece is approximately (81.25 m/s, -43.3 m/s).

know more about velocity here:

https://brainly.com/question/80295

#SPJ8

Two objects with masses of m1 = 3.70 kg and m2 = 5.70 kg are connected by a light string that passes over a frictionless pulley, as in the figure below. Answer parts a-c.

Answers

(a) The tension in the string is determined as 19.6 N.

(b) The acceleration of each object is 5.3 m/s².

(c) The distance each object will move in the first second if it started from rest is 2.65 m.

What is the tension in the string?

(a) The tension in the string is the resultant weight of the masses and magnitude is calculated as follows;

T = ( 5.7 kg - 3.7 kg ) x 9.8 m/s²

T = 19.6 N

(b) The acceleration of each object is calculated as follows;

a = T / m

where;

m is the mass T is the tension

a = 19.6 N / 3.7 kg

a = 5.3 m/s²

(c) The distance each object will move in the first second if it started from rest is calculated as;

s = ut + ¹/₂at²

where;

u is the initial velocity = 0

s = 0 + ¹/₂(5.3)(1²)

s = 2.65 m

Learn more about acceleration here: https://brainly.com/question/14344386

#SPJ1

Look at this graphic organizer of requirements to apply to become an astronaut.
Requirements for Astronauts
What does the graphic organizer most suggest about the job of an astronaut?
It is technical and potentially tedious.
It is detailed and potentially exhausting.
It is confidential and potentially exciting.
○ It is complex, demanding, and involves flight.
Save and Exit
Next

Answers

The graphic organizer suggests that the job of an astronaut is complex, demanding, and involves flight.

This conclusion can be drawn by examining the nature of the requirements listed in the graphic organizer. Firstly, the requirements listed in the organizer are numerous and encompass various aspects. They include educational qualifications, such as having a bachelor's degree in a relevant field, as well as specific experience, like piloting an aircraft.

These requirements highlight the complexity of the job and indicate that astronauts need to possess a diverse set of skills and knowledge. Additionally, the requirements for physical fitness and health demonstrate the demanding nature of the job.

Astronauts are expected to undergo rigorous physical training to ensure they can handle the physical stresses associated with space travel and the conditions they will encounter in space. This indicates that the job can be physically exhausting and requires individuals to be in excellent health.

Lastly, the inclusion of flight-related requirements, such as the need to pass a long-duration spaceflight physical and participate in aircraft flights, implies that the job of an astronaut involves actual flight experiences. This indicates that astronauts are directly involved in piloting spacecraft and are expected to have practical experience in flying.

know more about astronaut here:

https://brainly.com/question/30733605

#SPJ8

Particles q₁ = -66.3 μC, q2 = +108 μC, and
q3 = -43.2 μC are in a line. Particles q₁ and q2 are
separated by 0.550 m and particles q2 and q3 are
separated by 0.550 m. What is the net force on
particle q₂?
Remember: Negative forces (-F) will point Left
Positive forces (+F) will point Right

Answers

To calculate the net force on particle q₂, we need to consider the forces exerted by the other particles. The force between charged particles can be calculated using Coulomb's law:

F = (k * |q₁ * q₂|) / r²

Where:
F is the force between the particles,
k is the electrostatic constant (approximately 9 × 10^9 N m²/C²),
q₁ and q₂ are the magnitudes of the charges on the two particles, and
r is the separation between the particles.

Let's calculate the forces between q₁ and q₂ as well as q₂ and q₃ using the given values:

For q₁ and q₂:
F₁₂ = (9 × 10^9 N m²/C² * |-66.3 μC * 108 μC|) / (0.550 m)²

For q₂ and q₃:
F₂₃ = (9 × 10^9 N m²/C² * |108 μC * -43.2 μC|) / (0.550 m)²

To find the net force on q₂, we need to consider the direction of each force and add them up. Since q₁ and q₂ have opposite charges, the force F₁₂ will be negative (pointing left), and the force F₂₃ will be positive (pointing right).

