Answer:
True
Explanation:
The penetrating ability of electrons in the orbitals is in the order s > p > d > f
An electron in a 3s orbital is closer to the nucleus than the one in a 3p orbital and as a result, there will be lesser shielding effect on it. This low shielding effect experienced by the 3s electron gives it a high penetration ability and hence will be able to easily penetrate regions occupied by core electrons. Conversely, the 3p orbital is farther away from the nucleus, electrons revolving around it are highly shielded which limits their ability to penetrate regions of core electrons.
Note that the maximum electrons that the s orbital can accommodate is 2 while p orbital can accommodate a maximum of 8.
When comparing the two chair conformations for a monosubstituted cyclohexane ring, which type of substituent shows the greatest preference for occupying an equatorial position rather than an axial position
Answer:
See the explanation
Explanation:
In this case, we have to keep in mind that in the monosubstituted product we only have to replace 1 hydrogen with another group. In this case, we are going to use the methyl group [tex]CH_3[/tex].
In the axial position, we have a more steric hindrance because we have two hydrogens near to the [tex]CH_3[/tex] group. If we have more steric hindrance the molecule would be more unstable. In the equatorial positions, we don't any interactions because the [tex]CH_3[/tex] group is pointing out. If we don't have any steric hindrance the molecule will be more stable, that's why the molecule will the equatorial position.
See figure 1
I hope it helps!
Please what's the missing minor products? And kindly explain in your own words how they were formed. Thank you!
Answer:
it's a two step elimination reaction
Explanation:
it follows a carbocationic pathway. When carbocation is stable, the equation is favourable, that is, double bond is formed by expelling hydrogen atom.
Enter your answer in the provided box. On a cool, rainy day, the barometric pressure is 739 mmHg. Calculate the barometric pressure in centimeters of water (cmH2O) (d of Hg = 13.5 g/mL; d of H2O = 1.00 g/mL).
Answer:
997.65cmH2O
Explanation:
Barometric pressure = 739 mmHg
density of Hg = 13.5 g/ml
density of water (H2O) = 1.00 g/ml
Calculate Barometric pressure in centimetres of water ( cmH20)
equate the barometric pressure of Hg and water
739 * 13.5 * 9.8 = x * 1 * 9.81
x ( barometric pressure of water in mmH2O ) = 739 *13.5 / 1 = 9976.5mmH2O
in cmH2O = 997.65cmH2O
The lock-and-key model and the induced-fit model are two models of enzyme action explaining both the specificity and the catalytic activity of enzymes. Following are several statements concerning enzyme and substrate interaction. Indicate whether each statement is part of the lock-and-key model, the induced-fit model, or is common to both models.
a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
c. Enzyme active site has a rigid structure complementary
d. Substrate binds to the enzyme through noncovalent interactions
Answer:
The lock-and-key model:
c. Enzyme active site has a rigid structure complementary
The induced-fit model:
a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
Common to both The lock-and-key model and The induced-fit model:
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
d. Substrate binds to the enzyme through non-covalent interactions
Explanation:
Generally, the catalytic power of enzymes are due to transient covalent bonds formed between an enzyme's catalytic functional group and a substrate as well as non-covalent interactions between substrate and enzyme which lowers the activation energy of the reaction. This applies to both the lock-and-key model as well as induced-fit mode of enzyme catalysis.
The lock and key model of enzyme catalysis and specificity proposes that enzymes are structurally complementary to their substrates such that they fit like a lock and key. This complementary nature of the enzyme and its substrates ensures that only a substrate that is complementary to the enzyme's active site can bind to it for catalysis to proceed. this is known as the specificity of an enzyme to a particular substrate.
The induced-fit mode proposes that binding of substrate to the active site of an enzyme induces conformational changes in the enzyme which better positions various functional groups on the enzyme into the proper position to catalyse the reaction.
A solution is prepared by mixing 5.00 mL of 0.100 M HCl and 2.00 mL of 0.200 M NaCl. What is the molarity of chloride ion in this solution?
