Answer:
independent variable
Explanation:
Wind is formed when hot air rises and cool air sinks. This process is called __________
conduction
insulation
radiation
convection
plsssssssss answer this correct i put in 12 points and i will give you brainliest if you answer correct
Answer:
conduction is the correct answer
Se desea elevar un cuerpo de 1000 kg utilizando una elevadora hidráulica de plato grande circular de 50 cm de radio y plato pequeño circular de 8cm de radio, calcula: a) El peso del cuerpo. b) Cuanta fuerza hay que hacer en el émbolo pequeño, c) Si el émbolo pequeño desciende 60 cm, ¿qué volumen de fluido desplaza hacia el émbolo mayor?
Answer:
a) [tex]W=9810\: N[/tex]
b) [tex]F_{1}=251.14\: N[/tex]
c) [tex]V_{g}=0.012\: m^{3}[/tex]
Explanation:
a)
El peso del cuerpo es:
[tex]W=mg[/tex]
g es la gravedad (9.81 m/s²)
[tex]W=1000*9.81[/tex]
[tex]W=9810\: N[/tex]
b)
Usando el principio de Pascal tenemos:
[tex]P_{1}=P_{2}[/tex]
y la presion es la fuerza sobre el area.
[tex]\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}}[/tex]
F(1) es la fuerza aplicada en el embolo pequeñoA(1) es el area del disco pequeñoF(2) es la fuerza aplicada en el embolo grandeA(2) es el area del disco grandeDespejando F(1):
[tex]F_{1}=F_{2}\frac{A_{1}}{A_{2}}[/tex]
el area del plato es: [tex]A=\pi R^{2}[/tex]
[tex]F_{1}=F_{2}\frac{\pi R_{1}^{2}}{\pi R_{2}^{2}}[/tex]
[tex]F_{1}=F_{2}\frac{R_{1}^{2}}{R_{2}^{2}}[/tex]
F(2) es el peso del cuerpo de 1000 kg (W)
[tex]F_{1}=9810\frac{8^{2}}{50^{2}}[/tex]
Por lo tanto, la fuerza que se debe hacer es:
[tex]F_{1}=251.14\: N[/tex]
c)
Como tenemos un sistema cerrado el volumen de agua que desciende por el embolo pequeño debe ser igual al que sube por el grande, por lo tanto:
[tex]V_{p}=V_{g}[/tex]
Vp es el volumen de agua en el émbolo pequeño
Vg es el volumen de agua en el émbolo grande
Como sabemos que son cilindros (V=πR²h)
[tex]\pi R^{2}h=V_{g}[/tex]
Entonces el volumen del émbolo mayor será:
[tex]V_{g}=\pi 0.08^{2}0.6[/tex]
[tex]V_{g}=0.012\: m^{3}[/tex]
Espero te haya sido de ayuda!
6. A garden hose attached to a nozzle is used to fill a 15-gal bucket. The inner diameter of the hose is 1.5 cm, and it reduces to 0.8 cm at the nozzle exit. If it takes 50 s to fill the bucket with water (density = 1 kg/L), determine (a) the volume and mass flow rates of water through the hose, and (b) the average velocity of water at the nozzle exit.