Net force on q₂ = F₁₂ + F₂₃

Let's calculate the values:

7. Name the type of mirror used:-
(i) as a reflector in search light (iii) by the dentist
(ii) as side view mirror in vehicles. (iv) as a shaving mirror

Answers

Answer:

1. Concave mirror

2. Convex mirror

3. Concave mirror

4. Concave mirror

Explanation:

Concave mirror is placed near on an object it displays a virtual image

A ball is thrown vertically upward with a speed of 15.0 m/s. Find a - How high does it rise? in meters, find b - How long does it take to reach its highest point? in seconds, find c - How long does the ball take to hit the ground after it reaches its highest point? in seconds, find d - What is its velocity when it returns to the level from which it started? in m/s.

Answers

Given that the initial velocity at which the ball is thrown vertically upward is 15m/s. Let us also assume that the value of acceleration due to gravity (g) = 9.8m/s² and in this case, the value will be -9.8m/s² as the ball is moving against gravity.

a) To calculate how high the ball rises, we can use the kinematic equation:

v² = u² + 2gs......(i)

where v ⇒ final velocity

u ⇒ initial velocity

g ⇒ acceleration and,

s ⇒ displacement (the height)

The final velocity will be 0 when the ball reaches its maximum height.

Substituting the values in equation (i), we get

0² = 15² + (2*-9.8*s)

0 = 225 - 19.6s

Thus, s = 225/19.6 = 11.48 m.

Therefore, the ball rises approximately 11.48 meters.

b) To find the time taken to reach the highest point, we can use the kinematic equation,

v = u + gt......(ii)

where t = time

Substituting the values in equation (ii)

0 = 15 - 9.8*t

t = -15/ -9.8 = 1.53 seconds

Thus, the time taken to reach the highest point = 1.53 seconds.

c) To find the time taken for the ball to hit the ground after it reaches its highest point, we can use the equation,

s = ut +1/2gt².....(iii)

As the ball is moving downwards, the initial velocity, u will be 0m/s.

Thus, substituting the values in equation (iii), we get

11.48 = 0*t + 1/2*9.8*t²

11.48 = 4.9t²

t² = 2.34

Therefore t = 1.53 seconds

Thus, the time taken for the ball to hit the ground is 1.53 seconds.

d)  To find the velocity at which the ball returns to the level from which it started, we can use the equation

v = u+ gt.....(iv)

v = 0 + 9.8*1.53

Thus, v = 14.99 ≅ 15 m/s

Therefore, the velocity when it returns to the level from which it started is 15m/s.

Learn more about Velocity, here:

https://brainly.com/question/24824545

One strategy in a snowball fight is to throw a snowball at a high angle over level ground. Then, while your opponent is watching that snowball, you throw a second one at a low angle timed to arrive before or at the same time as the first one. Assume both snowballs are thrown with a speed of 26.5 m/s. The first one is thrown at an angle of 58.0° with respect to the horizontal. Find a - At what angle should the second snowball be thrown to arrive at the same point as the first?, find b - How many seconds later should the second snowball be thrown after the first in order for both to arrive at the same time?

Answers

The second snowball should be thrown at an angle of approximately 48.196° with respect to the horizontal to arrive at the same point as the first snowball.

the second snowball should be thrown 4.582 seconds later in order for both to arrive at the same time.

To find the angle at which the second snowball should be thrown, we can use the fact that the horizontal displacement of both snowballs must be the same.

Let's first find the horizontal and vertical components of the velocity for the first snowball. The initial speed is 26.5 m/s, and the angle is 58.0° with respect to the horizontal.

The horizontal component of the velocity for the first snowball is given by:

V1x = V1 * cos(angle1)

    = 26.5 m/s * cos(58.0°)

    = 26.5 m/s * 0.530

    = 14.045 m/s

Now, let's find the vertical component of the velocity for the first snowball:

V1y = V1 * sin(angle1)

    = 26.5 m/s * sin(58.0°)

    = 26.5 m/s * 0.848

    = 22.472 m/s

Since the vertical acceleration is the same for both snowballs (gravity), the time it takes for both to arrive at the same point is the same. Therefore, we can use the time of flight of the first snowball to calculate the vertical displacement for the second snowball.

