An appliance dealer sells three different models of upright freezers having 13.5, 15.9, and 19.1 cubic feet of storage. Let X = the amount of storage space purchased by the next customer to buy a freezer. Suppose that X has pmf:

Answers

Answer 1

Answer:

a) E(X) = 16.09 ft³

E(X²) = 262.22 ft⁶

Var(X) = 3.27 ft⁶

b) E(22X) = 354 dollars

c) Var(22X) = 1,581 dollars

d) E(X - 0.01X²) = 13.470 ft³

Step-by-step explanation:

The complete Correct Question is presented in the attached image to this solution.

a) Compute E(X), E(X2), and V(X).

The expected value of a probability distribution is given as

E(X) = Σxᵢpᵢ

xᵢ = Each variable in the distribution

pᵢ = Probability of each distribution

Σxᵢpᵢ = (13.5×0.20) + (15.9×0.59) + (19.1×0.21)

= 2.70 + 9.381 + 4.011

= 16.092 = 16.09 ft³

E(X²) = Σxᵢ²pᵢ

Σxᵢ²pᵢ = (13.5²×0.20) + (15.9²×0.59) + (19.1²×0.21)

= 36.45 + 149.1579 + 76.6101

= 262.218 = 262.22 ft⁶

Var(X) = Σxᵢ²pᵢ - μ²

where μ = E(X) = 16.092

Σxᵢ²pᵢ = E(X²) = 262.218

Var(X) = 262.218 - 16.092²

= 3.265536 = 3.27 ft⁶

b) E(22X) = 22E(X) = 22 × 16.092 = 354.024 = 354 dollars to the nearest whole number.

c) Var(22X) = 22² × Var(X) = 22² × 3.265536 = 1,580.519424 = 1,581 dollars

d) E(X - 0.01X²) = E(X) - 0.01E(X²)

= 16.092 - (0.01×262.218)

= 16.0926- 2.62218

= 13.46982 = 13.470 ft³

Hope this helps!!!

An Appliance Dealer Sells Three Different Models Of Upright Freezers Having 13.5, 15.9, And 19.1 Cubic

Related Questions

Find the length and width of a rectangle that has the given perimeter and a maximum area. Perimeter: 116 meters

Answers

Answer:

Length = 29 m

Width = 29 m

Step-by-step explanation:

Let x and y be the length and width of the rectangle, respectively.

The area and perimeter are given by:

[tex]A=xy\\p=116=2x+2y\\y=58-x[/tex]

Rewriting the area as a function of x:

[tex]A(x) = x(58-x)\\A(x) = 58x-x^2[/tex]

The value of x for which the derivate of the area function is zero, is the length that maximizes the area:

[tex]A(x) = 58x-x^2\\\frac{dA}{dx}=0=58-2x\\ x=29\ m[/tex]

The value of y is:

[tex]y = 58-29\\y=29\ m[/tex]

Length = 29 m

Width = 29 m

The graphs below are the same shape what is the equation of the blue graph

Answers

Answer:

B. g(x) = (x-2)^2 +1

Step-by-step explanation:

When you see this type of equation your get the variables H and K in a quadratic equation. In this case the (x-2)^2 +1  is your H. The (x-2)^2 +1 is your K.

For the H you always do the opposite so in this case instead of going to the left 2 times you go to the right 2 times (affects your x)

For the K you go up or down which in this case you go up one (affects your y)

And that's how you got your (2,1) as the center of the parabola

-Hope this helps :)

the ellipse is centered at the origin, has axes of lengths 8 and 4, its major axis is horizontal. how do you write an equation for this ellipse?​

Answers

Answer:

The equation for this ellipse is [tex]\frac{x^{2}}{64} + \frac{y^{2}}{16} = 1[/tex].

