An article states that false-positives in polygraph tests (i.e., tests in which an individual fails even though he or she is telling the truth) are relatively common and occur about 15% of the time. Suppose that such a test is given to 10 trustworthy individuals. (Round all answers to four decimal places.)
(a) What is the probability that all 10 pass?
P(X = 10) =
(b) What is the probability that more than 2 fail, even though all are trustworthy?
P (more than 2 fail, even though all are trustworthy) =
(c) The article indicated that 400 FBI agents were required to take a polygraph test. Consider the random variable x = number of the 400 tested who fail. If all 400 agents tested are trustworthy, what are the mean and standard deviation of x?
Mean = 3
Standard deviation = 4

Answers

Answer 1

(a) To find the probability that all 10 trustworthy individuals pass the polygraph test,

we can use the binomial probability formula:

P(X = 10) = C(10, 10) * (0.15)^10 * (1 - 0.15)^(10 - 10)

Calculating the values:

C(10, 10) = 1 (since choosing all 10 out of 10 is only one possibility)

(0.15)^10 ≈ 0.0000000778

(1 - 0.15)^(10 - 10) = 1 (anything raised to the power of 0 is 1)

P(X = 10) ≈ 1 * 0.0000000778 * 1 ≈ 0.0000000778

The probability that all 10 trustworthy individuals pass the polygraph test is approximately 0.0000000778.

(b) To find the probability that more than 2 trustworthy individuals fail the test, we need to calculate the probability of exactly 0, 1, and 2 individuals failing and subtract it from 1 (to find the complementary probability).

P(more than 2 fail, even though all are trustworthy) = 1 - P(X = 0) - P(X = 1) - P(X = 2)

Using the binomial probability formula:

P(X = 0) = C(10, 0) * (0.15)^0 * (1 - 0.15)^(10 - 0)

P(X = 1) = C(10, 1) * (0.15)^1 * (1 - 0.15)^(10 - 1)

P(X = 2) = C(10, 2) * (0.15)^2 * (1 - 0.15)^(10 - 2)

Calculating the values:

C(10, 0) = 1

C(10, 1) = 10

C(10, 2) = 45

(0.15)^0 = 1

(0.15)^1 = 0.15

(0.15)^2 ≈ 0.0225

(1 - 0.15)^(10 - 0) = 0.85^10 ≈ 0.1967

(1 - 0.15)^(10 - 1) = 0.85^9 ≈ 0.2209

(1 - 0.15)^(10 - 2) = 0.85^8 ≈ 0.2476

P(more than 2 fail, even though all are trustworthy) = 1 - 1 * 0.1967 - 10 * 0.15 * 0.2209 - 45 * 0.0225 * 0.2476 ≈ 0.0004

The probability that more than 2 trustworthy individuals fail the polygraph test, even though all are trustworthy, is approximately 0.0004.

(c) The mean (expected value) of a binomial distribution is given by μ = np, where n is the number of trials (400 agents tested) and p is the probability of success (the probability of failing for a trustworthy agent, which is 0.15).

Mean = μ = np = 400 * 0.15 = 60

The standard deviation of a binomial distribution is given by σ = sqrt(np(1-p)).

Standard deviation = σ = sqrt(400 * 0.15 * (1 - 0.15)) ≈ 4

To know more about polygraph refer here:

https://brainly.com/question/14204600#

#SPJ11


Related Questions

Find the general solution to the following differential equations:
16y''-8y'+y=0
y"+y'-2y=0
y"+y'-2y = x^2

Answers

The general solution of the given differential equations are:

y = c₁e^(x/4) + c₂xe^(x/4) (for 16y''-8y'+y=0)

y = c₁e^x + c₂e^(-2x) (for y"+y'-2y=0)

y = c₁e^x + c₂e^(-2x) + (1/2)x

(for y"+y'-2y=x²)

Given differential equations are:

16y''-8y'+y=0

y"+y'-2y=0

y"+y'-2y = x²

To find the general solution to the given differential equations, we will solve these equations one by one.

(i) 16y'' - 8y' + y = 0

The characteristic equation is:

16m² - 8m + 1 = 0

Solving this quadratic equation, we get m = 1/4, 1/4

Hence, the general solution of the given differential equation is:

y = c₁e^(x/4) + c₂xe^(x/4)..................................................(1)

(ii) y" + y' - 2y = 0

The characteristic equation is:

m² + m - 2 = 0

Solving this quadratic equation, we get m = 1, -2

Hence, the general solution of the given differential equation is:

y = c₁e^x + c₂e^(-2x)..................................................(2)

(iii) y" + y' - 2y = x²

The characteristic equation is:

m² + m - 2 = 0

Solving this quadratic equation, we get m = 1, -2.

The complementary function (CF) of this differential equation is:

y = c₁e^x + c₂e^(-2x)..................................................(3)

Now, we will find the particular integral (PI). Let's assume that the PI of the differential equation is of the form:

y = Ax² + Bx + C

Substituting the value of y in the given differential equation, we get:

2A - 4A + 2Ax² + 4Ax - 2Ax² = x²

Equating the coefficients of x², x, and the constant terms on both sides, we get:

2A - 2A = 1,

4A - 4A = 0, and

2A = 0

Solving these equations, we get

A = 1/2,

B = 0, and

C = 0

Hence, the particular integral of the given differential equation is:

y = (1/2)x²..................................................(4)

The general solution of the given differential equation is the sum of CF and PI.

Hence, the general solution is:

y = c₁e^x + c₂e^(-2x) + (1/2)x²..................................................(5)

Conclusion: Therefore, the general solution of the given differential equations are:

y = c₁e^(x/4) + c₂xe^(x/4) (for 16y''-8y'+y=0)

y = c₁e^x + c₂e^(-2x) (for y"+y'-2y=0)

y = c₁e^x + c₂e^(-2x) + (1/2)x

(for y"+y'-2y=x²)

To know more about differential visit

https://brainly.com/question/13958985

#SPJ11

The particular solution is: y = -1/2 x². The general solution is: y = c1 e^(-2x) + c2 e^(x) - 1/2 x²

The general solution of the given differential equations are:

Given differential equation: 16y'' - 8y' + y = 0

The auxiliary equation is: 16m² - 8m + 1 = 0

On solving the above quadratic equation, we get:

m = 1/4, 1/4

∴ General solution of the given differential equation is:

y = c1 e^(x/4) + c2 x e^(x/4)

Given differential equation: y" + y' - 2y = 0

The auxiliary equation is: m² + m - 2 = 0

On solving the above quadratic equation, we get:

m = -2, 1

∴ General solution of the given differential equation is:

y = c1 e^(-2x) + c2 e^(x)

Given differential equation: y" + y' - 2y = x²

The auxiliary equation is: m² + m - 2 = 0

On solving the above quadratic equation, we get:m = -2, 1

∴ The complementary solution is:y = c1 e^(-2x) + c2 e^(x)

Now we have to find the particular solution, let us assume the particular solution of the given differential equation:

y = ax² + bx + c

We will use the method of undetermined coefficients.

Substituting y in the differential equation:y" + y' - 2y = x²a(2) + 2a + b - 2ax² - 2bx - 2c = x²

Comparing the coefficients of x² on both sides, we get:-2a = 1

∴ a = -1/2

Comparing the coefficients of x on both sides, we get:-2b = 0 ∴ b = 0

Comparing the constant terms on both sides, we get:2c = 0 ∴ c = 0

Thus, the particular solution is: y = -1/2 x²

Now, the general solution is: y = c1 e^(-2x) + c2 e^(x) - 1/2 x²

To know more about differential equations, visit:

https://brainly.com/question/32645495

#SPJ11

Other Questions
A physician or surgeon may not accept or agree to accept any payment, fee, reward or anything of value for soliciting patients or patronage for any physician or surgeon. A violation constitutes a Class A misdemeanor and each payment, reward, or fee or agreement to accept a reward or fee is a separate offense. Find the general solution to the following differential equations:16y''-8y'+y=0y"+y'-2y=0y"+y'-2y = x^2 the evolution of public health, and what the focus has been over time, can best be described by which flowchart? State the beginning reactants and the end products glycolysis, alcoholic fermentation, the citric acid cycle, and the electron transport chain. Describe where these processes take place in the cell and the conditions under which they operate (aerobic or anaerobic), glycolysis: alcoholic fermentation: citric acid cycle: electron transport chain Consider a radioactive sample. Determine the ratio of the number of nuclei decaying during the first half of its halflife to the number of nuclei decaying during the second half of its half-life. predict the total packing cost for 25,000 orders, weighing 40,000 pounds, with 4,000 fragile items. round regression intercept to whole dollar and coefficients to two decimal places (nearest cent). enter the final answer rounded to the nearest dollar. Pinto LC, Falcetta MR, Rados DV, Leitao CB, Gross JL. Glucagon-like peptide-1 receptor agonists and pancreatic cancer: a meta-analysis with trial sequential analysis. Scientific reports. 2019:9:1-6. originally developed for detecting air pollutants, a technique called proton-induced x-ray emission, which can quickly analyze the chemical elements in almost any substance without destroying it, is finding uses in medicine, archaeology, and criminology. How does the number 32.4 change when you multiply it by 10 to the power of 2 ? select all that apply. a). the digit 2 increases in value from 2 ones to 2 hundreds. b). each place is multiplied by 1,000 c). the digit 3 shifts 2 places to the left, from the tens place to the thousands place. Question 3 Describe the level curves \( L_{1} \) and \( L_{2} \) of the function \( f(x, y)=x^{2}+4 y^{2} \) where \( L_{c}=\left\{(x, y) \in R^{2}: f(x, y)=c\right\} \) Considers F ( x , Y ) = ( 3 + 4 x Y two ) i + 4 x two Y j , C is the arc of the hyperbola Y = one x from the point ( one , one ) until the point ( two , one two ) Determine the potential function using the potential function determine C F d r along curve C. To achieve maximum power transfer between a 44 source and a load ZL (ZL > ZG) using a transmission line with a characteristic impedance of 44 , an inductor with a reactance of 82 is connected in series with the source. Determine the distance from the load, ZL, in terms of wavelengths where the inductor should be connected. Length = Explain the advantages and disadvantages of the 2 ray ground reflection model in the analysis of path loss. (b) In the following cases, tell whether the 2-ray model could be applied, and explain why or why not: h t=35 mh r=3 m,d=250 mh t=30 m,h r=1.5 md=450 m A manufacturer of yeast finds that the culture grows exponentially at the rate of 13% per hour . a) if the initial mass is 3.7 , what mass will be present after: 7 hours and then 2 days