The time of flight for the first snowball can be calculated using the vertical component of velocity and the acceleration due to gravity:

t = (2 * V1y) / g

  = (2 * 22.472 m/s) / 9.8 m/s²

  ≈ 4.582 s

Now, let's find the vertical displacement for the second snowball:

Δy = V1y * t - (0.5 * g * t²)

    = 22.472 m/s * 4.582 s - (0.5 * 9.8 m/s² * (4.582 s)²)

    ≈ 103.049 m

To find the angle at which the second snowball should be thrown, we can use the horizontal displacement and the vertical displacement:

tan(angle2) = Δy / Δx

           = 103.049 m / (2 * 14.045 m/s * t)

           = 103.049 m / (2 * 14.045 m/s * 4.582 s)

           ≈ 1.085

Now, we can find the angle2 by taking the arctan of both sides:

angle2 ≈ arctan(1.085)

angle2 ≈ 48.196°

Therefore,

To find how many seconds later the second snowball should be thrown, we can simply use the time of flight of the first snowball, which is approximately 4.582 seconds.

for more such questions on horizontal

https://brainly.com/question/25825784

#SPJ8

Which statement best describes the refraction of light as it moves from air to glass?

A. Light bends due to the difference in the speed of light in air and glass.

B. Although the light bends, its speed remains the same as before.

C. Although the light changes speed, it continues in the same direction as before.

D. Light undergoes diffraction due to the difference in the speed of light in air and glass.

Answers

A. Light bends due to the difference in the speed of light in air and glass.

If a 9000kg water flows in a minute through a pipe of cross sectional area 0.3m², what is the speed of water in the pipe? ​

Answers

Answer:

5 m/s

Explanation:

We are given that 9000 kg of water flows through the pipe in 1 minute. Mass flow rate = mass/time

So, mass flow rate = 9000 kg / 1 minute = 150 kg/s

We know the cross sectional area of the pipe is 0.3 m2. From continuity equation, mass flow rate = density * area * velocity

So, 150 = 1000 * 0.3 * v (Density of water is approximately 1000 kg/m3)

Solving for v (velocity):

v = 150/(1000*0.3) = 5 m/s

Therefore, the speed of water in the pipe is 5 m/s.

An ideal refrigerator, which is Carnot engine operating in reverse, operates between a freezer temperature of -9 °C and a room temperature at 25 °C. In a period of time, it absorbs 120 J from the freezer compartment. How much heat is rejected to the room? ​

Answers

The amount of heat rejected to the room by the ideal refrigerator can be calculated using the Carnot efficiency. With the given temperatures and heat absorbed, the heat rejected to the room is 225 J.

To calculate the amount of heat rejected to the room by the ideal refrigerator, we can use the Carnot efficiency, which is given by the formula:

Efficiency = 1 - ([tex]T_c_o_l_d[/tex] / [tex]T_h_o_t[/tex])

where[tex]T_c_o_l_d[/tex]is the temperature of the cold reservoir (freezer compartment) and [tex]T_h_o_t[/tex] is the temperature of the hot reservoir (room temperature).

Given:

[tex]T_c_o_l_d[/tex] = -9 °C (converted to Kelvin: 264 K)

[tex]T_h_o_t[/tex]= 25 °C (converted to Kelvin: 298 K)

Heat absorbed from the freezer compartment ([tex]Q_c_o_l_d[/tex] = 120 J

First, we calculate the Carnot efficiency:

Efficiency = 1 - (264 K / 298 K)

Efficiency ≈ 0.1134

The Carnot efficiency represents the ratio of heat transferred from the cold reservoir to the work done by the refrigerator. Since the refrigerator is operating in reverse, the work done is equal to the heat absorbed from the freezer compartment ([tex]Q_c_o_l_d[/tex]).