Answer:
0.129 M
Explanation:
0.100 M HCl = 0.100 mol/L solution HCl
5.00 mL = 0.00500 L solution HCl
0.100 mol/L HCl * 0.00500 L = 0.000500 mol HCl
HCl ------> H+ + Cl-
1 mol 1 mol
0.000500 mol 0.000500 mol
0.200 M NaCl = 0.200 mol/L solution NaCl
2.00 mL = 0.00200 L solution NaCl
0.200 mol/L NaCl*0.00200 L = 0.000400 mol NaCl
NaCl ------> Na+ + Cl-
1 mol 1 mol
0.000400 mol 0.000400 mol
Chloride ion altogether (0.000500 mol + 0.000400 mol) =0.000900 mol
Solution altogether (0.00500 L+0.00200 L) = 0.00700L
Molarity (Cl-)= solute/solution = 0.000900 mol/0.00700L = 0.129 mol/L=
= 0.129 M
An experimenter studying the oxidation of fatty acids in extracts of liver found that when palmitate (16:0) was provided as substrate, it was completely oxidized to CO2. However, when undecanoic acid (11:0) was added as substrate, incomplete oxidation occurred unless he bubbled CO2 through the reaction mixture. The addition of the protein avidin, which binds tightly to biotin, prevented the complete oxidation of undecanoic acid even in the presence of CO2, although it had no effect on palmitate oxidation. Explain these observations in light of what you know of fatty acid oxidation reactions.
Answer:
Even-number fatty acids such as palmitate undergoes complete β-oxidation in the liver motochondria to CO₂ because the product, acetyl-CoA can enter the TCA cycle.
Oxidation of odd-number fatty acids such as undecanoic acid yields acetyl-CoA + propionyl-CoA in their last pass. Propionyl-CoA requires additional reactions including carboxylation in order to be able to enter the TCA cycle.
The reaction CO2 + propionyl-CoA ----> methylmalonyl-CoA is catalyzed by propionyl-CoA carboxylase, a biotin-containing enzyme, which is inhibited by avidin. Palmitate oxidation however, does not involve carboxylation.
Explanation:
Even-number fatty acids such as palmitate undergoes complete β-oxidation in the liver motochondria to CO₂ because their oxidation product, acetyl-CoA, can enter the TCA cycle where it is oxidized to CO₂.
Undecanoic acid is an odd-number fatty acid having 11 carbon atoms. Oxidation of odd-number fatty acids such as undecanoic acid yields a five -carbon fatty acyl substrate for their last pass through β-oxidation which is oxidized and cleaved into acetyl-CoA + propionyl-CoA. Propionyl-CoA requires additional reactions including carboxylation in order to be able to enter the TCA cycle. Since oxidation is occuring in a liver extract, CO₂ has to be externally sourced in order for the carboxylation of propionyl-CoA to proceed and thus resulting in comlete oxidation of undecanoic acid.
The reaction CO2 + propionyl-CoA ----> methylmalonyl-CoA is catalyzed by propionyl-CoA carboxylase, a biotin-containing enzyme. The role of biotin is to activate the CO₂ before its tranfer to the propionate moiety. The addition of the protein avidin prevents the complete oxidation of undecanoic acid by binding tightly to biotin, hence inhibiting the activation and transfer of CO₂ to propionate.
Palmitate oxidation however, does not involve carboxylation, hence addition of avidin has no effect on its oxidation.
Which of the following aqueous solutions are good buffer systems?
0.31 M ammonium bromide + 0.39 M ammonia
0.31 M nitrous acid + 0.25 M potassium nitrite
0.21 M perchloric acid + 0.21 M potassium perchlorate
0.16 M potassium cyanide + 0.21 M hydrocyanic acid
0.14 M hypochlorous acid + 0.21 M sodium hypochlorite
0.13 M nitrous acid + 0.12 M potassium nitrite
0.15 M potassium hydroxide + 0.22 M potassium bromide
0.23 M hydrobromic acid + 0.20 M potassium bromide
0.34 M calcium iodide + 0.29 M potassium iodide
0.33 M ammonia + 0.30 M sodium hydroxide
0.20 M nitrous acid + 0.18 M potassium nitrite
0.30 M ammonia + 0.34 M ammonium bromide
0.29 M hydrobromic acid + 0.22 M sodium bromide
0.17 M calcium hydroxide + 0.28 M calcium bromide
0.34 M potassium iodide + 0.27 M potassium bromide
Answer:
Answers are in the explanation.