Step-by-step explanation:

The standard equation of the ellipse is described by the following expression:

[tex]\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} = 1[/tex]

Where [tex]a[/tex] and [tex]b[/tex] are the horizontal and vertical semi-axes, respectively. Given that major semi-axis is horizontal, [tex]a > b[/tex]. Then, the equation for this ellipse is written in this way: (a = 8, b = 4)

[tex]\frac{x^{2}}{64} + \frac{y^{2}}{16} = 1[/tex]

The equation for this ellipse is [tex]\frac{x^{2}}{64} + \frac{y^{2}}{16} = 1[/tex].

A triangular plot of land has one side along a straight road measuring 147147 feet. A second side makes a 2323degrees° angle with the​ road, and the third side makes a 2222degrees° angle with the road. How long are the other two​ sides?

Answers

Answer:

81.23 ft and 77.88 ft long

Step-by-step explanation:

The sum of the internal angles of a triangle is 180 degrees, the missing angle is:

[tex]a+b+c=180\\a+23+22=180\\a=135^o[/tex]

According to the Law of Sines:

[tex]\frac{A}{sin(a)}= \frac{B}{sin(b)}= \frac{C}{sin(c)}[/tex]

Let A be the side that is 147 feet long, the length of the other two sides are:

[tex]\frac{A}{sin(a)}= \frac{B}{sin(b)}\\B=\frac{sin(23)*147}{sin(135)}\\B=81.23\ ft\\\\\frac{A}{sin(a)}= \frac{C}{sin(c)}\\C=\frac{sin(22)*147}{sin(135)}\\C=77.88\ ft[/tex]

The other two sides are 81.23 ft and 77.88 ft long

The following data represent the miles per gallon for a particular make and model car for six randomly selected vehicles. Compute the mean, median, and mode miles per gallon 24.2. 22.2. 37.8, 22.7. 35 4. 31.61. Compute the mean miles per gallon. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The mean mileage per gallon is _______B. The mean does not exist 2. Compute the median miles per gallon. Select the correct choice below and, if necessary, fill in the answer box to complete your choice A. The median mileage per gallon is __________B. The median does not exist. 3. Compute the mode miles per gallon. Select the correct choice below and, if necessary,fill in the answer box to complete your choice. A. The mode is _________B. The mode does not exist.

Answers

Answer:

A. The mean mileage per gallon is _____ 28.99__

A. The median mileage per gallon is _____27.905_____

B. The mode does not exist.

Step-by-step explanation:

Mean= Sum of values/ No of Values

            Mean =  24.2 + 22.2+  37.8+ 22.7 + 35.4 +31.61/ 6

           Mean = 173.91/6= 28.985 ≅ 28.99

The median is the middle value of an ordered data which divides the data into two equal halves. For an even data the median is  the average of n/2 and n+1/2 value where n is the number of values.

Rearranging the above data

22.2 , 22.7 , 24.2 , 31.61 , 35.4, 37.8

Third and fourth values are =24.2 + 31.61 = 55.81

Average of third and fourth values is = 55.81/2= 27.905

Mode is the values which is occurs repeatedly.

In this data there is no mode.

a) Al usar un microscopio el microscopio se amplía una célula 400 veces. Escribe el factor de ampliación como cociente o como escala.
b) La imagen de una célula usando dicho microscopio mide 1,5 mm ¿ Cuánto mide la célula en la realidad?

Answers

Answer:

x = 0,00375 mm

Step-by-step explanation:

a) El factor de ampliación es 400/1   es decir el tamaño real se verá ampliado 400 veces mediante el uso del microscopio

b) De acuerdo a lo establecido en la respuesta a la pregunta referida en a (anterior) podemos establecer una regla de tres, según:

Si al microscopio el tamaño de la célula es 1,5 mm, cual será el tamaño verdadero ( que es reducido 400 en relación al que veo en el microscopio)

Es decir     1,5 mm      ⇒    400

                    x (mm)    ⇒       1 (tamaño real de la célula)

Entonces

x  =  1,5 /400

x = 0,00375 mm

if a varies inversely as the cube root of b and a=1 when b=64, find b​

Answers

Answer:

  b = 64/a³

Step-by-step explanation:

Using the given information, we can only find a relation between a and b. We cannot find any specific value for b.