[tex]Q_c_o_l_d[/tex] = 120 J

Now, we can calculate the heat rejected to the room ([tex]Q_h_o_t[/tex]) using the equation:

[tex]Q_h_o_t[/tex] = Efficiency * [tex]Q_c_o_l_d[/tex]

[tex]Q_h_o_t[/tex] ≈ 0.1134 * 120 J

[tex]Q_h_o_t[/tex] ≈ 13.61 J

Therefore, the amount of heat rejected to the room by the ideal refrigerator is approximately 13.61 J.

For more such information on: heat

https://brainly.com/question/21406849

#SPJ8

A spacecraft is in a circular orbit around the planet Mars at a height of 140km.
A small part of the spacecraft falls off and eventually lands on the surface of the Mars
The small part has a mass of 1.8kg
During its fall, the small part loses 0.932 MJ of gravitational potential energy.
Calculate the gravitational field strength of Mars ​

Answers

Answer:

3.79 m/s^2

Explanation:

We know the small part loses 0.932 MJ of gravitational potential energy during its fall.

Potential energy = mass x gravitational field strength x height

Re-arranging to solve for gravitational field strength:

g = Potential energy/(mass x height)

Plugging in the given values:

g = 0.932 MJ / (1.8kg x 140km)

= 0.932 x 10^6 J / (1.8 x 1000kg x 140 x 1000m)

= 3.79 m/s^2

Therefore, the gravitational field strength of Mars is calculated to be 3.79 m/s^2.

D 4.8
This is a harder question based on the Law of Conservation of Momentum. Take the time to work
your way through it. Start with a diagram.
A 400 kg bomb sitting at rest on a table explodes into three pieces. A 150 kg piece moves off to the
east with a velocity of 150 m s². A 100 kg piece moves off with a velocity of 200 m s at a direction of
south 60° west. What is the velocity of the third piece?

It is possible

Answers

The velocity of the third piece is v₃ = -12500 kg·m/s / m₃

How do we calculate?

The law of conservation of momentum states that the total momentum before the explosion is equal to the total momentum after the explosion.

velocity of the third piece =  v₃.

The total initial momentum before the explosion = 0

The total final momentum after the explosion= 0

Initial momentum = 0 kg·m/s (since the bomb is at rest)

Final momentum = m₁v₁ + m₂v₂ + m₃v₃

m₁ = mass of the first piece = 150 kg

v₁ = velocity of the first piece = 150 m/s (to the east)

m₂ = mass of the second piece = 100 kg

v₂ = velocity of the second piece = 200 m/s (south 60° west)

m₃ = mass of the third piece = unknown

v₃ = velocity of the third piece = unknown

0 = (150 kg)(150 m/s) + (100 kg)(200 m/s)(cos(60°)) + (m₃)(v₃)

final momentum = 0 and hence  v₃ is found as :

0 = 22500 kg·m/s - 10000 kg·m/s + (m₃)(v₃)

-12500 kg·m/s = (m₃)(v₃)

v₃ = -12500 kg·m/s / m₃

Learn more about law of conservation of momentum  at:

https://brainly.com/question/1113396

#SPJ1

WHOEVER ANSWERS IS THE BRAINLIEST!!! PLS HELP!!

Answers

Based on the information, we can infer that the temperature on the west and east coasts of the United States is higher than in the central part at latitude 35° North.

What do we see in the image?

In the image you can see the map of the United States and two latitudinal lines of 35° and 45° North. Additionally we see the different temperatures that exist in various cities or locations in the United States.

Based on this information, we can infer that the temperatures on the east and west coasts are higher than the temperatures recorded in the central part. For example, at 35° latitude, the coasts register temperatures of more than 60°F while the central zone registers lower temperatures between 36 and 59°F.

Learn more about temperature in: https://brainly.com/question/7510619

#SPJ1

What are the six digit grid coordinates for the windtee?

Answers

The six digit grid coordinates for the windtee  should be 100049.

How do we we calculate?

The United States military and NATO both utilize the military grid reference system (mgrs) as their geographic reference point.

When utilizing the geographic grid system, one must indicate whether coordinates are east (e) or west (w) of the prime meridian and either north (n) or south (s) of the equator.

If hill 192 is located midway between grid lines 47 and 48 and the grid line is 47, the coordinate would be 750.