Explanation:
A buffer is defined as the aqueous mixture of a weak acid and its conjugate base or vice versa. Having this in mind:
0.31 M ammonium bromide + 0.39 M ammonia . Is a good buffer system because ammonia is a weak base and its conjugate base, ammonium ion is in the solution.
0.31 M nitrous acid + 0.25 M potassium nitrite . Is a good buffer system because nitrous acid is the weak acid and nitrite ion its conjugate base.
0.21 M perchloric acid + 0.21 M potassium perchlorate . Perchloric acid is a strong acid. Thus, Is not a good buffer system.
0.16 M potassium cyanide + 0.21 M hydrocyanic acid . Hydrocyanic acid is a weak acid and cyanide ion is its conjugate base. Is a good buffer system.
0.14 M hypochlorous acid + 0.21 M sodium hypochlorite . Hypochlorous acid is a weak acid and hypochlorite ion its conjugate base. Is a good buffer system.
0.13 M nitrous acid + 0.12 M potassium nitrite . Is a good buffer system as I explained yet.
0.15 M potassium hydroxide + 0.22 M potassium bromide . Potassium hydroxide is a strong base. Is not a good buffer system.
0.23 M hydrobromic acid + 0.20 M potassium bromide . HBr is a strong acid. Is not a good buffer system.
0.34 M calcium iodide + 0.29 M potassium iodide . CaI and KI are both salts, Is not a good buffer system.
0.33 M ammonia + 0.30 M sodium hydroxide . Ammonia is a weak base but its conjugate base ammonium ion is not in solution. Is not a good buffer system.
0.20 M nitrous acid + 0.18 M potassium nitrite . Is a good buffer system.
0.30 M ammonia + 0.34 M ammonium bromide . Ammonia and ammonium in solution, Good buffer system.
0.29 M hydrobromic acid + 0.22 M sodium bromide . HBr is a strong acid, is not a good buffer system.
0.17 M calcium hydroxide + 0.28 M calcium bromide . CaOH is a strong base, is not a good buffer system.
0.34 M potassium iodide + 0.27 M potassium bromide. KI and KBr are both salts, is not a good buffer system.
Question 1
1 pts
2B+6HCI --
| --> 2BCl3 + 3H2
How many moles of boron chloride will be produced if you start with 8.752 moles of HCI
(hydrochloric acid)? (Round to 3 sig figs. Enter the number only do not include units.)
Answer:
2.92 mol
Explanation:
Step 1: Write the balanced equation
2 B(s) + 6 HCI(aq) ⇒ 2 BCl₃(aq) + 3 H₂(g)
Step 2: Establish the appropriate molar ratio
The molar ratio of hydrochloric acid to boron chloride is 6:2.
Step 3: Calculate the moles of boron chloride produced from 8.752 moles of hydrochloric acid
[tex]8.752molHCl \times \frac{2molBCl_3}{6molHCl} = 2.92molBCl_3[/tex]
What is Key for the reaction 2503(9) = 2802(9) + O2(g)?
Answer:
Option C. Keq = [SO2]² [O2] /[SO3]²
Explanation:
The equilibrium constant keq for a reaction is simply the ratio of the concentration of the products raised to their coefficient to the concentration of the reactants raised to their coefficient.
Now, let us determine the equilibrium constant for the reaction given in the question.
This is illustrated below:
2SO3(g) <==> 2SO2(g) + O2(g)
Reactant => SO3
Product => SO2, O2
Keq = concentration of products /concentration of reactants
Keq = [SO2]² [O2] /[SO3]²
The reason for the dramatic decline in the number of measles cases from the 1960s to 2010 in the United States was because the vaccine
Answer:
It was because the vaccine generated actively acquired immunity, that is, inoculation of a portion of the measles virus so that the body forms the antibodies for a second contact and thus can destroy it without triggering the pathology.
