Answer:
x=4200, y=2700
Step-by-step explanation:
let x be first account
y the second
x+y=6900
0.03x+0.08y=342
solve by addition/elimination)
multiply first equation by 0.03
0.03x+0.03y=207 subtract from second
0.03x+0.03y-0.03x-0.08y=207-342
0.05y=135
y=2700, x=4200
The mean monthly car payment for 123 residents of the local apartment complex is $624. What is the best point estimate for the mean monthly car payment for all residents of the local apartment complex?
Answer:
The best point estimate for the mean monthly car payment for all residents of the local apartment complex is $624.
Step-by-step explanation:
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
In this question:
We apply the inverse Central Limit Theorem.
The mean monthy car payment for 123 residents of the local apartment complex is $624.
So, for all residents of the local apartment complex, the best point estimate for the mean monthly car payment is $624.
For each ordered pair, determine whether it is a solution to the system of equations. y=6x-7 9x-2y=8
Answer:
x = 2, y = 5
Step-by-step explanation:
Hello,
y=6x-7
9x-2y=8
can be written as
(1) 6x - y = 7
(2) 9x -2y = 8
(2)-2*(1) gives
9x -2y -12x +2y = 8 - 2*7 = 8 - 14 = -6
<=> -3x=-6
<=> x = 6/3=2
and we replace it in (1)
y = 6*2-7=12-7=5
hope this helps
Hi, can someone help me on this. I'm stuck --
Answer:
a) Fx=-5N Fy=-5*sqrt(3) N b) Fx= 5*sqrt(3) N Fy=-5N
c) Fx=-5*sqrt(2) N Fy=-5*sqrt(2) N
Step-by-step explanation:
The arrow's F ( weight) component on axle x is Fx= F*sinA and on axle y is
Fy=F*cosA
a) The x component and y component both are opposite directed to axle x and axle y accordingly. So both components are negative.
So Fx = - 10*sin(30)= -5 N Fy= -10*cos(30)= -10*sqrt(3)/2= -5*sqrt (3) N
b) Now the x component is co directed to axle x , and y component is opposite directed to axle y.
So x component is positive and y components is negative
So Fx = 10*sin(60)= 5*sqrt(3) N Fy= -10*cos(60)= -10*1/2= -5 N
c)The x component and y component both are opposite directed to axle x and axle y accordingly. So both components are negative.
So Fx = - 10*sin(45)= -5*sqrt(2) N
Fy= -10*cos(45)= -10*sqrt(2)/2= -5*sqrt (2) N
plz give me correct answers
Answer:
Step-by-step explanation:
greatest number=8643
smallest number=3468
difference=8643-3468=5175
6.1. DCCLVI
CDXCIV
(II) 74,746
HELP ASAP! The number of entertainment websites in 1995 wass 54. By 2004 there were 793 entertainment website..
Approximately, what was the rate of change for the number of the websites for this time period??
=============================================================
How I got that answer:
We have gone from 54 websites to 793 websites. This is a change of 793-54 = 739 new websites. This is over a timespan of 2004-1995 = 9 years.
Since we have 739 new websites over the course of 9 years, this means the rate of change is 739/9 = 82.1111... where the '1's go on forever. Rounding to the nearest whole number gets us roughly 82 websites a year.
----------
You could use the slope formula to get the job done. This is because the slope represents the rise over run
slope = rise/run
The rise is how much the number of websites have gone up or down. The run is the amount of time that has passed by. So slope = rise/run = 739/9 = 82.111...
In a more written out way, the steps would be
slope = rise/run
slope = (y2-y1)/(x2-x1)
slope = (793 - 54)/(2004 - 1995)
slope = 739/9
slope = 82.111....
How can you write arithmetic and geometric sequences using recursive and explicit formulas modeled in a real world context?
Answer:
The answer is below
Step-by-step explanation:
They would be written like this:
Arithmetic Progression:
Explicit formula
Tn = a + (n-1) * d
Recursive formula
Tn = Tn-1 + d
Where a is the first term, d is the common differance and n is the number of terms.