Learn more about grid system at:

brainly.com/question/30159056

#SPJ1

Suppose that the mirror is moved so that the tree is between the focus point F and the mirror. What happens to the image of the tree?

A. The image moves behind the curved mirror.

B. The image appears shorter and on the same side of the mirror.

C. The image appears taller and on the same side of the mirror.

D. The image stays the same.

Answers

Answer:

C

Explanation:

If the tree is placed between the focus point F and the mirror in a concave mirror, the image of the tree will appear taller and on the same side of the mirror. Therefore, the correct answer is C. The image appears taller and on the same side of the mirror.

.An electron of charge 1.6 x 10-19is situated in a uniform electric filed strength of 120 vm-1 Calculate the force acting on it​

Answers

The force acting on the electron is 1.92 x 10^-17 N.

The problem states that an electron of charge 1.6 x 10^-19 is located in a uniform electric field of 120 Vm^-1, and it asks us to determine the force acting on it.

We can use Coulomb's law, which states that the force between two point charges is proportional to the product of their charges and inversely proportional to the square of the distance between them. If the charges are of opposite signs, the force is attractive, while if the charges are of the same sign, the force is repulsive.

The formula for Coulomb's law is F = kq1q2/r^2, where F is the force between the charges, k is Coulomb's constant, q1 and q2 are the magnitudes of the charges, and r is the distance between them.

Since the electron has a charge of 1.6 x 10^-19 C, and the electric field strength is 120 Vm^-1, we can use the equation F = qE to find the force acting on it.

F = qE = (1.6 x 10^-19 C)(120 Vm^-1) = 1.92 x 10^-17 N.

Therefore, the force acting on the electron is 1.92 x 10^-17 N.

For more such questions on force, click on:

https://brainly.com/question/12785175

#SPJ8

The obliquity of the rotation of Uranus is over 90 degrees. Compared to the plane of the solar system, it rotates on its "side", unlike any other planet. It is surmised that this angle of rotation was caused by:

Answers

The impact of a large body early in the history of the solar system.

A woman stands at the edge of a cliff and throws a pebble horizontally over the edge with a speed of v0 = 20.5 m/s. The pebble leaves her hand at a height of h = 55.0 m
above level ground at the bottom of the cliff, as shown in the figure. Note the coordinate system in the figure, where the origin is at the bottom of the cliff, directly below where the pebble leaves the hand. Answer parts a-f.

Answers

(a)The time taken for the pebble to reach the ground is approximately 2.01 seconds, and

(b) the horizontal distance traveled by the pebble is approximately 41.02 meters.

(c) The vertical distance traveled by the pebble is 55 meters.

(d) The initial vertical velocity of the pebble is 0 m/s because it is thrown horizontally.

(e) The vertical acceleration of the pebble is due to gravity and is approximately -9.8 m/s^2.

(f) The negative sign indicates that the pebble is moving downward.

a) To find the time taken for the pebble to reach the ground, we can use the equation for vertical motion:

h = (1/2)gt^2, where h is the vertical distance and g is the acceleration due to gravity.

Rearranging the equation, we have:

t = √((2h) / g), where t is the time taken.

Substituting the given values, we get:

t = √((2 * 55) / 9.8) ≈ 2.01 seconds.

b) The horizontal speed of the pebble remains constant throughout its motion. Therefore, the horizontal distance traveled by the pebble can be found by multiplying the horizontal speed by the time taken:

d = v0 * t, where d is the horizontal distance and v0 is the initial horizontal speed.

Substituting the given values, we have:

d = 20.5 * 2.01 ≈ 41.02 meters.

c) The vertical distance traveled by the pebble is given as 55 meters.

d) The initial vertical velocity of the pebble is 0 m/s because it is thrown horizontally.

e) The vertical acceleration of the pebble is due to gravity and is approximately -9.8 m/s^2.

f) The final vertical velocity of the pebble when it reaches the ground can be found using the equation:

v = u + at, where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time taken.

