An experiment was conducted to record the jumping distances of paper frogs made from construction paper. Based on the sample, the corresponding 95% confidence interval for the mean jumping distance is (8.8104, 11.1248)cm. What is the corresponding 98% confidence interval for the mean jumping distance?

Answers

Answer 1

Answer:

[tex] 9.9676 - 2.326*0.5904 =8.594[/tex]

[tex] 9.9676 + 2.326*0.5904 =11.341[/tex]

Step-by-step explanation:

Notation

[tex]\bar X[/tex] represent the sample mean

[tex]\mu[/tex] population mean (variable of interest)

s represent the sample standard deviation

n represent the sample size  

Solution to the problem

The confidence interval for the mean is given by the following formula:

[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex]   (1)

For this case the 9% confidence interval is given by:

[tex] 8.8104 \leq \mu \leq 11.1248[/tex]

We can calculate the mean with the following:

[tex]\bar X = \frac{8.8104 +11.1248}{2}= 9.9676[/tex]

And we can find the margin of error with:

[tex] ME= \frac{11.1248- 8.8104}{2}= 1.1572[/tex]

The margin of error for this case is given by:

[tex] ME = t_{\alpha/2}\frac{s}{\sqrt{n}} = t_{\alpha/2} SE[/tex]

And we can solve for the standard error:

[tex] SE = \frac{ME}{t_{\alpha/2}}[/tex]

The critical value for 95% confidence using the normal standard distribution is approximately 1.96 and replacing we got:

[tex] SE = \frac{1.1572}{1.96}= 0.5904[/tex]

Now for the 98% confidence interval the significance is [tex]\alpha=1-0.98= 0.02[/tex] and [tex]\alpha/2 = 0.01[/tex] the critical value would be 2.326 and then the confidence interval would be:

[tex] 9.9676 - 2.326*0.5904 =8.594[/tex]

[tex] 9.9676 + 2.326*0.5904 =11.341[/tex]


Related Questions

I really need help, please help me.

Answers

Answer:

96 degrees

Step-by-step explanation:

Since x is half of 168, its angle measure is 84 degrees. Since x and y are a linear pair, their angle measures must add to 180 degrees, meaning that:

y+84=180

y=180-84=96

Hope this helps!

Sue works an average of 45 hours each week. She gets paid $10.12 per hour and time-and-a-half for all hours over 40 hours per week. What is her annual income?

Answers

Step-by-step explanation:

40 x $10.12/hr = $404.80

5 x $15.18/hr = $ 75.90

over time = $10.12 + $5.06 ( half of $10.12) = $15.18/hr

$404.80 + $75.90 = $480.70/weekly pay

assuming she works 52 weeks a year

$480.70 × 52 weeks = $24,996.40/yr

Find sin angle ∠ C.
A. 12/13
B. 1
C. 13/12
D. 13/5

Answers

Answer:

A

Step-by-step explanation:

We can use the trigonometric ratios. Recall that sine is the ratio of the opposite side to the hypotenuse:

[tex]\displaystyle \sin(C)=\frac{\text{opposite}}{\text{hypotenuse}}[/tex]

The opposite side with respect to ∠C is 24 and the hypotenuse is 26.

Hence:

[tex]\displaystyle \sin(C)=\frac{24}{26}=\frac{12}{13}[/tex]

Our answer is A.

Please answer this correctly

Answers

Answer:

Raspberry: 30%

Strawberry: 15%

Apple: 20%

Lemon: 35%

Step-by-step explanation:

18 + 9 + 12 + 21 = 60 (there are 60 gummy worms)

18 out of 60 = 30%

9 out of 60 = 15%

12 out of 60 = 20%

21 out of 60 = 35%

Please mark Brainliest

Hope this helps

Answer:

Raspberry Worms: 30%

Strawberry Worms: 15%

Apple Worms: 20%

Lemon Worms: 35%

Step-by-step explanation:

Raspberry Worms: [tex]\frac{18}{18+9+12+21}=\frac{18}{60}=\frac{30}{100}[/tex] or 30%

Strawberry Worms: [tex]\frac{9}{18+9+12+21}=\frac{9}{60} =\frac{15}{100}[/tex] or 15%

Apple Worms: [tex]\frac{12}{18+9+12+21} =\frac{12}{60} =\frac{20}{100}[/tex] or 20%

Lemon Worms: [tex]\frac{21}{18+9+12+21} =\frac{21}{60} =\frac{35}{100}[/tex] or 35%

Rocco used these steps to solve the equation 4x + 6 = 4 + 2(2x + 1). Which choice describes the meaning of his result, 6 = 6?