Geometric Progression:
Explicit formula
Tn = a * r ^ (n-1)
Recursive formula
Tn = Tn-1 * r
Where r is common ratio
You want to put a 2 inch thick layer of topsoil for a new 14 ft by 26 ft garden. The dirt store sells by the cubic yards. How many cubic yards will you need to order? The store only sells in increments of 1/4 cubic yards.
Answer:
2 1/4
Step-by-step explanation:
The volume of soil needed is ...
(14/3 yd)(26/3 yd)(2/36 yd) = 728/324 yd³ = 2.247 yd³
The nearest higher quarter-yard is 2.250 yd³. That's how much you need to order.
You need to order 2 1/4 cubic yards.
___
There are 3 ft or 36 inches to a yard.
At 95% confidence, how large a sample should be taken to obtain a margin of error of 0.05 for the estimation of a population proportion
Answer:
A sample of 385 is needed.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
How large a sample:
We need a sample of n.
n is found when M = 0.05.
We dont know the true proportion, so we work with the worst case scenario, which is [tex]\pi = 0.5[/tex]
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]0.05 = 1.96\sqrt{\frac{0.5*0.5}{n}}[/tex]
[tex]0.05\sqrt{n} = 1.96*0.5[/tex]
[tex]\sqrt{n} = \frac{1.96*0.5}{0.05}[/tex]
[tex](\sqrt{n})^{2} = (\frac{1.96*0.5}{0.05})^{2}[/tex]
[tex]n = 384.16[/tex]
Rounding up
A sample of 385 is needed.
whats 1/2 + 2/4 - 5/8?
Answer:
3/8
Step-by-step explanation:
Step 1: Find common denominators
1/2 = 4/8
2/4 = 4/8
Step 2: Evaluate
4/8 + 4/8 - 5/8
8/8 - 5/8
3/8
Alternatively, you can just plug this into a calc to evaluate and get your answer.
Answer:
3/8
Step-by-step explanation:
Look at the denominator:
2, 4, 8. The LCM (Lowest Common Multiple) is 8.
So this equation becomes
4/8+4/8-5/8=3/8
Two intersecting lines l and m form an angle of 56° with each other. The reflection of a point (–4, 1) along the line l followed by a reflection along line m will cause a ________ rotation. Question 18 options: A) 56° B) 112° C) 180° D) 28°
Answer:
B) 112°
Step-by-step explanation:
After the double reflection the point is effectively rotated by an amount that is double the angle between the lines of reflection:
2·56° = 112°
_____
In the attached, lines l and m are separated by 56°, as required by the problem statement.
Brainliest to whoever gets this correct This word problem has too much information. Which fact is not needed to solve the problem? Tanisha tried to sell all her old CDs at a garage sale. She priced them at $2 each. She put 80 CDs in the garage sale, but she sold only 35 of them. How many did she have left? A. All of the information is needed. B. Tanisha sold the CDs for $2 each. C. Tanisha put 80 CDs in the sale. D. Tanisha sold 35 of the CDs.
Answer:
B. Tanisha sold the CDs for $2 each.
Step-by-step explanation:
On a piece of paper, graph y + 2 ≤ -2/3x +4. Then determine which answer choice matches the graph you drew.
Answer:
B
Step-by-step explanation:
You only need to look at the comparison symbol (≤) to determine the correct graph. It tells you the shading is below the boundary line, and the boundary line is included in the solution region (a solid line).
The shading is below the line because y-values are less than (or equal to) values on the line.
Choice B matches the attached graph.
Answer:
it is graph b
Step-by-step explanation:
For the binomial distribution with the given values for n and p, state whether or not it is suitable to use the normal distribution as an approximation. n = 24 and p = 0.6.
Answer:
Since both np > 5 and np(1-p)>5, it is suitable to use the normal distribution as an approximation.
Step-by-step explanation:
When the normal approximation is suitable?
If np > 5 and np(1-p)>5
In this question:
[tex]n = 24, p = 0.6[/tex]
So
[tex]np = 24*0.6 = 14.4[/tex]
And
[tex]np(1-p) = 24*0.6*0.4 = 5.76[/tex]
Since both np > 5 and np(1-p)>5, it is suitable to use the normal distribution as an approximation.