Answer: 1.135 L/s; 1.35 kg/s, 22.57 m/s
Explanation:
Given
Volume of bucket [tex]V=15\ gal\approx 56.78\ L[/tex]
time to fill it [tex]t=50\ s[/tex]
Volume flow rate
[tex]\dot{V}=\dfrac{56.78}{50}=1.135\ L/s\approx 1.135\times 10^{-3}\ m^3/s[/tex]
The inner diameter of the hose [tex]D=1.5\ cm[/tex]
diameter of the nozzle exit [tex]d=0.8\ cm[/tex]
we can volume flow rate as
[tex]\Rightarrow \dot{V}=Av\quad \quad \text{v=average velocity through nozzle exit}\\\\\Rightarrow 1.135\times 10^{-3}=\frac{\pi }{4}d^2\times v\\\\\Rightarrow 1.135\times 10^{-3}=\frac{\pi }{4}(0.8\times 10^{-2})^2\times v\\\\\Rightarrow v=\dfrac{4\times 1.135\times 10^{-3}}{\pi \times 64\times 10^{-6}}=22.57\ m/s[/tex]
Mass flow rate
[tex]\Rightarrow \dot{m}=\rho \times \dot{V}\\\Rightarrow \dot{m}=1\ kg/L\times 1.135\ L/s=1.35\ kg/s[/tex]
can someone please help me I am so behind I neee to catch up but I need it to be correct both of them
Answer:
1.B, 2.A
Explanation:
A Sonometer wire of length
l vibrates at a
frequency of
350 Hz. when the length of the
wire is increased by 15cm, the
Wire Vibrates at 280 H₂ under
constant tension. Determine l
Answer:
-75 cm
Explanation:
At l ; F = 350 Hz
At l + 15 cm ; F = 280 Hz
I = 350
I + 15 = 280
280I = 350(I + 15)
280I = 350I + 5250
280I - 350I = 5250
-70I = 5250
I = - 75cm
The length is - 75 cm
For these pictures is more or less friction needed?
Answer:
8: More
9: More
10: More
11: Less
12: Less
12: More
In the legend of William Tell, Tell is forced to shoot an apple from his son's head for failing to show respect to a high official. In our case, let's say Tell stands 8.7 meters from his son while shooting. The speed of the 144-g arrow just before it strikes the apple is 20.4 m/s, and at the time of impact it is traveling horizontally. If the arrow sticks in the apple and the arrow/apple combination strikes the ground 8 m behind the son's feet, how massive was the apple
Answer:
M = 0.31 kg
Explanation:
This exercise must be done in parts, let's start by finding the speed of the set arrow plus apple, for this we define a system formed by the arrow and the apple, therefore the forces during the collision are internal and the moment is conserved
let's use m for the mass of the arrow with velocity v₁ = 20.4 m / s and M for the mass of the apple
initial instant. Just before the crash
p₀ = m v₁ + M 0
instant fianl. Right after the crash
p_f = (m + M) v
p₀ = p_f
m v₁ = (m + M) v
v =[tex]\frac{m}{m+M} \ v_1[/tex] (1)
now we can work the arrow plus apple set when it leaves the child's head with horizontal speed and reaches the floor at x = 8 m. We can use kinematics to find the velocity of the set
x = v t
y = y₀ + [tex]v_{oy}[/tex] t - ½ g t²
when it reaches the ground, its height is y = 0 and as it comes out horizontally, [tex]v_{oy} = 0[/tex]
0 = h - ½ g t²
t² = 2h / g
For the solution of the exercise, the height of the child must be known, suppose that h = 1 m
t = [tex]\sqrt{ \frac{ 2 \ 1}{9.8} }[/tex]
t = 0.452 s
let's find the initial velocity
v = v / t
v = 8 / 0.452
v = 17.7 m / s
From equation 1
v = m / (m + M) v₁
m + M = [tex]m \ \frac{v_1}{v}[/tex]
M = m + m \ \frac{v_1}{v}
we calculate
M = 0.144 + 0.144 [tex]\frac{20.4}{17.7}[/tex]
M = 0.31 kg
5) In the last part of step 7 of the procedure, you measured the resistance of the flashlight when it had no current passing through it. The resistance of the flashlight is different, however, when current is passing through it. Explain how your measurement of the resistance of the variable resistor obtained in part 7 is a valid approximation of the resistance of the flashlight when it had current passing through it. Is the resistance higher when the flashlight is on or off
Answer:
Following are the responses to this question:
Explanation:
The small current passes thru the capacitor of the strain gauge and the current is generated throughout the resistor. For the very first time, in contrast to what we calculate, its resistance of the multimeter is quite high and therefore the small stream flowing through the bulb would have very little impact on the measure. Thus, as the current flows through the flashbulb, this same calculation is of excellent price, its material is heated and resistance varies with increase. Therefore, when the bulb will be on, sensitivity is greater.