Explanation:
Vaccines are methods of active acquired immunity since the antibody is not passively inoculated, it is manufactured by the body with a physiological process once part of the virus is inoculated.
The measles virus most of all affected the lives of infants or newborn children with severe rashes and high fevers that led to death.
Be sure to answer all parts. Three 8−L flasks, fixed with pressure gauges and small valves, each contain 4 g of gas at 276 K. Flask A contains He, flask B contains CH4, and flask C contains H2. Rank the flask contents in terms of:
Here is the complete question.
Be sure to answer all parts. Three 8−L flasks, fixed with pressure gauges and small valves, each contain 4 g of gas at 276 K. Flask A contains He, flask B contains CH4, and flask C contains H2. Rank the flask contents in terms of: the following properties. (Use the notation >, <, or =, for example B=C>A.)
(a) pressure
(b) average molecular kinetic energy
(c) diffusion rate after the valve is opened
(d) total kinetic energy of the molecules
Answer:
Explanation:
Given that:
Three flask A,B, C:
contains a volume of 8-L
mass m = 4g &;
Temperature = 276 K
Flask A = He
Flask B = H₂
Flask C = CH₄
a) From the ideal gas equation:
PV = nRT
where;
n = number of moles = mass (m)/molar mass (mm)
Then:
PV = m/mm RT
If T ,m and V are constant for the three flasks ; then
P ∝ 1/mm
As such ; the smaller the molar mass the larger the pressure.
Now; since the molecular weight of CH₄ is greater than He and H₂ and also between He and H₂, He has an higher molecular weight .
Then the order of pressure in the flask is :
[tex]\mathbf{P_B >P_A>P_C}[/tex]
where :
[tex]P_A[/tex] = pressure in the flask A
[tex]P_B[/tex] = pressure in the flask B
[tex]P_C[/tex]= Pressure in the flask C
b)
average molecular kinetic energy
We all know that the average molecular kinetic energy varies directly proportional to the temperature.
Thus; the given temperature = 276 K
∴ The order of the average molecular kinetic energy is [tex]\mathbf{K.E_A =K.E_B =K.E_C}[/tex]
c)
The rate of diffusion of gas is inversely proportional to the square root of it density . Here the density is given in relation to their molar mass.
So;
rate of diffusion ∝ [tex]\dfrac{1}{\sqrt{mm} }[/tex]
where;
[tex]D_A[/tex] = rate of diffusion in flask A
[tex]D_B[/tex] = rate of diffusion in flask B
[tex]D_C[/tex] = rate of diffusion in flask C
Thus; the order of the rate of diffusion = [tex]D_B[/tex] > [tex]D_A[/tex] > [tex]D_C[/tex]
d) total kinetic energy of the molecules .
The kinetic energy deals with how the speed of particles of a substance determines how fast the substances will diffuse in a given set of condition.
The the order of the total kinetic energy depends on the molecular speed
Thus; the order of the total kinetic energy for the three flask is as follows:
[tex]\mathbf{ K.E_B>K.E_A>K.E_C}[/tex]
In the presence of a strong base, the following reaction between (CH3)3CCl and OH- occurs: (CH3)3CCl + OH- → (CH3)3COH + Cl- Studies have suggested that the mechanism for the reaction takes place in 2 steps: Step 1) (CH3)3CCl → (CH3)3C+ + Cl- (slow) Step 2) (CH3)3C+ + OH- → (CH3)3COH (fast) What is the rate law expression for the overall reaction? Group of answer choices
Answer:
D. rate = k [(CH3)3CCl]
Explanation:
(CH3)3CCl + OH- → (CH3)3COH + Cl-
The mechanisms are;
Step 1)
(CH3)3CCl → (CH3)3C+ + Cl- (slow)
Step 2)
(CH3)3C+ + OH- → (CH3)3COH (fast)
In kinetics, the slowest step is the ratee determining step.