Suppose we write down the smallest positive 2-digit, 3-digit, and 4-digit multiples of 9,8 and 7(separate number sum for each multiple). What is the sum of these three numbers?
Answer:
Sum of 2 digit = 48
Sum of 3 digit = 317
Sum of 4 digit = 3009
Total = 3374
Step-by-step explanation:
Given:
9, 8 and 7
Required
Sum of Multiples
The first step is to list out the multiples of each number
9:- 9,18,....,99,108,117,................,999
,1008
,1017....
8:- 8,16........,96,104,...............,992,1000,1008....
7:- 7,14,........,98,105,.............,994,1001,1008.....
Calculating the sum of smallest 2 digit multiple of 9, 8 and 7
The smallest positive 2 digit multiple of:
- 9 is 18
- 8 is 16
- 7 is 14
Sum = 18 + 16 + 14
Sum = 48
Calculating the sum of smallest 3 digit multiple of 9, 8 and 7
The smallest positive 3 digit multiple of:
- 9 is 108
- 8 is 104
- 7 is 105
Sum = 108 + 104 + 105
Sum = 317
Calculating the sum of smallest 4 digit multiple of 9, 8 and 7
The smallest positive 4 digit multiple of:
- 9 is 1008
- 8 is 1000
- 7 is 1001
Sum = 1008 + 1000 + 1001
Sum = 3009
Sum of All = Sum of 2 digit + Sum of 3 digit + Sum of 4 digit
Sum of All = 48 + 317 + 3009
Sum of All = 3374
Christopher collected data from a random sample of 800 voters in his state asking whether or not they would vote to reelect the current governor. Based on the results, he reports that 54% of the voters in his city would vote to reelect the current governor. Why is this statistic misleading?
Answer:
The statistic is misleading because Christopher collects his sample from a population (voters in his state) and make inferences about another population (voters in his city).
Step-by-step explanation:
The statistic is misleading because Christopher collects his sample from a population (voters in his state) and make inferences about another population (voters in his city).
He should make inferences about the population that is well represented by his sample (voters in his state), or take a sample only from voters from his city to make inferences about them.
Find AC. (Khan Academy-Math)
Answer:
[tex]\boxed{11.78}[/tex]
Step-by-step explanation:
From observations, we can note that BC is the hypotenuse.
As the length of hypotenuse is not given, we can only use tangent as our trig function.
tan(θ) = opposite/adjacent
tan(67) = x/5
5 tan(67) = x
11.77926182 = x
x ≈ 11.78
If the area of a circular cookie is 28.26 square inches, what is the APPROXIMATE circumference of the cookie? Use 3.14 for π.
75.2 in.
56.4 in.
37.6 in.
18.8 in.
Answer:
Step-by-step explanation:
c= 2(pi)r
Area = (pi)r^2
28.26 = (pi) r^2
r =[tex]\sqrt{9}[/tex] = 3
circumference = 2 (3.14) (3)
= 18.8 in
Answer: approx 18.8 in
Step-by-step explanation:
The area of the circle is
S=π*R² (1) and the circumference of the circle is C= 2*π*R (2)
So using (1) R²=S/π=28.26/3.14=9
=> R= sqrt(9)
R=3 in
So using (2) calculate C=2*3.14*3=18.84 in or approx 18.8 in
Find the sample size needed to estimate the percentage of Democrats among registered voters in Texas. Use a 0.01 margin of error, and use a confidence level of 96% and assume LaTeX: \hat{p}
p
^
=0.28.
Answer:
Step-by-step explanation:
Hello!