6. As distance increases, gravitational force *
(10 Points)
increases
decreases
1. An object with a mass of 5 kg is pushed by a force of 10 N. What is the object's acceleration?
Answer:2m/s^2
Explanation:
a=f/m
What happens to solar radiation when it is absorbed
Answer:
Absorbed sunlight is balanced by heat radiated from Earth's surface and atmosphere. ... The atmosphere radiates heat equivalent to 59 percent of incoming sunlight; the surface radiates only 12 percent. In other words, most solar heating happens at the surface, while most radiative cooling happens in the atmosphere
Who was the first scientist to explore the moon with a telescope? A Isaac Newton B Johannes Kepler C Nicolaus Copernicus D Galileo Galilae
Answer:
D Galileo Galilae
Explanation:
It's now understood that English astronomer Thomas Harriot, (1560-1621) made the first recorded observations of the Moon through a telescope, a month before Galileo
Answer: Galileo Galilae
Explanation:
Count how many significant figures each of the quantities below has:
a. 2.590 km
b.12.303 ml
c. 7800kg
If the object on the Moon were raised to a height of 30.0 m, what would be the potential energy? PE=mgh (g on the Moon is 1.62m/s)
Are we within earths Roche limit
Answer: Closer to the Roche limit, the body is deformed by tidal forces. Within the Roche limit, the mass' own gravity can no longer withstand the tidal forces, and the body disintegrates. hope this helps can u give me brainliest
Explanation:
Which of these would have the highest temperature?
ice
· Water
water vapor
Answer:
water vapor
Explanation:
did assignment on edge
We know that there is a relationship between work and mechanical energy change. Whenever work is done upon an object by an external force (or non-conservative force), there will be a change in the total mechanical energy of the object. If only internal forces are doing work then there is no change in the total amount of mechanical energy. The total mechanical energy is said to be conserved. Think of a real-life situation where we make use of this conservation of mechanical energy (where we can neglect external forces for the most part). Describe your example and speak to both the kinetic and potential energy of the motion.
Answer:
* roller skates and ice skates.
* roller coaster
Explanation:
One of the best examples for this situation is when we are skating, in the initial part we must create work with a force, it compensates to move, after this the external force stops working and we continue movements with kinetic energy, if there are some ramps, we can going up, where the kinetic energy is transformed into potential energy and when going down again it is transformed into kinetic energy. This is true for both roller skates and ice skates.
Another example is the roller coaster, in this case the motor creates work to increase the energy of the car by raising it, when it reaches the top the motor is disconnected, and all the movement is carried out with changes in kinetic and potential energy. In the upper part the energy is almost all potential, it only has the kinetic energy necessary to continue the movement and in the lower part it is all kinetic; At the end of the tour, the brakes are applied that bring about the non-conservative forces that decrease the mechanical energy, transforming it into heat.
When an
object is placed 15 cm from "
a concave mirror, a real image magnified
3 times is formed - Find
a) the focal length of the mirror
b) where the object must be placed to
give a virtual image 3 times the height
of the object
Answer:
Focal length(f)= -15 cm, magnification= -3 (image is real). So, -v/u=-3 ; or v=3u {v=image distance and u=object distance}. Using mirror formula,
1/f= 1/v + 1/u
-1/15 = 1/3u + 1/u
4/3u = -1/15
u= -20 cm
v =3u= 3×(-20)= -60 cm
So object is 20 cm and image is 60 cm in front of the mirror.
Explanation:
If the net force acting on an object is 0 N, you can be sure that the forces acting on the object are
A. balanced B.Unbalanced C. acting at the same direction
I think the answer would be A.
After all, it is 0 which is technically a dead center number meaning that the net should be balanced and still.
Hope this helps and have a nice day.
-R3TR0 Z3R0
can someone explain how to find the tangent line of something :D
Answer:
This can help you! Pictures tell more than 100s of word.
Explanation:
There is a 247–m–high cliff at Half Dome in Yosemite National Park in California. Suppose a boulder breaks loose from the top of this cliff. What is the velocity of the boulder just before it strikes the ground?
Answer:
Vf = 69.61 m/s
Explanation:
We will use the third equation of motion to solve this problem:
[tex]2gh = V_{f}^2 - V_{i}^2\\[/tex]
where,
g = acceleration due to gravity = 9.81 m/s²
h = height of cliff = 247 m
Vf = final velocity = ?