Answers

Answer:

infinite solutions

Step-by-step explanation:

it means that all x are solution of this equation as 6=6 is always true

During the period of time that a local university takes phone-in registrations, calls come in at the rate of one every two minutes.a. What is the expected number of calls in one hour?b. What is the probability of three calls in five minutes?c. What is the probability of no calls in a five-minute period?

Answers

Answer:

Step-by-step explanation:

This is a poisson distribution. Let x be a random representing the number of calls in a given time interval.

a) the expected number of calls in one hour is the same as the mean score in 60 minutes. Thus,

Mean score = 60/2 = 30 calls

b) The interval of interest is 5 minutes.

µ = 5/2 = 2.5

We want to determine P(x = 3)

Using the Poisson probability calculator,

P(x = 3) = 0.21

c) µ = 5/2 = 2.5

We want to determine P(x = 0)

Using the Poisson probability calculator,

P(x = 0) = 0.08

Which expression is equivalent to 24 ⋅ 2−7?

Answers

Answer:

41

Step-by-step explanation:

[tex]24*2-7=\\48-7=\\41[/tex]

Find the product of
3/5 × 7/11​

Answers

Answer:

21/55

Step-by-step explanation:

Simply multiply the top 2 together:

3 x 7 = 21

And the bottom 2 together:

5 x 11 = 55

21/55 is your answer!

Person above is right .. it’s 2/11

Circle O has a circumference of 36π cm. Circle O with radius r is shown. What is the length of the radius, r? 6 cm 18 cm 36 cm 72 cm

Answers

Answer: 18 cm

Step-by-step explanation:

We know the circumference formula is C=2πr. Since our circumference is given in terms of π, we can easily figure out what the radius is.

36π=2πr                   [divide both sides by π to cancel out]

36=2r                        [divide both sides by 2]

r=18 cm

Answer:

18cm

Step-by-step explanation:

because i found it lol

Use Green's Theorem to evaluate ?C F·dr. (Check the orientation of the curve before applying the theorem.)
F(x, y) =< x + 4y3, 4x2 + y>

C consists of the arc of the curve y = sin x from (0, 0) to (p, 0) and the line segment from (p, 0) to (0, 0).

Answers

Answer:

Step-by-step explanation:

given a field of the form F = (P(x,y),Q(x,y) and a simple closed curve positively oriented, then

[tex]\int_{C} F \cdot dr = \int_A \frac{dQ}{dx} - \frac{dP}{dy} dA[/tex] where A is the area of the region enclosed by C.

In this case, by the description we can assume that C starts at (0,0). Then it goes the point (pi,0) on the path giben by y = sin(x) and then return to (0,0) along the straigth line that connects both points. Note that in this way, the interior the region enclosed by C is always on the right side of the point. This means that the curve is negatively oriented. Consider the path C' given by going from (0,0) to (pi,0) in a straight line and the going from (pi,0) to (0,0) over the curve y = sin(x). This path is positively oriented and we have that

[tex] \int_{C} F\cdot dr = - \int_{C'} F\cdot dr[/tex]

We use the green theorem applied to the path C'. Taking [tex] P = x+4y^3, Q = 4x^2+y[/tex] we get

[tex] \int_{C'} F\cdot dr = \int_{A} 8x-12y^2dA[/tex]

A is the region enclosed by the curves y =sin(x) and the x axis between the points (0,0) and (pi,0). So, we can describe this region as follows

[tex]0\leq x \leq \pi, 0\leq y \leq \sin(x)[/tex]

This gives use the integral

[tex] \int_{A} 8x-12y^2dA = \int_{0}^{\pi}\int_{0}^{\sin(x)} 8x-12y^2 dydx[/tex]