You have to determine the sample size to take to estimate the population proportion of Democrats among registered voters in Texas for a 96% interval with a margin of error of 0.01 and sample proportion p'= 0.28
The interval for the population proportion is
p' ± [tex]Z_{1-\alpha /2}[/tex]*[tex]\sqrt{\frac{p'(1-p')}{n} }[/tex]
The margin of error of the interval is:
d= [tex]Z_{1-\alpha /2}[/tex]*[tex]\sqrt{\frac{p'(1-p')}{n} }[/tex]
[tex]\frac{d}{Z_{1-\alpha /2}}= \sqrt{\frac{p'(1-p')}{n} }\\(\frac{d}{Z_{1-\alpha /2}} )^2= \frac{p'(1-p)}{n} \\n*(\frac{d}{Z_{1-\alpha /2}} )^2= p'(1-p)\\n= p'(1-p)*(\frac{Z_{1-\alpha /2}}{d} )^2\\[/tex]
[tex]Z_{1-\alpha /2}= Z_{0.98}= 2.054[/tex]
[tex]n= 0.28*(1-0.28)*(\frac{2.054}{0.01} )^2= 8505.33[/tex]
n= 8506 voters
I hope this helps!
Suppose a random variable X is best described by a uniform probability distribution with range 1 to 5. Find the value of that makes the following probability statements true.
a) P(X <-a)= 0.95
b) P(X
c) P(X
d) P(X ->a)= 0.89
e) P(X >a)= 0.31
Answer:
a) 4.8
b) 2.96
c) 4.4
d) 1.44
e) 3.76
Step-by-step explanation:
What we will do is solve point by point, knowing the following:
Fx (x) = P (X <= x) = (x - 1) / 4
a) P (X <-a) = 0.95
Fx (a) = 0.95
(a -1) / 4 = 0.95
a = 1 + 0.95 * 4
a = 4.8
b) P (X <a) = 0.49
Fx (a) = 0.49
(a -1) / 4 = 0.49
a = 1 + 0.49 * 4
a = 2.96
c) P (X <a) = 0.85
Fx (a) = 0.85
(a -1) / 4 = 0.55
a = 1 + 0.85 * 4
a = 4.4
d) P (X> a) = 0.89
P (X <a) = 1 - 0.89 = 0.11
Fx (a) = 0.11
(a -1) / 4 = 0.11
a = 1 + 0.11 * 4
a = 1.44
e) P (X> a) = 0.31
P (X <a) = 1 - 0.31 = 0.69
Fx (a) = 0.69
(a -1) / 4 = 0.69
a = 1 + 0.69 * 4
a = 3.76
. The client was hoping for a likability score of at least 5.2. Use your sample mean and standard deviation identified in the answer to question 1 to complete the following table for the margins of error and confidence intervals at different confidence levels. Note: No further calculations are needed for the sample mean. (6 points: 2 points for each completed row) Confidence Level | Margin of error | Center interval | upper interval | Lower interval 68 95 99.7
Answer:
The 68% confidence interval is (6.3, 6.7).
The 95% confidence interval is (6.1, 6.9).
The 99.7% confidence interval is (5.9, 7.1).
Step-by-step explanation:
The Central Limit Theorem states that if we have a population with mean μ and standard deviation σ and take appropriately huge random-samples (n ≥ 30) from the population with replacement, then the distribution of the sample-means will be approximately normally distributed.
Then, the mean of the sample means is given by,
[tex]\mu_{\bar x}=\bar x[/tex]
And the standard deviation of the sample means (also known as the standard error)is given by,
[tex]\sigma_{\bar x}=\frac{\sigma}{\sqrt{n}} \ \text{or}\ \frac{s}{\sqrt{n}}[/tex]
The information provided is:
[tex]n=400\\\\\bar x=6.5\\\\s=4[/tex]
As n = 400 > 30, the sampling distribution of the sample-means will be approximately normally distributed.
(a)
Compute the 68% confidence interval for population mean as follows:
[tex]CI=\bar x\pm z_{\alpha/2}\cdot \frac{s}{\sqrt{n}}[/tex]
[tex]=6.5\pm 0.9945\cdot \frac{4}{\sqrt{400}}\\\\=6.5\pm 0.1989\\\\=(6.3011, 6.6989)\\\\\approx (6.3, 6.7)[/tex]
The 68% confidence interval is (6.3, 6.7).