Since a varies inversely as the cube root of b, we have ...

  a = k/∛b

Multiplying by ∛b lets us find the value of k:

  k = a·∛b = 1·∛64 = 4

Taking the cube of this equation gives ...

  64 = a³b

  b = 64/a³ . . . . . divide by a³

The value of b is ...

  b = 64/a³

The mean MCAT score 29.5. Suppose that the Kaplan tutoring company obtains a sample of 40 students with a mean MCAT score of 32.2 with a standard deviation of 4.2. Test the claim that the students that took the Kaplan tutoring have a mean score greater than 29.5 at a 0.05 level of significance.

Answers

Answer:

We conclude that the students that took the Kaplan tutoring have a mean score greater than 29.5.

Step-by-step explanation:

We are given that the Kaplan tutoring company obtains a sample of 40 students with a mean MCAT score of 32.2 with a standard deviation of 4.2.

Let [tex]\mu[/tex] = population mean score

So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu \leq[/tex] 29.5      {means that the students that took the Kaplan tutoring have a mean score less than or equal to 29.5}

Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] > 29.5      {means that the students that took the Kaplan tutoring have a mean score greater than 29.5}

The test statistics that will be used here is One-sample t-test statistics because we don't know about population standard deviation;

                               T.S.  =  [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex]  ~ [tex]t_n_-_1[/tex]

where, [tex]\bar X[/tex] = sample mean MCAT score = 32.2

            s = sample standard deviation = 4.2

            n = sample of students = 40

So, the test statistics =  [tex]\frac{32.2-29.5}{\frac{4.2}{\sqrt{40} } }[/tex]  ~  [tex]t_3_9[/tex]

                                    =  4.066

The value of t-test statistics is 4.066.

Now, at 0.05 level of significance, the t table gives a critical value of 1.685 at 39 degrees of freedom for the right-tailed test.

Since the value of our test statistics is more than the critical value of t as 4.066 > 1.685, so we have sufficient evidence to reject our null hypothesis as it will fall in the rejection region.

Therefore, we conclude that the students that took the Kaplan tutoring have a mean score greater than 29.5.

Which proportion would convert 18 ounces into pounds?

Answers

Answer:

16 ounces = 1 pound

Step-by-step explanation:

You would just do 18/16 = 1.125 pounds. There are always 16 ounces in a pound, so it always works like this

16 ounces to 1 pound

Determine the logarithmic regression of the data below using either a calculator or spreadsheet program. Then, estimate the x−value when the y−value is 5.2. Round your answer to one decimal place. (4.7,10.7),(7.8,20.6),(10.5,30.2),(15.6,41),(20.8,56.1),(22,65.1). Please help right away! Thank you so much!

Answers

Answer:

y ≈ 33.7·ln(x) -45.94.6

Step-by-step explanation:

A graphing calculator can perform logarithmic regression, as can a spreadsheet. The least-squares best fit log curve is about ...

  y ≈ 33.7·ln(x) -45.9

The value of x estimated to make y = 5.2 is about 4.6.

A rectangular playground is to be fenced off and divided in two by another fence parallel to one side of the playground. Three hundred feet of fencing is used

dimensions of the playground that maximize the total enclosed area. What is the maximum area?

The smaller dimension is

feet

Answers

Answer:

50 ft by 75 ft3750 square feet

Step-by-step explanation:

Let x represent the length of the side not parallel to the partition. Then the length of the side parallel to the partition is ...

  y = (300 -2x)/3

And the enclosed area is ...

  A = xy = x(300 -2x)/3 = (2/3)(x)(150 -x)

This is the equation of a parabola with x-intercepts at x=0 and x=150. The line of symmetry, hence the vertex, is located halfway between these values, at x=75.

The maximum area is enclosed when the dimensions are ...

  50 ft by 75 ft

That maximum area is 3750 square feet.

_____

Comment on the solution

The generic solution to problems of this sort is that half the fence (cost) is used in each of the orthogonal directions. Here, half the fence is 150 ft, so the long side measures 150'/2 = 75', and the short side measures 150'/3 = 50'. This remains true regardless of the number of partitions, and regardless if part or all of one side is missing (e.g. bounded by a barn or river).

Legal descriptions tend to prefer neat straight lines from point to point, regardless of describing a square, rectangle, triangle or even a smooth circle. When might a property boundary end up being a squiggly line?

Answers

Answer:

When describing a property line drawn down the center of a creek bed

Can Someone help me!!! I need this ASAP! What number? Increased by 130% is 69? FYI: the answer is less than 69

Answers

Answer:

Hey there!

There are a few ways you could solve this problem, but the easiest would to be writing an equation.

You could say-

2.3x=69

Divide by 2.3

x=30

Hope this helps :)

Answer:

30

Step-by-step explanation:

the answer is 30 bc increasing something by 130% is multiplying it by 2.3 so technically you have to divide 69 by 2.3 which equals to 30

Simplify the expression (5j+5) – (5j+5)

Answers

Answer:

0

Step-by-step explanation:

multiply the negative thru the right part of the equation so, 5j+5-5j-5. The 5j and the 5 than cancel out with each other. Hope this helps!

Answer:

0

Explanation:

step 1 - remove the parenthesis from the expression

(5j + 5) - (5j + 5)

5j + 5 - 5j - 5

step 2 - combine like terms

5j + 5 - 5j - 5

5j - 5j + 5 - 5

0 + 0

0

therefore, the simplified form of the given expression is 0.

[!] Urgent [!] Find the domain of the graphed function.

Answers

There is no way I can answer this without the graph

7. The mean age at first marriage for respondents in a survey is 23.33,
with a standard deviation of 6.13. For an age at first marriage of 33.44,
the proportion of area beyond the Z score associated with this age is
.05. What is the percentile rank for this score?

Answers

Answer:

[tex] \mu = 23.33, \sigma =6.13[/tex]

And for this case we are analyzing the value os 33.44 and we can use the z score formula given by:

[tex] z=\frac{X -\mu}{\sigma}[/tex]

And replacing we got:

[tex] z=\frac{33.44 -23.33}{6.13}= 1.649[/tex]

We know that the proportion of area beyond the Z score associated with this age is  .05 so then the percentile would be: 95

Step-by-step explanation:

For this case we have the following parameters:

[tex] \mu = 23.33, \sigma =6.13[/tex]

And for this case we are analyzing the value os 33.44 and we can use the z score formula given by:

[tex] z=\frac{X -\mu}{\sigma}[/tex]

And replacing we got:

[tex] z=\frac{33.44 -23.33}{6.13}= 1.649[/tex]

We know that the proportion of area beyond the Z score associated with this age is  .05 so then the percentile would be: 95

Silver Lake has a population of 114,000. The population is decreasing at a rate of 1.5% each year. Which of the following choices is the correct function? a p(s) = 114000• 0.985x b p(s) = 114000x c p(s) = 114000x + 0.985 d None of these choices are correct.

Answers

Answer: D

Step-by-step explanation:

According to the question, Silver Lake has a population of 114,000. The population is decreasing at a rate of 1.5% each year

The initial population Po = 114000

Rate = 1.5% = 0.015

The declining population formula will be:

P = Po( 1 - R%)x^2

The decay formula

Since the population is decreasing, take away 0.015 from 1

1 - 0.015 = 0.985

Substitutes all the parameters into the formula

P(s) = 114000(0.985)x^2

P(s) = 114000× 0985x^2

The correct answer is written above.

Since option A does not have square of x, we can therefore conclude that the answer is D - non of the choices is correct.

Given a right triangle with a hypotenuse length of radical 26 and base length of 3. Find the length of the other leg (which is also the height).

Answers

Answer:

  √17

Step-by-step explanation:

The Pythagorean theorem can be used for the purpose.

  hypotenuse² = base² +height²

  (√26)² = 3² +height²

  26 -9 = height²

  height = √17

The length of the other leg is √17.

what is the axis of symmetry of f(x)=-3(x+2)^2+4

Answers

Answer:

line passes through the vertex

Step-by-step explanation:

f(x)=-3(x+2)^2+4

x=-2 it is the x of the vertex

Which of the following relations is a function?
A{(3,-1), (2, 3), (3, 4), (1,7)}

B{(1, 2), (2, 3), (3, 4), (4, 5)}.

C{(3, 0), (4, -3), (6, 7), (4,4)}

D{(1, 2), (1, 3), (2, 8), (3, 9)}​

Answers

Answer:

B

Step-by-step explanation:

A is not a function because the same x value is repeated twice with different y values. The same goes for C and D so the answer is C.

Answer:

B.

Step-by-step explanation:

Well a relation is a set of points and a function is a relation where every x value corresponds to only 1 y value.

So lets see which x values in these relations have only 1 y value.

A. Well a isn’t a function because the number 3 which is a x value had two y values which are -1 and 4.

B. This relation is a function because there are no similar x values.

C. This is not a function because the x value 4 has two y values which are 4 and -3.

D. This is not a function because the number 1 has 2 and 3 as y values.

Want Brainliest? Get this correct Which of the following is the quotient of the rational expressions shown below?

Answers

Answer:

  [tex]\dfrac{4x^2+12x+5}{6x^2-3x}[/tex]

Step-by-step explanation:

Invert the denominator and multiply.

  [tex]\dfrac{2x+5}{3x}\div\dfrac{2x-1}{2x+1}=\dfrac{2x+5}{3x}\cdot\dfrac{2x+1}{2x-1}\\\\=\dfrac{(2x+5)(2x+1)}{(3x)(2x-1)}=\boxed{\dfrac{4x^2+12x+5}{6x^2-3x}}\qquad\text{matches choice A}[/tex]

Answer:

[tex]\frac{4x^2+12x+5}{6x^2-3x}[/tex]

Step-by-step explanation:

After using the reciprocal of the second term, the denominator will multiply out to be [tex]6x^2-3x[/tex]. There is only one option with that as the denominator so it must be the correct answer.

Evaluate the expression (image provided). A.) 1.5 B.) 6 C.) 6^15 D.) 1.5^6

Answers

Answer:

1.5

Step-by-step explanation:

6 to the log base of 6 will be one (they essentially cancel each other out, log is the opposite of exponents) and we are left with 1.5.

In a survey, 205 people indicated they prefer cats, 160 indicated they prefer dots, and 40 indicated they don’t enjoy either pet. Find the probability that if a person is chosen at random, they prefer cats

Answers

Answer: probability =  0.506

Step-by-step explanation:

The data we have is:

Total people: 205 + 160 + 40 = 405

prefer cats: 205

prefer dogs: 160

neither: 40

The probability that a person chosen at random prefers cats is equal to the number of people that prefer cats divided the total number of people:

p = 205/405 = 0.506

in percent form, this is 50.6%

The width of a casing for a door is normally distributed with a mean of 24 inches and a standard deviation of 1/8 inch. The width of a door is normally distributed with a mean of 23 7/8 inches and a standard deviation of 1/16 inch. Assume independence. a. Determine the mean and standard deviation of the difference between the width of the casing and the width of the door. b. What is the probability that the width of the casing minus the width of the door exceeds 1/4 inch? c. What is the probability that the door does not fit in the casing?

Answers

Answer:

a) Mean = 0.125 inch

Standard deviation = 0.13975 inch

b) Probability that the width of the casing minus the width of the door exceeds 1/4 inch = P(X > 0.25) = 0.18673

c) Probability that the door does not fit in the casing = P(X < 0) = 0.18673

Step-by-step explanation:

Let the distribution of the width of the casing be X₁ (μ₁, σ₁²)

Let the distribution of the width of the door be X₂ (μ₂, σ₂²)

The distribution of the difference between the width of the casing and the width of the door = X = X₁ - X₂

when two independent normal distributions are combined in any manner, the resulting distribution is also a normal distribution with

Mean = Σλᵢμᵢ

λᵢ = coefficient of each disteibution in the manner that they are combined

μᵢ = Mean of each distribution

Combined variance = σ² = Σλᵢ²σᵢ²

λ₁ = 1, λ₂ = -1

μ₁ = 24 inches

μ₂ = 23 7/8 inches = 23.875 inches

σ₁² = (1/8)² = (1/64) = 0.015625

σ₂ ² = (1/16)² = (1/256) = 0.00390625

Combined mean = μ = 24 - 23.875 = 0.125 inch

Combined variance = σ² = (1² × 0.015625) + [(-1)² × 0.00390625] = 0.01953125

Standard deviation = √(Variance) = √(0.01953125) = 0.1397542486 = 0.13975 inch

b) Probability that the width of the casing minus the width of the door exceeds 1/4 inch = P(X > 0.25)

This is a normal distribution problem

Mean = μ = 0.125 inch

Standard deviation = σ = 0.13975 inch

We first normalize/standardize 0.25 inch

The standardized score of any value is that value minus the mean divided by the standard deviation.

z = (x - μ)/σ = (0.25 - 0.125)/0.13975 = 0.89

P(X > 0.25) = P(z > 0.89)

Checking the tables

P(x > 0.25) = P(z > 0.89) = 1 - P(z ≤ 0.89) = 1 - 0.81327 = 0.18673

c) Probability that the door does not fit in the casing

If X₂ > X₁, X < 0

P(X < 0)

We first normalize/standardize 0 inch

z = (x - μ)/σ = (0 - 0.125)/0.13975 = -0.89

P(X < 0) = P(z < -0.89)

Checking the tables

P(X < 0) = P(z < -0.89) = 0.18673

Hope this Helps!!!

7.1 A player throws a fair die and simultaneously flips a fair coin. If the coin lands heads, then she wins twice, and if tails, then she wins one-half of the value that appears on the die. Determine her expected winnings.

Answers

Answer:

1.875

Step-by-step explanation:

To find the expected winnings, we need to find the probability of all cases possible, multiply each case by the value of the case, and sum all these products.

In the die, we have 6 possible values, each one with a probability of 1/6, and the value of each output is half the value in the die, so we have:

[tex]E_1 = \frac{1}{6}\frac{1}{2} + \frac{1}{6}\frac{2}{2} +\frac{1}{6}\frac{3}{2} +\frac{1}{6}\frac{4}{2} +\frac{1}{6}\frac{5}{2} +\frac{1}{6}\frac{6}{2}[/tex]

[tex]E_1 = \frac{1}{12}(1+2+3+4+5+6)[/tex]

[tex]E_1 = \frac{21}{12} = \frac{7}{4}[/tex]

Now, analyzing the coin, we have heads or tails, each one with 1/2 probability. The value of the heads is 2 wins, and the value of the tails is the expected value of the die we calculated above, so we have:

[tex]E_2 = \frac{1}{2}2 + \frac{1}{2}E_1[/tex]

[tex]E_2 = 1 + \frac{1}{2}\frac{7}{4}[/tex]

[tex]E_2 = 1 + \frac{7}{8}[/tex]

[tex]E_2 = \frac{15}{8} = 1.875[/tex]

For a certain​ salesman, the probability of selling a car today is 0.30. Find the odds in favor of him selling a car today.

Answers

Answer:

The odds in favor of him selling a car today are 3 to 10

Step-by-step explanation:

Probability and odds:

Suppose we have a probability p.

The odds are of: 10p to 10

In this question:

Probability of selling a car is 0.3.

10*0.3 = 3

So the odds in favor of him selling a car today are 3 to 10

answer if u love cats & dogs

Answers

Answer:

(7, 5.25) lies on the graph.

Step-by-step explanation:

We are given the following values

x = 4,   6,  8, 12 and corresponding y values are:

y = 3, 4.5, 6, 9

Let us consider two points (4, 6) and (6, 4.5) and try to find out the equation of line.

Equation of a line passing through two points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] is given as:

[tex]y=mx+c[/tex]

where m is the slope.

(x,y) are the coordinates from where the line passes.

c is the y intercept.

Here,

[tex]x_{1} = 4\\x_{2} = 6\\y_{1} = 3\\y_{2} = 4.5[/tex]

Formula for slope is:

[tex]m = \dfrac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]

[tex]m = \dfrac{4.5-3}{6-4}\\\Rightarrow m = \dfrac{1.5}{2}\\\Rightarrow m = \dfrac{3}{4}[/tex]

Now, the equation of line becomes:

[tex]y=\dfrac{3}{4}x+c[/tex]

Putting the point (4,3) in the above equation to find c:

[tex]3=\dfrac{3}{4}\times 4+c\\\Rightarrow 3=3+c\\\Rightarrow c =0[/tex]

So, final equation of given function is:

[tex]y=\dfrac{3}{4}x[/tex]

OR

[tex]4y=3x[/tex]

As per the given options, the point (7, 5.25) satisfies the equation.

So correct answer is [tex](7, 5.25)[/tex].

Jeremy makes $57,852 per year at his accounting firm. How much is Jeremy’s monthly salary? (There are 12 months in a year.) How much is Jeremy’s weekly salary? (There are 52 weeks in a year.)

Answers

Answer:

Monthly: $4,821

Weekly: $1112.54

Step-by-step explanation:

Monthly

A monthly salary can be found by dividing the yearly salary by the number of months.

salary / months

His salary is $57,852 and there are 12 months in a year.

$57,852/ 12 months

Divide

$4,821 / month

Jeremy makes $4,821 per month.

Weekly

To find the weekly salary, divide the yearly salary by the number of weeks.

salary / weeks

He makes $57,852 each year and there are 52 weeks in one year.

$57,852 / 52 weeks

Divide

$1112.53846 / week

Round to the nearest cent. The 8 in the thousandth place tells use to round the 3 up to a 4 in the hundredth place.

$1112.54 / week

Jeremy makes $1112.54 per week

An instructor asks students to rate their anxiety level on a scale of 1 to 100 (1 being low anxiety and 100 being high anxiety) just before the students take their final exam. The responses are shown below. Construct a relative frequency table for the instructor using five classes. Use the minimum value from the data set as the lower class limit for the first row, and use the lowest possible whole-number class width that will allow the table to account for all of the responses. Use integers or decimals for all answers.
48,50,71,58,56,55,53,70,63,74,64,33,34,39,49,60,65,84,54,58
Provide your answer below:
Lower Class Limit Upper Class Limit Relative Frequency

Answers

Answer:

The frequency table is shown below.

Step-by-step explanation:

The data set arranged ascending order is:

S = {33 , 34 , 39 , 48 , 49 , 50 , 53 , 54 , 55 , 56 , 58 , 58,  60 , 63 , 64 , 65 , 70 , 71 , 74 , 84}

It is asked to use the minimum value from the data set as the lower class limit for the first row.

So, the lower class limit for the first class interval is 33.

To determine the class width compute the range as follows:

[tex]\text{Range}=\text{Maximum}-\text{Minimum}[/tex]

          [tex]=84-33\\=51[/tex]

The number of classes requires is 5.

The class width is:

[tex]\text{Class width}=\frac{Range}{5}=\frac{51}{2}=10.2\approx 10[/tex]

So, the class width is 10.

The classes are:

33 - 42

43 - 52

53 - 62

63 - 72

73 - 82

83 - 92

Compute the frequencies of each class as follows:

Class Interval                  Values                        Frequency

   33 - 42                      33 , 34 , 39                             3

   43 - 52                      48 , 49 , 50                            3

   53 - 62          53 , 54 , 55 , 56 , 58 , 58,  60              7

   63 - 72                 63 , 64 , 65 , 70 , 71                      5

   73 - 82                              74                                  1

   83 - 92                             84                                   1

   TOTAL                                                                   20

Compute the relative frequencies as follows:

Class Interval          Frequency        Relative Frequency

   33 - 42                        3                   [tex]\frac{3}{20}\times 100\%=15\%[/tex]

   43 - 52                        3                   [tex]\frac{3}{20}\times 100\%=15\%[/tex]

   53 - 62                        7                   [tex]\frac{7}{20}\times 100\%=35\%[/tex]

   63 - 72                        5                   [tex]\frac{5}{20}\times 100\%=25\%[/tex]

   73 - 82                         1                   [tex]\frac{1}{20}\times 100\%=5\%[/tex]

   83 - 92                         1                   [tex]\frac{1}{20}\times 100\%=5\%[/tex]

   TOTAL                        20                          100%

The problem is: On a Map, 3 inches represents 40 miles, How many inches represents 480 miles?

Answers

Answer: 36

480/40=12
12x3=36
Other Questions
Geometry A.)10 units B.)17 units C.)14 units D.)7 units Describe three examples of anti-democratic actions by the U.S. during and after the war. Filling your individualf ederal tax returns would be best described what type of value chain? Rank the steps of the (sandwich) ELISA procedure from first step to last step. Do not overlap any steps. Hi! 2x2x986=? does anyone know? its for math and I know I by mistake put it on another topic How did Judaism differ from other faiths of the same time period? pls pls help me help me help me Please answer this correctly In response to high amounts of phosphate transport into the cell: a. PhoR is phosphorylated by the phosphate transporter protein Pst b. PhoR binds with PhoB to remove PhoB repression of phosphate regulon genes c. PhoR is exported out of the cell to scavenge phosphate molecules d. PhoU changes conformation to allow PhoR to autophosphorylate e. PhoU keeps PhoR bound to the phosphate transporter protein Pst Why did the Allies want to secure islands that held strategic importance in the Pacific? to establish bases from which to invade the Japanese mainland to resist Japan and invade from the northeast to free Jews being held in labor camps to destroy Japanese infrastructure The company had a net income of $248,462, and depreciation expenses were equal to $72,487. What is the firm's cash flow from financing activities? Describe elements shown in the provided work and how they are characteristic ofthe time period in which it was created in.Identify how the artwork represents the periodDiscuss the cultural context of the represented periodAddress at least two specific elements from the artwork to support your statements A ball has a mass of 0.25 kg and is moving to the right at 1.0 m/s. It hits a ball of mass 0.15 kg that is initially at rest. After the collision, the 0.15 kg ball moves off to the right with a velocity of 0.75 m/s. What is the final velocity of the 0.25 kg ball? 0.42 m/s to the right 0.42 m/s to the left 0.55 m/s to the right 0.55 m/s to the left Which of the following statements is an example of irony in The Cask of Amontillado? The probability that you roll a two on a six-sided die is 16. If you roll the die 60 times, how many twos can you expect to roll? How many valence electrons are in the electron dot structures for the elements in group 3A(13)? When JFCs consider incorporating combinations of contiguous and noncontiguous AOs with linear and nonlinear operations, they choose the combination that fits the operational environment and the purpose of the operation. Which of the following combinations describe a typical sustained offensive and defensive operation against powerful, echeloned, and symmetrically organized forces and where the forward line of own troops focus combat power and protect sustainment functions?1. Nonlinear operations in noncontiguous AOs 2. Nonlinear operations in contiguous AOs 3. Linear operations in contiguous 4. AOs linear operations in noncontiguous AOs What can happen if a body moves through speed of light An insurance company models the number of warranty claims in a week on a particular product that has a Poisson distribution with mean 4. Each warranty claim results in a payment of 1 by the insurer. Calculate the expected total payment by the insurer on the warranty claims in a week. Find the critical value z Subscript alpha divided by 2 that corresponds to the given confidence level. 80%