Since the initial vertical velocity is 0 m/s and the acceleration due to gravity is -9.8 m/s^2, we have:

v = 0 + (-9.8) * 2.01 ≈ -19.8 m/s.

The negative sign indicates that the pebble is moving downward.

For more such questions on velocity, click on:

https://brainly.com/question/80295

#SPJ8

Question 1 of 10
What is the slope of the line plotted below?
B. 2
5
10
C. 1
O A. 0.5
о
9
OD. -0.5
5

Answers

The answer is B. 2


Explanation

Explain the function of power supply, readout, peripheral, microcomputer, transducer and processor​

Answers

The function of the power supply is to provide electrical energy to the device or system that needs it. The power supply converts the incoming voltage from the power source into a form that is usable by the device, such as DC voltage.

The readout is a device or component that displays data or information to the user. The readout could be a simple LED display or a complex graphical display.

A peripheral is a device or component that connects to a computer or other electronic device to provide additional functionality. Examples of peripherals include printers, scanners, and external hard drives.

A microcomputer is a type of computer that is designed to fit on a single microchip. Microcomputers are found in a wide range of devices, including smart phones, tablets, and embedded systems.

A transducer is a device that converts one form of energy to another. In electronics, transducers are commonly used to convert electrical energy into mechanical energy, or vice versa.

The processor is the central component of a computer or electronic device. The processor is responsible for executing instructions and controlling the other components of the system. The performance and capabilities of a device are largely determined by the speed and power of the processor.

Suppose that you're facing a straight current-carrying conductor, and the current is flowing toward you. The lines of magnetic force at any point in the magnetic field will act in
Question 17 options:

A)

a clockwise direction.

B)

a counterclockwise direction.

C)

the direction opposite to the current.

D)

the same direction as the current.

Answers

Suppose that you're facing a straight current-carrying conductor, and the current is flowing toward you. The lines of magnetic force at any point in the magnetic field will act in option c)  the direction opposite to the current.

Lenz's law is the law that governs the direction of magnetic force.According to Lenz's law, magnetic fields induced by an electric current have a polarity such that the current's magnetic field opposes any change in current flow. Based on this law, the induced current must produce a magnetic field that opposes the current that produced it.

If the current is flowing towards us, the induced magnetic field must flow in the opposite direction to the current. Therefore, the direction of the lines of magnetic force at any point in the magnetic field will act in the direction opposite to the current.Hence, the correct option is C) the direction opposite to the current.

Know more about   current   here:

https://brainly.com/question/1100341

#SPJ8

Two blocks, M1 and M2, are connected by a massless string that passes over a massless pulley as shown in the figure. M2, which has a mass of 19.0 kg,
rests on a long ramp of angle theta=25.0∘.
Ignore friction, and let up the ramp define the positive direction.
If the actual mass of M1 is 5.00 kg and the system is allowed to move, what is the acceleration of the two blocks?
What distance does block M2 move in 2.00 s?

Answers

The acceleration of the two blocks is[tex]2.14 m/s^{2[/tex]} and the distance does block M2 move in 2.00 s is 4.27 m.

Now we need to find the acceleration of the two blocks and the distance does block M2 move in 2.00 s.

We know that: mass of M1, m1 = 5.00 kg mass of M2, m2 = 19.0 kgθ = 25.0°Taking upward direction as positive for block M1 and downwards as positive for block M2.

Therefore, we can write the following equation of motion for the two blocks:

For M2: m2g - T = m2a ...(1)

For M1: T - m1g = m1a ...(2)

We can see from the figure that M2 is on an inclined plane making an angle θ with the horizontal.

We can resolve the weight of M2 into two components:

Perpendicular to the plane = m2gcosθParallel to the plane = m2gsinθ

The component parallel to the plane will tend to make the block move downwards.