Integrating accordingly, we get that [tex]\int_{C'} F\cdot dr = 8\pi - \frac{16}{3}[/tex]

So

[tex] \int_{C} F cdot dr = - (8\pi - \frac{16}{3}) = \frac{16}{3} - 8\pi [/tex]

The area of the sector of a circle with a radius of 8 centimeters is 125.6 square centimeters. The estimated value of is 3.14.
The measure of the angle of the sector is

Answers

Answer:

225º or 3.926991 radians

Step-by-step explanation:

The area of the complete circle would be π×radius²: 3.14×8²=200.96

The fraction of the circle that is still left will be a direct ratio of the angle of the sector of the circle.

[tex]\frac{125.6}{200.96}[/tex]=.625. This is the ratio of the circe that is in the sector. In order to find the measure we must multiply it by either the number of degrees in the circle or by the number of radians in the circle (depending on the form in which you want your answer).

There are 360º in a circle, so .625×360=225 meaning that the measure of the angle of the sector is 225º.

We can do the same thing for radians, if necessary. There are 2π radians in a circle, so .625×2π=3.926991 radians.

Answer:

225º

Step-by-step explanation:

What is the perimeter of A’B’C’D’?

Answers

[tex]\displaystyle\bf\\\textbf{At any translation of a quadrilateral the sides remain the same,}\\\\\textbf{the angles remain the same.}\\\\\textbf{It turns out that the quadrilateral remains the same.}\\\\P_{A'B'C'D'}=P_{ABCD}=AB+BC+CD+DA=\\\\~~~~~~~~~~~~~~=2.2+4.5+6.1+1.4=\boxed{\bf14.2}[/tex]

 

Express 12/16 in quarters

Answers

3/4

Because 12 divided by 4 is 3
And 16 divided by 4 is 4
Therefore the answer is 3/4 (three quarters)
Hope this helped

Which are the right ones?

Answers

Answer:

20 4/5

Step-by-step explanation:

13/5 times 8/1

104/5

which is simplify

to 20 4/5\

hope this helps

1. A door of a lecture hall is in a parabolic shape. The door is 56 inches across at the bottom of the door and parallel to the floor and 32 inches high. Sketch and find the equation describing the shape of the door. If you are 22 inches tall, how far must you stand from the edge of the door to keep from hitting your head

Answers

Answer:

See below in bold.

Step-by-step explanation:

We can write the equation as

y = a(x - 28)(x + 28)   as -28 and 28  ( +/- 1/2 * 56) are the zeros of the equation

y has coordinates (0, 32) at the top of the parabola so

32 = a(0 - 28)(0 + 28)

32 = a * (-28*28)

32 = -784 a

a = 32 / -784

a = -0.04082

So the equation is y = -0.04082(x - 28)(x + 28)

y = -0.04082x^2 + 32

The second part  is found by first finding the value of x corresponding to  y = 22

22 = -0.04082x^2 + 32

-0.04082x^2 = -10

x^2 = 245

x = 15.7 inches.

This is the distance from the centre of the door:

The distance from the edge = 28 - 15.7

= 12,3 inches.

divide and simplify x^2+7x+12 over x+3 divided by x-1 over x+4

Answers

Answer:

  [tex]\dfrac{x^2+8x+16}{x-1}[/tex]

Step-by-step explanation:

In general, "over" and "divided by" are used to mean the same thing. Parentheses are helpful when you want to show fractions divided by fractions. Here, we will assume you intend ...

  [tex]\dfrac{\left(\dfrac{x^2+7x+12}{x+3}\right)}{\left(\dfrac{x-1}{x+4}\right)}=\dfrac{(x+3)(x+4)}{x+3}\cdot\dfrac{x+4}{x-1}=\dfrac{(x+4)^2}{x-1}\\\\=\boxed{\dfrac{x^2+8x+16}{x-1}}[/tex]

For what values (cases) of the variables the expression does not exist: a / a−b

Answers

Answer:

a=b

Step-by-step explanation:

When the denominator is zero, the expression is undefined

a-b=0

a=b

Math 7th grade. help please!!!