The margin of error is:
[tex]MOE=\frac{UL-LL}{2}=\frac{6.7-6.3}{2}=0.20[/tex]
(b)
Compute the 95% confidence interval for population mean as follows:
[tex]CI=\bar x\pm z_{\alpha/2}\cdot \frac{s}{\sqrt{n}}[/tex]
[tex]=6.5\pm 1.96\cdot \frac{4}{\sqrt{400}}\\\\=6.5\pm 0.392\\\\=(6.108, 6.892)\\\\\approx (6.1, 6.9)[/tex]
The 95% confidence interval is (6.1, 6.9).
The margin of error is:
[tex]MOE=\frac{UL-LL}{2}=\frac{6.9-6.1}{2}=0.40[/tex]
(c)
Compute the 99.7% confidence interval for population mean as follows:
[tex]CI=\bar x\pm z_{\alpha/2}\cdot \frac{s}{\sqrt{n}}[/tex]
[tex]=6.5\pm 0.594\cdot \frac{4}{\sqrt{400}}\\\\=6.5\pm 0.392\\\\=(5.906, 7.094)\\\\\approx (5.9, 7.1)[/tex]
The 99.7% confidence interval is (5.9, 7.1).
The margin of error is:
[tex]MOE=\frac{UL-LL}{2}=\frac{7.1-5.9}{2}=0.55[/tex]
Simplify the algebraic expression: 7x2 + 6x – 9x – 6x2 + 15. A) x2 + 15x + 15 B) x2 – 3x + 15 C) 13x2 + 3x + 15 D) x4 – 3x + 15
Answer:
B) [tex]x^2-3x+15[/tex]
Step-by-step explanation:
[tex]7x^2+6x-9x-6x^2+15=\\7x^2-6x^2+6x-9x+15=\\x^2+6x-9x+15=\\x^2-3x+15[/tex]
A) [tex]x^2+15x+15[/tex]
B) [tex]x^2-3x+15[/tex]
C) [tex]13x^2 + 3x + 15[/tex]
D) [tex]x^4-3x + 15[/tex]
━━━━━━━☆☆━━━━━━━
▹ Answer
B. x² - 3x + 15
▹ Step-by-Step Explanation
7x² + 6x - 9x - 6x² + 15
Collect like terms
x² + 6x - 9x + 15
Subtract
x² - 3x + 15
Final Answer
x² - 3x + 15
Hope this helps!
- CloutAnswers ❁
Brainliest is greatly appreciated!
━━━━━━━☆☆━━━━━━━
What is the equation of the graphed line written in
standard form?
O 2x - y = -4
O 2x - y = 4
O y = 2x – 4
O y=x-4
Answer:
2x-y=4
Step-by-step explanation:
Standard form of a line: Ax+by=c
Use slope intercept form: y=mx+b
slope= 2
y=2x-4
Add 4 to both sides.
y+4=2x
subtract y from both sides.
4=2x-y
Rotate the equation
2x-y=4
Answer:
2x-y=4
Step-by-step explanation:
y=2x-4 is the slope intercept.