Therefore, the effective weight will be:

mg = m2gsinθ ...(3)

From equation (1) we can write:

T = m2g - m2a ...(4)

Substituting equation (4) in equation (2), we get:

m2g - m2a - m1g = m1a ...(5)

On solving equation (5), we get the acceleration as:

a = g(m2sinθ - m1) / (m1 + m2)

On substituting the given values, we get:

[tex]a = 2.14 m/s^{2}[/tex]

The distance moved by M2 in 2 seconds can be found out using the formula:[tex]s = ut + \frac{1}{2} at^{2}[/tex]

Here, initial velocity, u = 0m/s Time, t = 2s Acceleration, [tex]a = 2.14 m/s^{2}[/tex]

On substituting these values, we get the distance travelled by M2 as: s = 4.27 m

Therefore, the acceleration of the two blocks is [tex]2.14 m/s^{2}[/tex]. And the distance does block M2 move in 2.00 s is 4.27 m.

For more questions on acceleration

https://brainly.com/question/460763

#SPJ8

Other Questions
The pyramid and prism above have the same triangular base and height. The volume of the pyramid is 18 cubic inches. What is the volume of the prism?A. 36 cubic inches B. 72 cubic inches C. 6 cubic inches D. 54 cubic inches An organ pipe is open on one end and closed on the other. (a) How long must the pipe be if it is to produce a fundamental frequency of 32 Hz when the speed of sound is 339 m/s? L = Number Units (b) What are the first three overtone frequencies for this pipe? List them in order. The decay energy of a short-lived particle has an uncertainty of 2.0 Mev due to its short lifetime. What is the smallest lifetime (in s) it can have? X 5 3.990-48 + Additional Materials Two identical conducting spheres are placed with their centers 0.34 m apart. One is given a charge of +1.1 x 10-8 C and the other a charge of -1.4 x 10-8 C. Find the magnitude of the electric force exerted by one sphere on the other. The value of the Coulomb constant is 8.98755 x 109 Nm/C. Answer in units of N. Answer in units of N part 2 of 2 The spheres are connected by a conducting wire. After equilibrium has occurred, find the electric force between them. Answer in units of N. Answer in units of N 7. A radio station broadcasts its radio signals at 92.6 MHz. Find the wavelength if the waves travel at 3.00 x 108 m/s. (a) If it takes 2.45 min to fill a 21.0 L bucket with water flowing from a garden hose of diameter 3.30 cm, determine the speed at which water is traveling through the hose. m/s (b) If a nozzle with a diameter three-fifths the diameter of the hose is attached to the hose, determine the speed of the water leaving the nozzle. m/s Desribe pathogenesis of type 2 diabetis mellitus and possiblecomplication type 2 diabetis mellitus In a galaxy located 800 Mpc from earth a Het ion makes a transition from an n = 2 state to n = 1. (a) What's the recessional velocity of the galaxy in meters per second? You should use Hubble's law Show that S={xR4:2x16x2+7x38x4=0} is a subspace of R4. Call option Personal finance problem Carol Krebs is considering buying 100 shares of Sooner Products, Inc., at $62 per share. Because she has read that the firm will probably soon receive certain large orders from abroad, she expects the price of Sooner to increase to $69 per share. As an alternative, Carol is considering the purchase of a call option for 100 shares of Sooner at a strike price of $58. The 90-day option will cost $900 Ignore any brokerage fees or dividends a. What will Carol's profit be on the stock transaction if its price does rise to $69 and she sells? b. How much will Carol earn on the option transaction if the underlying stock price rises to $89? c. How high must the stock price rise for Carol to break even on the option transaction? d. Compare, contrast, and discuss the relative profit and risk associated with the stock and option transactions. SOCIAL PSYC1. Invasion of privacy is an ethical concern in a study using the observational research method, how would you resolve the issue?2. would findings vary in observation research method if the study occurred in an individualistic vs. collectivistic culture?pls help, will give upvote 1. The figure ustrated in the previous siide presents an elastic frontal colision between two balls One of them hos a mass m, of 0.250 kg and an initial velocity of 5.00 m/s. The other has a mass of m, 0.800 kg and is initially at rest. No external forces act on the bolls. Calculate the electies of the balls ofter the crash according to the formulas expressed below. Describe the following: What are the explicit date, expressed in the problem What or what are the implicit date expressed in the problem Compare the two results of the final speeds and say what