Answers

Answer:

1 .angle S is 90 degree

2. 12

3. 155 degree

1. x = 3

hope it helps .....

The length of time for one individual to be served at a cafeteria is an exponential random variable with mean of 5 minutes. Assume a person has waited for at least 3 minutes to be served. What is the probability that the person will need to wait at least 7 minutes total

Answers

Answer:

44.93% probability that the person will need to wait at least 7 minutes total

Step-by-step explanation:

To solve this question, we need to understand the exponential distribution and conditional probability.

Exponential distribution:

The exponential probability distribution, with mean m, is described by the following equation:

[tex]f(x) = \mu e^{-\mu x}[/tex]

In which [tex]\mu = \frac{1}{m}[/tex] is the decay parameter.

The probability that x is lower or equal to a is given by:

[tex]P(X \leq x) = \int\limits^a_0 {f(x)} \, dx[/tex]

Which has the following solution:

[tex]P(X \leq x) = 1 - e^{-\mu x}[/tex]

The probability of finding a value higher than x is:

[tex]P(X > x) = 1 - P(X \leq x) = 1 - (1 - e^{-\mu x}) = e^{-\mu x}[/tex]

Conditional probability:

We use the conditional probability formula to solve this question. It is

[tex]P(B|A) = \frac{P(A \cap B)}{P(A)}[/tex]

In which

P(B|A) is the probability of event B happening, given that A happened.

[tex]P(A \cap B)[/tex] is the probability of both A and B happening.

P(A) is the probability of A happening.

The length of time for one individual to be served at a cafeteria is an exponential random variable with mean of 5 minutes

This means that [tex]m = 5, \mu = \frac{1}{5} = 0.2[/tex]

Assume a person has waited for at least 3 minutes to be served. What is the probability that the person will need to wait at least 7 minutes total

Event A: Waits at least 3 minutes.

Event B: Waits at least 7 minutes.

Probability of waiting at least 3 minutes:

[tex]P(A) = P(X > 3) = e^{-0.2*3} = 0.5488[/tex]

Intersection:

The intersection between waiting at least 3 minutes and at least 7 minutes is waiting at least 7 minutes. So

[tex]P(A \cap B) = P(X > 7) = e^{-0.2*7} = 0.2466[/tex]

What is the probability that the person will need to wait at least 7 minutes total

[tex]P(B|A) = \frac{0.2466}{0.5488} = 0.4493[/tex]

44.93% probability that the person will need to wait at least 7 minutes total

What is the value of (4-2) – 3x4?
О-20
оооо
4

Answers

(-10) is the answer
First you do 4-2 to get 2 then u get 2-3•4 and 3•4 is 12 so then u do 2-12 to get negative 10

Answer:

-10

Step-by-step explanation:

Use the Order of Operations - PEMDAS

Do what is in parentheses first - (4-2) = 2

Next multiply 3 and 4 = 12

Last, perform 2 - 12; which equals -10

The volume of a water in a fish tank is 84,000cm the fish tank has the length 60cm and the width 35cm. The water comes to 10cm from the top of the tank. calculate the height of the tank.

Answers

Answer:

Height of tank = 50cm

Step-by-step explanation:

Volume of water from tank that the water is 10cm down is 84000cm³

Length = 60cm

Width = 35cm

Height of water = x

Volume = length* width* height

Volume= 84000cm³

84000 = 60*35*x

84000= 2100x

84000/2100= x

40 = x

Height of water= 40cm

Height of tank I = height of water+ 10cm

Height of tank= 40+10= 50cm

Height of tank = 50cm

A College Alcohol Study has interviewed random samples of students at four-year colleges. In the most recent study, 494 of 1000 women reported drinking alcohol and 552 of 1000 men reported drinking alcohol. What is the 95% confidence interval of the drinking alcohol percentage difference between women and men

Answers

Answer:

The 95% confidence interval for the difference between the proportion of women who drink alcohol and the proportion of men who drink alcohol is (-0.102, -0.014) or (-10.2%, -1.4%).

Step-by-step explanation:

We want to calculate the bounds of a 95% confidence interval of the difference between proportions.