y-2x=-4
-2x+y=-4
2x-y=4
Use the substitution x = et to transform the given Cauchy-Euler equation to a differential equation with constant coefficients. Solve the original equation by solving the new equation
x2y'' + 9xy' - 20y = 0
Answer:
[tex]\boxed{\sf \ \ \ ax^2+bx^{-10} \ \ \ }[/tex]
Step-by-step explanation:
Hello,
let's follow the advise and proceed with the substitution
first estimate y'(x) and y''(x) in function of y'(t), y''(t) and t
[tex]x(t)=e^t\\\dfrac{dx}{dt}=e^t\\y'(t)=\dfrac{dy}{dt}=\dfrac{dy}{dx}\dfrac{dx}{dt}=e^ty'(x)<=>y'(x)=e^{-t}y'(t)\\y''(x)=\dfrac{d^2y}{dx^2}=\dfrac{d}{dx}(e^{-t}\dfrac{dy}{dt})=-e^{-t}\dfrac{dt}{dx}\dfrac{dy}{dt}+e^{-t}\dfrac{d}{dx}(\dfrac{dy}{dt})\\=-e^{-t}e^{-t}\dfrac{dy}{dt}+e^{-t}\dfrac{d^2y}{dt^2}\dfrac{dt}{dx}=-e^{-2t}\dfrac{dy}{dt}+e^{-t}\dfrac{d^2y}{dt^2}e^{-t}\\=e^{-2t}(\dfrac{d^2y}{dt^2}-\dfrac{dy}{dt})[/tex]
Now we can substitute in the equation
[tex]x^2y''(x)+9xy'(x)-20y(x)=0\\<=> e^{2t}[ \ e^{-2t}(\dfrac{d^2y}{dt^2}-\dfrac{dy}{dt}) \ ] + 9e^t [ \ e^{-t}\dfrac{dy}{dt} \ ] -20y=0\\<=> \dfrac{d^2y}{dt^2}-\dfrac{dy}{dt}+ 9\dfrac{dy}{dt}-20y=0\\<=> \dfrac{d^2y}{dt^2}+ 8\dfrac{dy}{dt}-20y=0\\[/tex]
so the new equation is
[tex]y''(t)+ 8y'(t)-20y(t)=0[/tex]
the auxiliary equation is
[tex]x^2+8x-20=0\\<=> x^2-2x+10x-20=0\\<=>x(x-2)+10(x-2)=0\\<=>(x+10)(x-2)=0\\<=> x=-10\text{ or }x=2[/tex]
so the solutions of the new equation are
[tex]y(t)=ae^{2t}+be^{-10t}[/tex]
with a and b real
as
[tex]x(t)=e^t\\<=> t(x)=ln(x)[/tex]
[tex]y(x)=ae^{2ln(x)}+be^{-10ln(x)}=ax^2+bx^{-10}[/tex]
hope this helps
do not hesitate if you have any questions
can someone help me with this please?!?
Answer:
The answer is 60cm^2.
hope it helps..
The average daily rainfall for the past week in the town of Hope Cove is normally distributed, with a mean rainfall of 2.1 inches and a standard deviation of 0.2 inches. If the distribution is normal, what percent of data lies between 1.9 inches and 2.3 inches of rainfall? a) 95% b) 99.7% c) 34% d) 68%
Answer:
D
Step-by-step explanation:
We calculate the z-score for each
Mathematically;
z-score = (x-mean)/SD
z1 = (1.9-2.1)/0.2 = -1
z2 = (2.3-2.1)/0.2 = 1
So the proportion we want to calculate is;
P(-1<x<1)
We use the standard score table for this ;
P(-1<x<1) = P(x<1) -P(x<-1) = 0.68269 which is approximately 68%
Answer:
68
Step-by-step explanation:
George has opened a new store and he is monitoring its success closely. He has found that this store’s revenue each month can be modeled by r(x)=x2+5x+14 where x represents the number of months since the store opens the doors and r(x) is measured in hundreds of dollars. He has also found that his expenses each month can be modeled by c(x)=x2−3x+4 where x represents the number of months the store has been open and c(x) is measured in hundreds of dollars. What does (r−c)(3) mean about George's new store?
This is a great question!
When we are given ( r - c )( 3 ), we are being asked to take 3 as x in the functions r( x ) and c( x ), taking the difference of each afterwards -
[tex]r( 3 ) = ( 3 )^2 + 5( 3 ) + 14,\\x( 3 ) = ( 3 )^2 - 3( 3 ) + 4[/tex]
____
Let us calculate the value of each function, determine their difference, and multiply by 100, considering r( x ) and c( x ) are measured in hundreds of dollars,
[tex]r( 3 ) = 9 + 15 + 14 = 38,\\x( 3 ) = 9 - 9 + 4 = 0 + 4 = 4\\----------------\\( r - c )( 3 ) = 38 - 4 = 34,\\34 * 100 = 3,400( dollars )\\\\Solution = 3,400( dollars )[/tex]
Therefore, ( r - c )( 3 ) " means " that George's new store will have a profit of $3,400 after it's third month in business, given the following options,
( 1. The new store will have a profit of $3400 after its third month in business.