Vi = initial velocity = 0 m/s (boulder breaks loose from rest)
Therefore,
[tex](2)(9.81\ m/s^2)(247\ m) = V_{f}^2 - (0\ m/s)^2\\V_{f} = \sqrt{4846.14\ m^2/s^2}\\[/tex]
Vf = 69.61 m/s
Find the polar angle (in radians with respect to +x-axis) of −3i + j.
Answer:
[tex]-18.43^{\circ}[/tex]
Explanation:
Let [tex]\theta[/tex] be the polar angle of −3i + j. We can find it using the formula as follows :
[tex]\tan\theta=\dfrac{y}{x}\\\\\tan\theta=\dfrac{1}{-3}\\\\\theta=\tan^{-1}(\dfrac{1}{-3})\\\\\theta=-18.43^{\circ}[/tex]
So, the required polar angle is [tex]-18.43^{\circ}[/tex].
A 45.0 kilogram boy is riding a 15.0-kilogram bicycle with a speed of 8.00 meters per second. What is the combined kinetic energy of the boy and the bicycle? A)480.J B)240.0J C)1920J D)1440J
Answer:
1920Joules
Explanation:
The formula for calculating the kinetic energy of a body is expressed as;
KE = 1/2 mv²
m isthe mass
V is the speed
For the two masses, the combined KE is expressed as;
KE = 1/2(m1+m2)v²
KE = 1/2(45+15)(8)²
KE = 1/2 * 60 * 64
KE = 30 * 64
KE = 1920J
Hence the combined kinetic energy of the boy and the bicycle is 1920Joules
The combined kinetic energy of the boy and the bicycle is of 1920 J.
Given data:
The mass of boy is, m = 45.0 kg.
The mass of bicycle is, M = 15.0 kg.
The speed of bicycle is, v = 8.00 m/s.
The kinetic energy of an object is defined as the energy possessed by an object by virtue of motion of object. The combined kinetic energy of the boy-bicycle system is given as,
[tex]KE = \dfrac{1}{2}(m+M)v^{2}[/tex]
Solve by substituting the values as,
[tex]KE = \dfrac{1}{2}(45+15) \times 8^{2}\\\\KE = 1920 \;\rm J[/tex]
Thus, we can conclude that the combined kinetic energy of the boy and the bicycle is of 1920 J.
Learn more about the concept of kinetic energy here:
https://brainly.com/question/12669551
HELP DUE 3 MINUTESSSSD
Answer:
Break down small pebbles and sediments, like sand
Break down large rocks like mountains
Explanation:
The velocity of an object is +47 m/s at 3.0 seconds and is +65 m/s at 12.0 seconds. Calculate the acceleration of the object
Answer:
[tex]\boxed{\text{\sf \Large 2.0 m/s^2 $}}[/tex]
Explanation:
Use acceleration formula
[tex]\displaystyle \text{$ \sf acceleration=\frac{change \ in\ velocity}{change \ in \ time} $}[/tex]
[tex]\displaystyle a=\frac{65-47}{12.0-3.0} =2.0[/tex]
Part A: A group of students performed the same "Ohm's Law" experiment that you did in class. They obtained the following results:
Trial V (volts) I (mA)
1 1.00 7.2
2 2.10 14.0
3 3.10 20.7
4 4.00 27.2
5 4.90 32.2
Determine the slope and y-intercept of the graph, and report these values below. (
Part B: Your mischievous lab partner takes the resistor that you just experimented with and assembles it in a network with one other resistor and places them inside a black box. He challenges you to tell him the configuration of the resistors inside the box. Being an industrious physics student you connect the leads of the black box to your power source, voltmeter (in parallel), and ammeter (in series) and take the following simultaneous measurements. Use the measurements to find the equivalent resistance of the arrangement.
V (volts) I (mA)
2.0 5.5
Part C: Now that you've answered his challenge, your lab partner asks you to give the resistance of the resistor that he added to the one you experimented with. Using the information you obtained in parts A and B, predict this value of the resistance of the second resistor.