your conclusion is. 2 3 4. -1-+ Before collision m2 mi TOL 102=0 After collision in What is the self-inductance of an LC circuit that oscillates at 60 Hz when the capacitance is 10.5 F? = H A particle moving along the x axis has acceleration in the x direction as function of the time given by a(t)=3t2t.For t = 0 the initial velocity is 4.0 m/s. Determine the velocity when t = 1.0 s. Write here your answer. Include the units. Explain the difference between the control limits and the specification limits using a specific product or service as an example. Please try to make it as long as possible. I'll make sure to give a thumbs up. Thank you. Consider a sample with a mean of and a standard deviation of . use chebyshev's theorem to determine the percentage of the data within each of the following ranges (to the nearest whole number). 16. The receptionist told...... again in the morning. A. to call B. me call C. me to call 17. She wishes she..... to Spain on holiday last year. A. had gone B. went C. would have gone 18. There's no point his mind. A. to ask B. in asking C. ask 19. Paul said that he ...... the email the previous day. A. sent B. had sent C. would send Dad again. He won't change 20. Do you think you can.....? A. describe us the thief B. describe to us the thief C. describe the thief to us 21. I heard that Dave has come. A. across B. down with C. around the flu. 22. 1. last month, and it looks great now. A. had painted the house B. had the house painted C. paint it the house A. would leave B. should leave C. must have left 23. I can't find my maths book. I...... it at school yesterday. 24. I usually get a good grade in term,..., I only got a C. A. although B. however C. even though 25. The woman...... police. A. that B. who's C. whose bag was stolen went to the 26. The Mona Lisa, by Leonardo da Vinci, ...... priceless. A. says to be B. is said to be C. is said to being 27. 'Steve is late for school today.' 'He may...... bus again.' A. missed B. have missed C. miss 29. Teaching art in school gives children an opportunity to be A. creative B. creativity C. creatively 30. The boys were hungry, so we had sandwiches. also A. to stop to buy B. to stop buying C. to be buying the 28. You go to bed now, or you won't be able to get up in the morning. A. would better B. had rather C. had better mu Aft W some Analyse the importance of public opinion polls andpolitical data with respect to political agendas and the public'sinput into decision-making. The electric field strength at one point near a point charge is 1000 n/c. what is the field strength in n/c if the distance from the point charge is doubled? Case study #1: "It does look good," said Amanda, the restaurant manager at Emil's Italian Kitchen "Very fresh." "And it's consistent," replied Todd, the sales manager for Brother's Ready Produce Todd and Amana were discussing a new processed lettuce blend that Brother's Ready Produce was offering for sale. The blend of arugula, red cabbage, romaine, and iceberg lettuce came packaged in two- pound bags and was ready to serve. "It's formulated to complement Italian foods," continued Todd. "And with as much salad as you serve at Emil's, you'll save a ton of labor." "I agree that we would save significantly in labor." replied Amanda, "but what does it cost per serving"? 1. Labor-saving preprocessed foods such as fruits, vegetables, and meats do typically reduce labor costs. In what other areas will cost reductions occur when a restaurant manager buys preprocessed foods? 2. What procedure should Amanda use to determine if the increased as-purchased (AP) cost per serving of salad is more than the labor and any other savings she will incur by purchasing Todd's preprocessed salad blend? Case study #2: "Well, what do we have in the box?" asked Raj, the restaurant manager at Sofia's Tuscan Bistro. "An American blue cheese that I use for making salad dressing." replied Jeanette, the restaurant's kitchen manager. "But we don't have any Italian gorgonzola for the Tuscan gorgonzola steak?" asked Raj. "No." said Jeanette. "The distributor shorted us on your order this week. But you know most people can't tell the difference between blue cheese and gorgonzola," said Jeanette. "So why don't we just use the blue cheese?" Assume you were Raj and that you've included the phrase, "melted gorgonzola" on the menu to describe your popular "Tuscan Gorgonzola Steak" entre. 1. Would you use the American blue cheese as a substitute in the Tuscan gorgonzola steak? 2. If so, would you inform your guests of the substitution? If not, what would you do?