For a given reaction;
A → B + C, the rate law expression is given as;
rate = k [A]
In this problem, from step 1. The rate expression is;
rate = k [(CH3)3CCl]
Harvey kept a balloon with a volume of 348 milliliters at 25.0˚C inside a freezer for a night. When he took it out, its new volume was 322 milliliters, but its pressure was the same. If the final temperature of the balloon is the same as the freezer’s, what is the temperature of the freezer?
Answer:
[tex]T2=276K[/tex]
Explanation:
Given:
Initial volume of the balloon V1 = 348 mL
Initial temperature of the balloon T1 = 255C
Final volume of the balloon V2 = 322 mL
Final temperature of the balloon T2 =
To calculate T1 in kelvin
T1= 25+273=298K
Based on Charles law, which states that the volume of a given mass of a ideal gas is directly proportional to the temperature provided that the pressure is constant. It can be applied using the below formula
[tex](V1/T1)=(V2/T2)[/tex]
T2=( V2*T1)/V1
T2=(322*298)/348
[tex]T2=276K[/tex]
Hence, the temperature of the freezer is 276 K
Answer: 276 kelvins
Explanation:
A solution of benzene in methanol has a transmittance of 93.0 % in a 1.00 cm cell at a wavelength of 254 nm. Only the benzene absorbs light at this wavelength, not the methanol. What will the solution's transmittance be if it is placed in a 10.00 cm long pathlength cell
Answer:
T = 48.39%
Explanation:
In this case we need to apply the Beer law which is the following:
A = CεL (1)
Where:
A: Absorbance of solution
C: Concentration of solution
ε: Molar Absortivity (Constant)
L: Length of the cell
Now according to the given data, we have transmittance of 93% or 0.93. We can calculate absorbance using the following expression:
A = -logT (2)
Applying this expression, let's calculate the Absorbance:
A = -log(0.93)
A = 0.03152
Now that we have the absorbance, let's calculate the concentration of the solution, using expression (1).
A = CεL
C = A / εL
Replacing:
C = 0.03152 / 1 *ε (3)
Now, we want to know the transmittance of the solution with a length of 10 cm. so:
A = CεL
Concentration and ε are constant, so:
A = (0.03152 / ε) * ε * 10
A = 0.3152
Now that we have the new absorbance, we can calculate the new transmittace:
T = 10^(-A)
T = 0.4839 ----> 48.39%
A solution that is 0.135 M is diluted to make 500.0 mL of a 0.0851 M solution. How many milliliters of the original solution were required? View Available Hint(s) A solution that is 0.135 M is diluted to make 500.0 mL of a 0.0851 M solution. How many milliliters of the original solution were required? 5.74 mL 0.315 mL 793 mL 315 mL
Answer:
315mL
Explanation:
Data obtained from the question include the following:
Molarity of stock solution (M1) = 0.135 M
Volume of stock solution needed (V1) =?
Molarity of diluted solution (M2) = 0.0851 M
Volume of diluted solution (V2) = 500mL
The volume of the stock solution needed can be obtain as follow:
M1V1 = M2V2
0.135 x V1 = 0.0851 x 500
Divide both side by 0.135
V1 = (0.0851 x 500) / 0.135
V1 = 315mL
Therefore, the volume of the stock solution needed is 315mL
If one contraction cycle in muscle requires 55 kJ55 kJ , and the energy from the combustion of glucose is converted with an efficiency of 35%35% to contraction, how many contraction cycles could theoretically be fueled by the complete combustion of one mole of glucose? Round your answer to the nearest whole number.
Answer:
18 moles
Explanation:
Here the combustion of one mole of glucose ----> carbon dioxide + water, releases 2870 kilojoules / moles.
_______________________________________________________
With one contraction cycle requiring 55 kilojoules,
2870 / 55 ≈ 52.18
And with the efficiency being 35 percent,
52.1818..... * 0.35 = ( About ) 18 moles
Hope that helps!
What is the net ionic equation of the reaction of MgSO4 with Ba(NO3)2 ?
Answer:
Ba(+2)(aq) + SO4(-2)(aq) -----> BaSO4(s)
Explanation:
Take a look at the attachment below;
what’s the SI unit of time ?
Answer:
The answer is A
Explanation:
A solid is dissolved in a liquid, and over time a solid forms again. How can
you confirm the type of change that took place?
A. Testing the new solid to show that its properties are the same as
the starting solid would confirm that a physical change took
place.
B. The solid dissolving in a liquid is confirmation that a chemical
change took place.
C. The solid forming from the liquid is confirmation that a physical
change took place.
D. Showing that the total mass of the solid and liquid changed would
confirm that a chemical change took place.
Describe the buffer capacity of the acetic acid buffer solution in relation to the addition of both concentrated and dilute acids and bases.
Answer:
The answer is in the explanation
Explanation:
Acetic acid, CH₃COOH, is a weak acid that will produce a buffer when its conjugate base, CH₃COO⁻, acetate ion, is added to the solution.
That is because a buffer is the mixture of a weak acid and its conjugate base or vice versa.
When an acid (HX) is added to the solution, the acetate ion will react producing acetic acid, thus:
CH₃COO⁻ + HX → CH₃COOH + X⁻
For this reason, the pH doesn't change abruptly because H⁺ ions are not produced.
Now, if a base (BOH) is added to the buffer, CH₃COOH will react producing acetate ion and water, thus:
CH₃COOH + BOH → CH₃COO⁻ + H₂O + B⁺.
In the same way, there are not produced free OH⁻ and the pH doesn't change significantly.
Part A Find ΔErxn for the combustion of biphenyl. The heat capacity of the bomb calorimeter, determined in a separate experiment, is 5.86 kJ/∘C. Express the energy in kilojoules per mole to three significant figures.
Question:
When 0.500 g of biphenyl (C₁₂H₁₀) undergoes combustion in a bomb calorimeter, the temperature rises from 26.8 °C to 29.5 °C. Part A Find ΔErxn for the combustion of biphenyl. The heat capacity of the bomb calorimeter, determined in a separate experiment, is 5.86 kJ/∘C. Express the energy in kilojoules per mole to three significant figures.
Answer;
-4870kJ/mol(3 significant figure)
Carbon dioxide and water vapor are variable gases because _____.
Answer: their amounts vary throughout the atmosphere
Explanation:
There is very little that travels over the atmosphere
Vary=very little
Hope that helps
A certain mass of carbon reacts with 9.53 g of oxygen to form carbon monoxide. ________ grams of oxygen would react with that same mass of carbon to form carbon dioxide, according to the law of multiple proportions.
Answer: 9.53 *2= 19.06
Explanation:
The law of multiple proportions states that if two elements combines to form more than one compound the ratio of masses of the second element which combines to the fixed mass of the first element will always be the ratios of the small whole numbers.
in case of carbon monoxide, mass of carbon will be the same of mass of oxygen.
But in case of carbon dioxide, if carbon is 9.53 units then oxygen will be twice as that of carbon.
CO2, so 9.53*2= 19.06 grams of oxygen will combine with 9.53 grams of carbon to form carbon dioxide.
What is an ion?
A. An atom that has lost or gained 1 or more electrons
O B. An atom that has lost or gained 1 or more neutrons
O C. An atom that has lost or gained 1 or more protons
D. An atom that differs in mass from another atom of the same
element
Answer:
An ion is an atom that has lost or gained one or more electrons.
Explanation:
Ions are positively or negatively charged atoms of elements. This is because they can give, take, or share electrons with other elements to encourage the formation of chemical bonds.
Protons are what decide the chemical identity of the element. So, for example, if an atom has 11 protons, we know that will be a Sodium (Na) atom. A loss or gain of protons completely changes the chemical identity of the element and it will then become another element.
Electrons are what give an atom a neutral electrical charge (if that atom has the number of protons and neutrons normally described for the element - otherwise, a discrepancy or gain in neutrons is referred to as an isotope and declares that ions have nothing to do with the mass of an element).
With this information, you can realize that neutrons and protons have nothing to do with ions and you can confirm that ions are atoms that have lost or gained one or more electrons.
Give the characteristic of a zero order reaction having only one reactant. a. The rate of the reaction is not proportional to the concentration of the reactant. b. The rate of the reaction is proportional to the square of the concentration of the reactant. c. The rate of the reaction is proportional to the square root of the concentration of the reactant. d. The rate of the reaction is proportional to the natural logarithm of t
Answer:
a. The rate of the reaction is not proportional to the concentration of the reactant.
Explanation:
The rate expression for a zero order reaction is given as;
A → Product
Rate = k[A]⁰
[A]⁰ = 1
Rate = K
GGoing through the options;
a) This is correct because in the final form of the rate expression, the rate is independent of the concentration.
b) This option is wrong
c) This option is also wrong
d) Like options b and c this is also wrong becaus ethere is no relationship between either the concentration or t.
Convert 150 K to degrees C.
Answer:
K = 150, C = - 123.15°
Explanation:
Kelvin = Celcius + 273.15 / 0 Kelvin = - 273.14 C
_____________________________________
Thus,
150 K = Celcius + 273.15,
150 - 273.15 = C,
C = -123.15 degrees
Solution, C = - 123.15°
Answer:
C=-123.15
Explanation:
This is easy
all compounds are neutral true or false
Answer:
Even all compounds are neutral.
Explanation:
Some of them exhibit polarity. Because of the difference in electron affinity of the constituent atoms, the shared electrons are pulled towards the atom with high affinity to electrons.
How many moles of CO2 can be produced by the complete reaction of 1.0 g of lithium carbonate with excess hydrochloric acid (balanced chemical reaction is given below)? Li2CO3(s) + 2HCl(aq) --> 2LiCl(aq) + H2O(l) + CO2(g) Question 1 options: 1.7 g 1.1 g 0.60 040 g
Answer:Mass of CO2 = 0.60g
Explanation:
Given the chemical rection
Li2CO3(s) + 2HCl(aq) --> 2LiCl(aq) + H2O(l) + CO2(g
No of moles = mass / molar mass
molar mass Li2CO3 = Molecular mass calculation: 6.941 x 2 + 12.0107 + 15.9994 x 3 =
= 73.8909 g/mol
therefore Number of moles Li2CO3 = 1.0g / 73.89 g/mol
= 0.0135 moles Li2CO3
From our given Balanced equation, shows that
Li2CO3(s) + 2HCl(aq) --> 2LiCl(aq) + H2O(l) + CO2(g
1 mole Li2CO3 produces 1 mole CO2
therefore 0.0135 mol Li2CO3 will produce 0.0135 moles of CO2
Also
No of moles = mass / molar mass
Mass = No of moles x molar mass
molar mass of CO2=12.0107 + 15.9994 x 2=44.0095 g/mol
Mass of CO2= 0.0135 X 44.0095 g/mol =0.594≈0.60g
need helpp asapp please
Answer:
B. None of these
Explanation:
Sulfur has less ionization energy than phosphorus because sulfur has a pair of electron in its 3p subshell that increases electron repulsion in sulfur and sulfur electrons can easily remove from its sub-level.
While, there are no electron pairs in 3p subshell of phosphorus, therefore it requires more energy to remove an electron from 3p subshell.
Hence, the reason is electron repulsion and the correct answer is B.
A certain element consists of two stable isotopes. The first has a mass of 62.9 amu and a percent natural abundance of 69.1 %. The second has a mass of 64.9 amu and a percent natural abundance of 30.9 %. What is the atomic weight of the element?
Answer:
63.518
Explanation:
The following data were obtained from the question:
Mass of Isotope A = 62.9 amu
Abundance of isotope A (A%) = 69.1%
Mass of isotope B = 64.9 amu
Abundance of isotope B (B%) = 30.9%
Atomic weight of the element =..?
The atomic weight of the element can be obtained as follow:
Atomic weight = [(Mass of A x A%)/100] + [(Mass of B x B%) /100]
Atomic weight = [(62.9 x 69.1)/100] + [(64.9 x 30.9)/100]
Atomic weight = 43.4639 + 20.0541
Atomic weight = 63.518
Therefore, the atomic weight of the element is 63.518.