( 2. The new store will have a profit of $2400 after its third month in business.
( 3. The new store will sell 2400 items in its third month in business.
( 4. The new store will sell 3400 items in its third month in business.
The required answer is , [tex](r-c)(5)[/tex] means the revenue less expenses in 5 months i.e. the new store will have a profit of $ 5400 after 5 months.
Substitution:The substitution method is the algebraic method to solve simultaneous linear equations.
Given function is,
[tex]r(x) = x^2+5x+14[/tex]...(1)
And [tex]c(x) = x^2-4x+5[/tex]...(2)
Now, substituting the value into the equation (1) and (2).
[tex]r(5) = (5)^2+5(5)+14=64[/tex]
[tex]c(5) = (5)^2-4(5)+5=10[/tex]
Therefore,
[tex](r-c)(5)=r(5)-c(5)\\=64-10\\=54[/tex]
Now, [tex](r-c)(5)[/tex] means the revenue less expenses in 5 months i.e. the new store will have a profit of $ 5400 after 5 months.
Learn more about the topic Substitution:
https://brainly.com/question/3388130
Show all work to solve 3x^2 – 5x – 2 = 0.
Answer:
Step-by-step explanation:
3x2−5x−2=0
For this equation: a=3, b=-5, c=-2
3x2+−5x+−2=0
Step 1: Use quadratic formula with a=3, b=-5, c=-2.
x= (−b±√b2−4ac )2a
x= (−(−5)±√(−5)2−4(3)(−2) )/2(3)
x= (5±√49 )/6
x=2 or x= −1 /3
Answer:
x=2 or x= −1/ 3
The solutions to the equation are x = -1/3 and x = 2.
Here are the steps on how to solve [tex]3x^{2}[/tex] – 5x – 2 = 0:
First, we need to factor the polynomial. The factors of 3 are 1, 3, and the factors of -2 are -1, 2. The coefficient on the x term is -5, so we need to find two numbers that add up to -5 and multiply to -2. The two numbers -1 and 2 satisfy both conditions, so the factored polynomial is (3x + 1)(x - 2).
Next, we set each factor equal to 0 and solve for x.
(3x + 1)(x - 2) = 0
3x + 1 = 0
3x = -1
x = -1/3
x - 2 = 0
x = 2
Therefore, the solutions to the equation [tex]3x^{2}[/tex] – 5x – 2 = 0 are x = -1/3 and x = 2.
Here is the explanation for each of the steps:
Step 1: In order to factor the polynomial, we need to find two numbers that add up to -5 and multiply to -2. The two numbers -1 and 2 satisfy both conditions, so the factored polynomial is (3x + 1)(x - 2).
Step 2: We set each factor equal to 0 and solve for x. When we set 3x + 1 equal to 0, we get x = -1/3. When we set x - 2 equal to 0, we get x = 2. Therefore, the solutions to the equation are x = -1/3 and x = 2.
Learn more about equation here: brainly.com/question/29657983
#SPJ2
Find the circumference of a circle with a radius of 15 centimeters. Round your answer to the nearest centimeter
Answer:
94 cm
Step-by-step explanation:
The formula for finding the circumference of a circle is;
Circumference = 2πr
where π = [tex]\frac{22}{7}[/tex] or 3.14 and
r = radius
Here radius is 15 cm so;
Circumference = [tex]2 * \frac{22}{7} * 15[/tex]
= [tex]\frac{660}{7}[/tex]cm
= 94.28cm
= 94 cm ( rounded to the nearest centimetre )
please helpppp As soon as possible
Answer: 4 pairs
Step-by-step explanation:
121-16=105. However, 121 can be made by squaring -11 or 11. 16 can be made by squaring 4 or -4. Thus, the choices are 11,4 11,-4 -11,4 -11,-4
Not sure of how to solve this
Answer:
undefined
Step-by-step explanation:
Using the slope formula
m = (y2-y1)/ (x2-x1)
and the given points
m = ( 8 - -1)/( 2-2)
= (8+1) / 0
We cannot divide by 0 so the slope is undefined