For a 95% CI, the critical value for z is z=1.96.

The sample 1 (women), of size n1=1000 has a proportion of p1=0.494.

[tex]p_1=X_1/n_1=494/1000=0.494[/tex]

The sample 2 (men), of size n2=1000 has a proportion of p2=0.552.

[tex]p_2=X_2/n_2=552/1000=0.552[/tex]

The difference between proportions is (p1-p2)=-0.058.

[tex]p_d=p_1-p_2=0.494-0.552=-0.058[/tex]

The pooled proportion, needed to calculate the standard error, is:

[tex]p=\dfrac{X_1+X_2}{n_1+n_2}=\dfrac{494+552}{1000+1000}=\dfrac{1046}{2000}=0.523[/tex]

The estimated standard error of the difference between means is computed using the formula:

[tex]s_{p1-p2}=\sqrt{\dfrac{p(1-p)}{n_1}+\dfrac{p(1-p)}{n_2}}=\sqrt{\dfrac{0.523*0.477}{1000}+\dfrac{0.523*0.477}{1000}}\\\\\\s_{p1-p2}=\sqrt{0.000249+0.000249}=\sqrt{0.000499}=0.022[/tex]

Then, the margin of error is:

[tex]MOE=z \cdot s_{p1-p2}=1.96\cdot 0.022=0.0438[/tex]

Then, the lower and upper bounds of the confidence interval are:

[tex]LL=(p_1-p_2)-z\cdot s_{p1-p2} = -0.058-0.0438=-0.102\\\\UL=(p_1-p_2)+z\cdot s_{p1-p2}= -0.058+0.0438=-0.014[/tex]

The 95% confidence interval for the difference between proportions is (-0.102, -0.014).

wo cards are selected from a standard deck of 52 playing cards. The first card is not replaced before the second card is selected. Find the probability of selecting a nine and then selecting an eight. The probability of selecting a nine and then selecting an eight is nothing.

Answers

Answer:

0.6%

Step-by-step explanation:

We have a standard deck of 52 playing cards, which is made up of 13 cards of each type (hearts, diamonds, spades, clubs)

Therefore there are one nine hearts, one nine diamonds, one nine spades and one nine clubs, that is to say that in total there are 4. Therefore the probability of drawing a nine is:

4/52

In the second card it is the same, an eight, that is, there are 4 eight cards, but there is already one less card in the whole deck, since it is not replaced, therefore the probability is:

4/51

So the final probability would be:

(4/52) * (4/51) = 0.006

Which means that the probability of the event is 0.6%

Find the area of the largest rectangle that can be inscribed in a right triangle with legs of lengths 4 cm and 6 cm if two sides of the rectangle lie along the legs. webassign cengage

Answers

Answer:

[tex]6cm^2[/tex]

Step-by-step explanation:

Let x and y be the sides of the rectangle.

Area of the Triangle, A(x,y)=xy

From the diagram, Triangle ABC is similar to Triangle AKL

AK=4-y

Therefore:

[tex]\dfrac{x}{6} =\dfrac{4-y}{4}[/tex]

[tex]4x=6(4-y)\\x=\dfrac{6(4-y)}{4} \\x=1.5(4-y)\\x=6-1.5y[/tex]

We substitute x into A(x,y)

[tex]A=y(6-1.5y)=6y-1.5y^2[/tex]

We are required to find the maximum area. This is done by finding

the derivative of Aand solving for the critical points.

Derivative of A:

[tex]A'(y)=6-3y\\$Set $A'=0\\6-3y=0\\3y=6\\y=2$ cm[/tex]

Recall that: x=6-1.5y

x=6-1.5(2)

x=6-3

x=3cm

Therefore, the maximum rectangle area is:

Area =3 X 2 =[tex]6cm^2[/tex]

Which of the following equations describes the line shown below? Check all
that apply

Answers

Answer:

y-7=1/2(x-8)

y-4=1/2(x-2)

Step-by-step explanation:

Slope: 3/6, or 1/2

y-7=1/2(x-8)

y-4=1/2(x-2)

Suppose that prices of recently sold homes in one neighborhood have a mean of $225,000 with a standard deviation of $6700. Using Chebyshev's Theorem, what is the minimum percentage of recently sold homes with prices between $211,600 and $238,400

Answers

Answer:

[tex] 211600 = 225000 -k*6700[/tex]

[tex] k = \frac{225000-211600}{6700}= 2[/tex]

[tex] 238400 = 225000 +k*6700[/tex]

[tex] k = \frac{238400-225000}{6700}= 2[/tex]

So then the % expected would be:

[tex] 1- \frac{1}{2^2}= 1- 0.25 =0.75[/tex]

So then the answer would be 75%

Step-by-step explanation:

For this case we have the following info given:

[tex] \mu = 225000[/tex] represent the true mean

[tex]\sigma =6700[/tex] represent the true deviation

And for this case we want to find the minimum percentage of sold homes between $211,600 and $238,400.

From the chebysev theorem we know that we have [tex]1 -\frac{1}{k^2}[/tex] % of values within [tex]\mu \pm k\sigma[/tex] if we use this formula and the limit given we have:

[tex] 211600 = 225000 -k*6700[/tex]

[tex] k = \frac{225000-211600}{6700}= 2[/tex]

[tex] 238400 = 225000 +k*6700[/tex]

[tex] k = \frac{238400-225000}{6700}= 2[/tex]

So then the % expected would be:

[tex] 1- \frac{1}{2^2}= 1- 0.25 =0.75[/tex]

So then the answer would be 75%

A population of protozoa develops with a constant relative growth rate of 0.7944 per member per day. On day zero the population consists of two members. Find the population size after six days

Answers

Answer:

[tex] y =y_o e^{kt}[/tex]

Where [tex] y_o = 2[/tex] the relative growth is [tex] k =0.7944[/tex] and t represent the number of days.

For this case we can to find the population after the day 6 so then we need to replace t =6 in our model and we got:

[tex] y(6) =2 e^{0.7944*6} = 234.99 \approx 235[/tex]

And for this case we can conclude that the population of protozoa for the 6 day would be approximately 235

Step-by-step explanation:

We can assume that the following model can be used:

[tex] y =y_o e^{kt}[/tex]

Where [tex] y_o = 2[/tex] the relative growth is [tex] k =0.7944[/tex] and t represent the number of days.

For this case we can to find the population after the day 6 so then we need to replace t =6 in our model and we got:

[tex] y(6) =2 e^{0.7944*6} = 234.99 \approx 235[/tex]

And for this case we can conclude that the population of protozoa for the 6 day would be approximately 235

Word related to circle

Answers

Answer:

Center, radius, chord, diameter... are Words related to circle

To reach a particular department at a warehouse, a caller must dial a 4-digit extension. Suppose a caller remembers that the first and last digits of an extension are 5, but they are not sure about the other digits.


How many possible extensions might they have to try?

Answers

Answer:

100 possible extensions

Step-by-step explanation:

we can calculated how many possible extensions they have to try using the rule of multiplication as:

___1_____*___10_____*___10_____*____1____ = 100

1st digit        2nd digit        3rd digit         4th digit

You know that the 1st and 4th digits of the extension are 5. it means that you just have 1 option for these places. On the other hand, you don't remember nothing about the 2nd and 3rd digit, it means that there are 10 possibles digits (from 0 to 9) for each digit.

So, There are 100 possibles extensions in which the 5 is the first and last digit.

Overweight participants who lose money when they don’t meet a specific exercise goal meet the goal more often, on average, than those who win money when they meet the goal, even if the final result is the same financially. In particular, participants who lost money met the goal for an average of 45.0 days (out of 100) while those winning money or receiving other incentives met the goal for an average of 33.7 days. The incentive does make a difference. In this exercise, we ask how big the effect is between the two types of incentives. Find a 90% confidence interval for the difference in mean number of days meeting the goal, between people who lose money when they don't meet the goal and those who win money or receive other similar incentives when they do meet the goal. The standard error for the difference in means from a bootstrap distribution is 4.14.

Answers

Answer:

The 90% confidence interval for the difference in mean number of days meeting the goal  is (4.49, 18.11).