Answer:
Kindly check explanation
Explanation:
Given the data:
Trial V (volts) I (mA)
1 1.00 7.2
2 2.10 14.0
3 3.10 20.7
4 4.00 27.2
5 4.90 32.2
Slope = Rise / Run
Rise = y2 - y1 = 32.2 - 7.2 = 25
Run = x2 - x1 = 4.9 - 1.0 = 3.9
Slope = 25 / 3.9 = 6.410
y = mx + c
The intercept, c
Take the point ( 1; 7.2)
Put x = 0
7.2 = 6.410(1) + C
7.2 - 6.410 = C
C = 0.79
a toy train is moved towards a magnet that cannot move. what happens to the potential energy in the system of magnets during the movement
Answer:
Dakota moves a magnetic toy train toward a magnet that cannot move. What happens to the potential energy in the system of magnets during the movement? The potential energy increases because the train moves against the magnetic force. The potential energy decreases because the train moves against the magnetic force.
I hope this helps you :)
A 52 kg and a 95 kg skydiver jump from an airplane at an altitude of 4750 m, both falling in the pike position. Assume all values are accurate to three significant digits. (Assume that the density of air is 1.21 kg/m3 and the drag coefficient of a skydiver in a pike position is 0.7.) If each skydiver has a frontal area of 0.14 m2, calculate their terminal velocities (in m/s). 52 kg skydiver m/s 95 kg skydiver m/s How long will it take (in s) for each skydiver to reach the ground (assuming the time to reach terminal velocity is small)
Answer: 52 kg skydiver: 9.09 m/s and 522.55 s
95 kg skydiver: 12.3 m/s and 386.2 s
Explanation: Drag Force is an opposite force when an object is moving in a fluid.
For skydivers, when falling through the air, the forces acting on it are gravitational and drag forces. At a certain point, drag force equals gravitational force, which is constant on any part of the planet, producing a net force that is zero. Since there is no net force, there is no acceleration and, consequently, velocity is constant. When that happens, the person reached the Terminal Velocity.
Drag Force and Velocity are proportional to the squared speed. So, terminal velocity is given by:
[tex]F_{G}=F_{D}[/tex]
[tex]mg=\frac{1}{2}C \rho Av_{T}^{2}[/tex]
[tex]v_{T}=\sqrt{\frac{2mg}{\rho CA} }[/tex]
where
m is mass in kg
g is acceleration due to gravitational force in m/s²
ρ is density of the fluid in kg/m³
C is drag coefficient
A is area of the object in the fluid in m²
Calculating:
The 52kg skydiver has terminal velocity of:
[tex]v_{T}=\sqrt{\frac{2(52)(9.8)}{(1.21)(0.7)(0.14)} }[/tex]
[tex]v_{T}=[/tex] 9.09
The 95kg skydiver's terminal velocity is
[tex]v_{T}=\sqrt{\frac{2(95)(9.8)}{(1.21)(0.7)(0.14)} }[/tex]
[tex]v_{T}=[/tex] 12.3
The 52 kg and 95kg skydivers' terminal velocity are 9.09m/s and 12.3m/s, respectively.
The time each one will reach the floor will be:
52 kg at 9.09 m/s:
[tex]t=\frac{4750}{9.09}[/tex]
t = 522.5
95 kg at 12.3 m/s:
[tex]t=\frac{4750}{12.3}[/tex]
t = 386.2
The 52 kg and 95kg skydivers' time to reach the floor are 522.5 s and 386.2 s, respectively.
An object swings in a horizontal circle, supported by a 1.8-m string. It swings at a speed of 3 m/s. What is the mass of the object given that the tension in the string is 90 N?
Answer:
Mass = 18 kg
Explanation:
Formula for force in centripetal motion is;
F = mv²/r
We have;
Mass; m.
Speed; v = 3 m/s
radius; r = 1.8 m
Force; F = 90 N
Thus;
Making m the subject;
m = Fr/v²
m = 90 × 1.8/3²
m = 18 kg
What do Ice core samples with lower ratios of O-18 to O-16 isotopes tell scientist about past climates
Answer:
Ocean-floor sediments can also be used to determine past climate. ... Ice cores contain more 16O than ocean water, so ice cores have a lower 18O/ 16O ratio than ocean water or ocean-floor sediments. Water containing the lighter isotope 16O evaporates more readily than 18O in the warmer subtropical regions
Explanation: