Answer:
26,400 N
Step-by-step explanation:
PLEASE CHECK ATTACHMENT FOR COMPLETE SOLUTION
A child is 2 -1/2 feet tall. The child’s mother is twice as tall as the child. How tall is the child’s mother
Answer:
5 feet
Step-by-step explanation:
"Twice as tall" means "2 times as tall".
2 × (2 1/2 ft) = (2 × 2 ft) +(2 × (1/2 ft)) = 4 ft + 1 ft = 5 ft
The child's mother is 5 feet tall.
Answer:
The mother is 5ft tall
Step-by-step explanation:
2 1/2 + 2 1/2 = 5ft
2ft+2ft = 4ft
1/2+1/2= 1ft
4ft+1ft = 5ft
Please answer this correctly
Answer:
1/7
Step-by-step explanation:
There are 7 cards, 1 of which is less than 2. Therefore, P (less then 2) = 1/7
Answer:
1/7
Step-by-step explanation:
The number from the list that is less than 2 is 1.
1 number out of a total of 7 numbers.
= 1/7
Someone please answer this emergency pleaseee
Answer:
7). y = 140
8). x = 9
Step-by-step explanation:
Question (7).
All-right pencil factory will produce the graphite pencils, table formed will represent a linear graph.
Three points on the graph are (12, 42) and (18, 63), (40, y)
Slope of the line passing through these points = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
m = [tex]\frac{63-42}{18-12}[/tex] = [tex]\frac{y-42}{40-12}[/tex]
[tex]\frac{21}{6}[/tex] = [tex]\frac{y-42}{40-12}[/tex]
3.5 = [tex]\frac{y-42}{40-12}[/tex]
98 = y - 42
y = 140
Question (8),
If a bicyclist rides at a constant rate, table formed will represent a linear graph.
Slope of a line passing through three points (2, 25), (5, 62.5) and (x, 112.5) given in the table,
m = [tex]\frac{y_2-y_1}{x_2-x_1}[/tex]
[tex]\frac{62.5-25}{5-2}=\frac{112.5-62.5}{x-5}[/tex]
[tex]\frac{37.5}{3}=\frac{50}{x-5}[/tex]
37.5x - 187.5 = 150
37.5x = 337.5
x = 9
PLEASE HELP!!!! Find the common difference
Answer:
The common difference is 1/2
Step-by-step explanation:
Data obtained from the question include:
3rd term (a3) = 0
Common difference (d) =.?
From the question given, we were told that the 7th term (a7) and the 4th term (a4) are related by the following equation:
a7 – 2a4 = 1
Recall:
a7 = a + 6d
a4 = a + 3d
a3 = a + 2d
Note: 'a' is the first term, 'd' is the common difference. a3, a4 and a7 are the 3rd, 4th and 7th term respectively.
But, a3 = 0
a3 = a + 2d
0 = a + 2d
Rearrange
a = – 2d
Now:
a7 – 2a4 = 1
Substituting the value of a7 and a4, we have
a + 6d – 2(a + 3d) = 1
Sustitute the value of 'a' i.e –2d into the above equation, we have:
–2d + 6d – 2(–2d + 3d) = 1
4d –2(d) = 1
4d –2d = 1
2d = 1
Divide both side by 2
d = 1/2
Therefore, the common difference is 1/2
***Check:
d = 1/2
a = –2d = –2 x 1/2 = –1
a3 = 0
a3 = a + 2d
0 = –1 + 2(1/2)
0 = –1 + 1
0 = 0
a7 = a + 6d = –1 + 6(1/2) = –1 + 3 = 2
a4 = a + 3d = –1 + 3(1/2) = –1 + 3/2
= (–2 + 3)/2 = 1/2
a7 – 2a4 = 1
2 – 2(1/2 = 1
2 – 1 = 1
1 = 1
Mexican currency is the peso. One Mexican peso is currently equal to 0.055 U.S. dollars. If a traveler exchanges $400 for Mexican pesos, how many pesos will he receive? Round to the nearest peso.
Answer:
7,273 Pesos
Step-by-step explanation:
1 Peso = $0.055
The formula below converts pesos to dollars:
1 Peso x 0.055 = $1
The formula below converts dollars to pesos:
$1/0.055= 1 Pesos
We use the second formula because we are coverting
from dollars to pesos.
$400/0.055=7,273 Pesos
Answer:
22
Step-by-step explanation:
If one Mexican peso is .055 U.S dollars that means it has a greater value than the dollar so we can make the following ratio 1:.055. But if the .055 is a 400 1:400 we just multiply to get 22.
The weight of a chocolate bar is 4.4 ounces, but can vary. Let W be a random variable that represents the weight of a chocolate bar. The probability density function of Wis given below. If the shaded portion of the graph of the continuous probability density function below is 0.42739, what is the probability that a chocolate bar is at least 4 ounces, but no more than 7 ounces?
Answer:
Ans) 42.7%
Step-by-step explanation:
For a continuous probability distribution, a curve known as probability density function contains information about these probabilities.
in the given range -
The probability that a continuous random variable = equal to the area under the probability density function curve
The probability that the value of a random variable is equal to 'something' is 1.
As per the diagram,
Weight of chocolate bar between 4 ounces and 7 ounces is highlighted in the blue part. That area is said to be 0.42739 and the total area under the curve is 1.
Hence required probability
=0.42739/1=0.42739
Ans) 42.7%
Round to nearest tenth of a percent
For the functions f(x)=3x−1 and g(x)=4x−3, find (f∘g)(x) and (g∘f)(x)
Simplify 4 + (−3 − 8)
Answer:
-7
Step-by-step explanation:
4 + (−3 − 8)
PEMDAS
Parentheses first
4 + (-11)
Add and subtract next
-7
Answer:
first I'm using BODMAS
4+(-11)
= -7
hope it helps
7
х
45
Find x.
x=
V(14)
7
07/2
Answer:
7
Step-by-step explanation:
This a special 90° 45° 45° triangle and is an Isosceles triangle at the same time
Of one of the equal side is 7 than the other one too must be 7
The length of the rectangle is described by the function y = 3x + 6, where x is the width of the rectangle. Find the domain in this situation.
Answer:2/3
Step-by-step explanation:
Given that the length of the rectangle is described by the function y = 3x + 6, where x is the width of the rectangle. The domain of the function is (0, ∞).
What is domain of a function?The domain of a function is the set of all possible inputs for the function. In other words, domain is the set of all possible values of x. In this question, x is the width of the rectangle. Width of a rectangle existing in two dimensional space, cannot be negative or zero. Thus it is the set of all positive real numbers, or we say, (0, ∞).
Learn more about domain of a function here
https://brainly.com/question/13113489
#SPJ2
Rebecca collected data from a random sample of 500 homeowners in her state asking whether or not they use electric heat. Based on the results, she reports that 51% of the homeowners in the nation use electric heat. Why is this statistic misleading?
Answer:
She makes conclusion about a population that is not well represented by the sample.
Step-by-step explanation:
The conclusion she is making is about a population that is not well represented by her sample: the population is the homeowners in the nation, but the sample is made of homeowners or only her state.
The population about which she can make conclusions with this sample is the homeowners of her state, given that the sampling is done right.
Answer: The sample is biased
if 7 is added to a number then it becomes at least 15 what is the number?
Step-by-step explanation:
yeah,when 15-7=8
the number is 8
Of 41 bank customers depositing a check, 22 received some cash back. Construct a 90 percent confidence interval for the proportion of all depositors who ask for cash back. (Round your answers to 4 decimal places.)
Answer:
CI: {0.4085; 0.6647}
Step-by-step explanation:
The confidence interval for a proportion (p) is given by:
[tex]p \pm z*\sqrt{\frac{(1-p)*p}{n} }[/tex]
Where n is the sample size, and z is the z-score for the desired confidence interval. The score for a 90% confidence interval is 1.645. The proportion of depositors who ask for cash back is:
[tex]p=\frac{22}{41}=0.536585[/tex]
Thus the confidence interval is:
[tex]0.536585 \pm 1.645*\sqrt{\frac{(1-0.536585)*0.536585}{41}}\\0.536585 \pm 0.128109\\L=0.4085\\U=0.6647[/tex]
The confidence interval for the proportion of all depositors who ask for cash back is CI: {0.4085; 0.6647}
find the third angle in a triangle when the other two angles are (2a-32)° and (3a+22)°
Answer:
(190-5a)°
Step-by-step explanation:
Sum of internal angles of a triangle equals to 180°
If the third angle is x, then we have:
(2a-32)°+(3a+22)° +x = 180°(5a- 10)° +x= 180°x= (180+10-5a)°x= (190-5a)°The third angle is: (190-5a)°
Given the equation 4x - 3y = 12
1. Write the equation in slope-intercept form.
2. Identify the slope and y-intercept.
3. Graph the line.
4. Identify if it is a positive or negative slope.
Answer:
see below
Step-by-step explanation:
Slope intercept form is y = mx+b where m is the slope and b is the y intercept
4x - 3y = 12
Solve for y
Subtract 4x from each side
4x-4x - 3y =-4x+ 12
-3y = -4x+12
Divide by -3
-3y/-3 = -4x/-3 + 12/-3
y = 4/3x -4
The slope is 4/3 and the y intercept is -4
The slope is Positive
The mean height of women in a country (ages 20-29) is 63.5 inches. A random sample of 50 women in this age group is selected. What is the probability that the mean height for the sample is greater than 64 inches? Assume the standard deviation equals 2.96.
Answer:
11.70% probability that the mean height for the sample is greater than 64 inches
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question:
[tex]\mu = 63.5, \sigma = 2.96, n = 50, s = \frac{2.96}{\sqrt{50}} = 0.4186[/tex]
What is the probability that the mean height for the sample is greater than 64 inches?
This is 1 subtracted by the pvalue of Z when X = 64.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{64 - 63.5}{0.4186}[/tex]
[tex]Z = 1.19[/tex]
[tex]Z = 1.19[/tex] has a pvalue of 0.8830
1 - 0.8830 = 0.1170
11.70% probability that the mean height for the sample is greater than 64 inches
About ____% of the area is between z= -2 and z= 2 (or within 2 standard deviations of the mean)
Answer:
The percentage of area is between Z =-2 and Z=2
P( -2 ≤Z ≤2) = 0.9544 or 95%
Step-by-step explanation:
Explanation:-
Given data Z = -2 and Z =2
The probability that
P( -2 ≤Z ≤2) = P( Z≤2) - P(Z≤-2)
= 0.5 + A(2) - ( 0.5 - A(-2))
= A (2) + A(-2)
= 2 × A(2) (∵ A(-2) = A(2)
= 2×0.4772
= 0.9544
The percentage of area is between Z =-2 and Z=2
P( -2 ≤Z ≤2) = 0.9544 or 95%
Question 15 A party rental company has chairs and tables for rent. The total cost to rent 8 chairs and 3 tables is $38 . The total cost to rent 2 chairs and 5 tables is $35 . What is the cost to rent each chair and each table?
Answer:
Each table is $6 and each chair is $2.50
Step-by-step explanation:
Please answer this correctly
Step-by-step explanation:
pnotgrt8rthan4 = 3 ÷ 7 × 100
= 42.8571428571 / 43%
Please answer this correctly
Answer:
2/3
Step-by-step explanation:
There are 2 numbers out of 3 that fit the rule, 1 and 3. There is a 2/3 chance picking one of them.
Answer:
2/3Step-by-step explanation:
This is the answer because one number that is select is one. A number greater than 2 is 3. SO it is 2/3.
Find the fourth term in the expansion of the binomial
(4x + y)^4
a) 16xy^3
b) 256x^4
c) 64y^4
d) 4xy^3
Answer:
a) 16xy³
Step-by-step explanation:
For a binomial expansion (a + b)ⁿ, the r+1 term is:
nCr aⁿ⁻ʳ bʳ
Here, a = 4x, b = y, and n = 4.
For the fourth term, r = 3.
₄C₃ (4x)⁴⁻³ (y)³
4 (4x) (y)³
16xy³
Josh and Lucy share some money in the ratio 3:7. What fraction of the money does Josh receive?
Answer:
3/10ths of the money
Step-by-step explanation:
Add together the two numbers to get the total.
Josh gets 30 percent and Lucy gets 70 percent.
3/10
Answer:
3/10
Step-by-step explanation:
3+7=10
Josh=3
Lucy=7
An athletics coach states that the distribution of player run times (in seconds) for a 100-meter dash is normally distributed with a mean equal to 13.00 and a standard deviation equal to 0.2 seconds. What percentage of players on the team run the 100-meter dash in 13.36 seconds or faster
Answer:
96.41% of players on the team run the 100-meter dash in 13.36 seconds or faster
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
[tex]\mu = 13, \sigma = 0.2[/tex]
What percentage of players on the team run the 100-meter dash in 13.36 seconds or faster
We have to find the pvalue of Z when X = 13.36.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{13.36 - 13}{0.2}[/tex]
[tex]Z = 1.8[/tex]
[tex]Z = 1.8[/tex] has a pvalue of 0.9641
96.41% of players on the team run the 100-meter dash in 13.36 seconds or faster
find the solution set x^2+2x-15=0
Answer:
x = 3 or x = -5
Step-by-step explanation:
x² + 2x - 15 = 0
Factor left side of equation.
(x - 3)(x + 5) = 0
Set factors equal to 0
x - 3 = 0
x = 3
x + 5 = 0
x = -5
A courier service company wishes to estimate the proportion of people in various states that will use its services. Suppose the true proportion is 0.050.05. If 212212 are sampled, what is the probability that the sample proportion will differ from the population proportion by less than 0.030.03
Answer:
95.44% probability that the sample proportion will differ from the population proportion by less than 0.03.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal probability distribution
When the distribution is normal, we use the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
In this question:
[tex]p = 0.05, n = 212, \mu = 0.05, s = \sqrt{\frac{0.05*0.95}{212}} = 0.015[/tex]
What is the probability that the sample proportion will differ from the population proportion by less than 0.03?
This is the pvalue of Z when X = 0.03 + 0.05 = 0.08 subtracted by the pvalue of Z when X = 0.05 - 0.03 = 0.02. So
X = 0.08
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.08 - 0.05}{0.015}[/tex]
[tex]Z = 2[/tex]
[tex]Z = 2[/tex] has a pvalue of 0.9772
X = 0.02
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.02 - 0.05}{0.015}[/tex]
[tex]Z = -2[/tex]
[tex]Z = -2[/tex] has a pvalue of 0.0228
0.9772 - 0.0228 = 0.9544
95.44% probability that the sample proportion will differ from the population proportion by less than 0.03.
Will give brainliest answer
Answer:
[tex]153.86 \: {units}^{2} [/tex]
Step-by-step explanation:
[tex]area = \pi {r}^{2} \\ = 3.14 \times 7 \times 7 \\ = 3.14 \times 49 \\ = 153.86 \: {units}^{2} [/tex]
Answer:
153.86 [tex]units^{2}[/tex]
Step-by-step explanation:
Areaof a circle = πr^2
[tex]\pi = 3.14[/tex](in this case)
[tex]r^{2} =7[/tex]
A = πr^2
= 49(3.14)
= 153.86
HELP! will give brainlest or whatever its called... Triangle ABC has vertices A(–2, 3), B(0, 3), and C(–1, –1). Find the coordinates of the image after a reflection over the x-axis. A’ B’ C’
Answers:
A ' = (-2, -3)
B ' = (0, -3)
C ' = (-1, 1)
=======================================================
Explanation:
To apply an x axis reflection, we simply change the sign of the y coordinate from positive to negative, or vice versa. The x coordinate stays as is.
Algebraically, the reflection rule used can be written as [tex](x,y) \to (x,-y)[/tex]
Applying this rule to the three given points will mean....
Point A = (-2, 3) becomes A ' = (-2, -3)Point B = (0, 3) becomes B ' = (0, -3)Point C = (-1, -1) becomes C ' = (-1, 1)The diagram is provided below.
Side note: Any points on the x axis will stay where they are. That isn't the case here, but its for any future problem where it may come up. This only applies to x axis reflections.
Answer:
(-2,-3)...(0,-3)...(-1,1)
Step-by-step explanation:
What is the equation of the line which passes through (-0.5,-5) and (2,5)
Answer:
by using distance formula
d=[tex]\sqrt{(x2-x1)^2+(y2-y1)^2}[/tex]
by putting the values of coordinates
[tex]d=\sqrt{(2-(-0.5))^2+(5-(-5))^2}[/tex]
[tex]d=\sqrt{(2+0.5)^2+(5+5)^2}[/tex]
[tex]d=\sqrt{(2.5)^2+(10)^2}[/tex]
[tex]d=\sqrt{6.25+100}[/tex]
[tex]d=\sqrt{106.25}[/tex]
[tex]d=10.3[/tex]
Step-by-step explanation:
i hope this will help you :)
What is the measure of PSQ?
Answer:
Do you have an image because I'm a bit confused with you just asking the measure of PSQ.
Step-by-step explanation:
How many x-intercepts does the graph of y = 2x2 + 4x - 3 have?
Answer:
3
Step-by-step explanation:
Given
y
=
2
x
2
−
4
x
+
3
The y-intercept is the value of
y
when
x
=
0
XXX
y
=
2
(
0
)
2
−
4
(
0
)
+
3
=
3
For a quadratic in the general form:
XXX
y
=
a
x
2
+
b
x
+
c
the determinant
Δ
=
b
2
−
4
a
c
indicates the number of zeros.
Δ
⎧
⎪
⎨
⎪
⎩
<
0
==⇒
no solutions
=
0
==⇒
one solution
>
0
==⇒
two solutions
In this case
XXX
Δ
=
(
−
4
)
2
−
4
(
2
)
(
3
)
<
0
so there are no solutions (i.e. no values for which the expression is equal to zero).
This can also be seen from a graph of this equation:
graph{2x^2-4x+3 [-6.66, 13.34, -0.64, 9.36]}
Answer link
Vinícius Ferraz
Nov 13, 2015
(
0
,
3
)
Explanation:
x
=
0
⇒
y
=
0
−
0
+
3
y
=
0
⇒
x
=
−
b
±
√
b
2
−
4
a
c
2
a
a
=
2
,
b
=
−
4
,
c
=
3
But
Δ
< 0, then there is no real root
(
x
0
,
0
)
.
Answer:
it has 2
Step-by-step explanation:
I hope this helps!