Step-by-step explanation:

The (1 - α)% confidence interval for the difference between two means is:

[tex]CI=\bar x_{1}-\bar x_{2}\pm z_{\alpha/2}\times SE_{\text{diff}}[/tex]

It is provided that:

[tex]\bar x_{1}=45\\\bar x_{2}=33.7\\SE_{\text{diff}} =4.14\\\text{Confidence Level}=90\%[/tex]

The critical value of z for 90% confidence level is,

z = 1.645

*Use a z-table.

Compute the 90% confidence interval for the difference in mean number of days meeting the goal as follows:

[tex]CI=\bar x_{1}-\bar x_{2}\pm z_{\alpha/2}\times SE_{\text{diff}}[/tex]

    [tex]=45-33.7\pm 1.645\times 4.14\\\\=11.3\pm 6.8103\\\\=(4.4897, 18.1103)\\\\\approx (4.49, 18.11)[/tex]

Thus, the 90% confidence interval for the difference in mean number of days meeting the goal  is (4.49, 18.11).

Other Questions
(Multiple Choice, 20 pts)Solve the rational equation x divided by 4 equals x squared divided by quantity x plus 2 end quantity, and check for extraneous solutions.A. x = two thirds; 0 is an extraneous solutionB. x = 0; x = two thirds is an extraneous solutionC. x = 0 and x = two thirdsD. No solution What is the slope of the line on the graph below 1/5 1/3 3 or 5 Which words in the passage from Elie Wiesel's Nobel Peace Prize acceptancespeech best contribute to his modest tone?It is with a profound sense of humility that I accept thehonor you have chosen to bestow upon me. I know: yourchoice transcends me. This both frightens and pleasesme.O A. choice, senseB. profound, meC. humility, bestowO D. accept, pleases What was a 19th century artistic movement that influence nationalism in Europe Wyatts eye-level height is 120 ft above sea level, and Shawns eye-level height is 270 ft above sea level. How much farther can Shawn see to the horizon? Use the formula d = StartRoot StartFraction 3 h Over 2 EndFraction EndRoot, h greater-than-or-equal-to 0 with d being the distance they can see in miles and h being their eye-level height in feet.StartRoot 5 EndRoot mi3 StartRoot 5 EndRoot mi15 StartRoot 5 EndRoot mi45 StartRoot 5 EndRoot mi QUESTION 12 For a strategic alliance, firms should seek partners that are: a. known for being opportunistic. b. radically different when it comes to strategic goals. c. willing to share costs and risks of new-product development. d. different in terms of vision and agendas. e. similar when it comes to capabilities. Which country attacked American ships during World War 2?A)GermanyB)EnglandC)France 0.24731182795 to 1 Decimal Place List and describe at least four reasons why some countries are rich and some are poor. You may use books available at home or you may research online. WILL MARK AS BRAINLIEST!!Read and choose the correct option to complete the sentence with the preterite or the imperfect.Soy Juan. Hace cinco aos que ________ mi auto.comprabacomprabascomprcompr Let f(x)=5x and g(x)= -x+1. Find f o g(ONLY 2 HOURS TO ANSWER!) Edmund makes a cube using eight small cubes. Samuel uses cubes of the same size as the small cubes to make a cuboid twice as long, three times as wide and four times as high as Edmund's cube. How many more cubes does Samuel use than Edmund? Which of these is one characteristic of topographic maps? contain contour lines to display elevation contain information about types of vegetation contain weather and climate information contain satellite images of land masses ASAP help plzUrgent Five gallons of water need to be shared equally among 6 people. How many gallons of water will each person get? For men, which number and frequency of drinks defines binge drinking? Explain the FIVE TYPES of Transportation with at least Two Examples, Two Advantages and Two Disadvantages for each type. BRound your answer to the nearest hundredth.A9B5 Elastic energy is stored when an object is stretched. Is this an exampleof potential or kinetic energy?A. NeitherB. BothdC. KineticOD. PotentialReset Selection PLEASE HELP Draw the polygon whose vertices are (-2, 3), (-2, -3) (3, 1) and ( 3, 7) ,