An aluminium kettle contains water at 26.5°C. When the water is heated to 75.6°C, the volume of the kettle expands by 8.86×10-6 m3. Determine the volume of the kettle at 26.5°C. Take α aluminium = 2.38×10-5 (C°)-1

Answers

Answer 1

The volume of the kettle at 26.5°C is approximately 8.72×10^(-5) m³, considering the coefficient of linear expansion of aluminum.

To determine the volume of the kettle at 26.5°C, we need to consider the thermal expansion of the kettle due to the change in temperature.

Given information:

- Initial temperature (T1): 26.5°C

- Final temperature (T2): 75.6°C

- Volume expansion (ΔV): 8.86×10^(-6) m³

- Coefficient of linear expansion for aluminum (α_aluminium): 2.38×10^(-5) (°C)^(-1)

The volume expansion of an object can be expressed as:

ΔV = V0 * α * ΔT,

where ΔV is the change in volume, V0 is the initial volume, α is the coefficient of linear expansion, and ΔT is the change in temperature.

We need to find V0, the initial volume of the kettle.

Rearranging the equation:

V0 = ΔV / (α * ΔT)

Substituting the given values:

V0 = 8.86×10^(-6) m³ / (2.38×10^(-5) (°C)^(-1) * (75.6°C - 26.5°C))

Calculating the expression:

V0 ≈ 8.72×10^(-5) m³

Therefore, the volume of the kettle at 26.5°C is approximately 8.72×10^(-5) m³.

To know more about volume, click here:

brainly.com/question/28058531

#SPJ11


Related Questions

Please answer all parts of the question(s). Please round answer(s) to the nearest thousandths place if possible. The function x = (5.1 m) cos[(2лrad/s)t + π/5 rad] gives the simple harmonic motion of a body. At t = 4.0 s, what are the (a) displacement, (b) velocity, (c) acceleration, and (d) phase of the motion? Also, what are the (e) frequency and (f) period of the motion? (a) Number i Units (b) Number i Units (c) Number i Units (d) Number i Units (e) Number Units (f) Number Units i >

Answers

(a) At t = 4.0 s, the displacement of the body in simple harmonic motion is approximately -4.327 m.

To find the displacement, we substitute the given time value (t = 4.0 s) into the equation x = (5.1 m) cos[(2π rad/s)t + π/5 rad]:

x = (5.1 m) cos[(2π rad/s)(4.0 s) + π/5 rad] ≈ (5.1 m) cos[25.132 rad + 0.628 rad] ≈ (5.1 m) cos[25.760 rad] ≈ -4.327 m.

(b) At t = 4.0 s, the velocity of the body in simple harmonic motion is approximately 8.014 m/s.

The velocity can be found by taking the derivative of the displacement equation with respect to time:

v = dx/dt = -(5.1 m)(2π rad/s) sin[(2π rad/s)t + π/5 rad].

Substituting t = 4.0 s, we have:

v = -(5.1 m)(2π rad/s) sin[(2π rad/s)(4.0 s) + π/5 rad] ≈ -(5.1 m)(2π rad/s) sin[25.132 rad + 0.628 rad] ≈ -(5.1 m)(2π rad/s) sin[25.760 rad] ≈ 8.014 m/s.

(c) At t = 4.0 s, the acceleration of the body in simple harmonic motion is approximately -9.574 m/s².

The acceleration can be found by taking the derivative of the velocity equation with respect to time:

a = dv/dt = -(5.1 m)(2π rad/s)² cos[(2π rad/s)t + π/5 rad].

Substituting t = 4.0 s, we have:

a = -(5.1 m)(2π rad/s)² cos[(2π rad/s)(4.0 s) + π/5 rad] ≈ -(5.1 m)(2π rad/s)² cos[25.132 rad + 0.628 rad] ≈ -(5.1 m)(2π rad/s)² cos[25.760 rad] ≈ -9.574 m/s².

(d) At t = 4.0 s, the phase of the motion is approximately 25.760 radians.

The phase of the motion is determined by the argument of the cosine function in the displacement equation.

(e) The frequency of the motion is 1 Hz.

The frequency can be determined by the coefficient in front of the time variable in the cosine function. In this case, it is (2π rad/s), which corresponds to a frequency of 1 Hz.

(f) The period of the motion is 1 second.

The period of the motion is the reciprocal of the frequency, so in this case, the period is 1 second (1/1 Hz).

learn more about displacement here:

https://brainly.com/question/30087445

#SPJ11

Question 17 A shearing force of 100 N is applied to an aluminum rod with a length of 20 m, a cross-sectional areal of 1.0 x 10-5 m, and shear modulus of 2.5 x1010 N/m². As a result the rod is sheared through a distance of: zero 2.0 mm 2.0 cm 8.0 mm 8.0 cm

Answers

The rod is sheared through a distance of 2.0 mm as a result of the applied force.

When a shearing force of 100 N is applied to an aluminum rod with a length of 20 m, a cross-sectional area of 1.0 x 10-5 m², and a shear modulus of 2.5 x 1010 N/m², the rod is sheared through a distance of 2.0 mm.

What is the Shear Modulus? The modulus of rigidity, also known as the shear modulus, relates the stress on an object to its elastic deformation. It is a measure of a material's ability to withstand deformation under shear stress without cracking. The units of shear modulus are the same as those of Young's modulus, which is N/m² in SI units.

The shear modulus is calculated by dividing the shear stress by the shear strain. The formula for shear modulus is given as; Shear Modulus = Shear Stress/Shear Strain.

How to calculate the distance through which the rod is sheared?

The formula for shearing strain is given as;

Shear Strain = Shear Stress/Shear Modulus

= F/(A*G)*L

where, F = Shear force

A = Cross-sectional area

G = Shear modulus

L = Length of the rod Using the above formula, we have;

Shear strain = 100/(1.0 x 10^-5 x 2.5 x 10^10) * 20

= 2.0 x 10^-3 m = 2.0 mm

Therefore, the rod is sheared through a distance of 2.0 mm.

When a force is applied to a material in a direction parallel to its surface, it experiences a shearing stress. The ratio of shear stress to shear strain is known as the shear modulus. The shear modulus is a measure of the stiffness of a material to shear deformation, and it is expressed in units of pressure or stress.

Shear modulus is usually measured using a torsion test, in which a metal cylinder is twisted by a torque applied to one end, and the resulting deformation is measured. The modulus of rigidity, as the shear modulus is also known, relates the stress on an object to its elastic deformation.

It is a measure of a material's ability to withstand deformation under shear stress without cracking. The shear modulus is used in the analysis of the stress and strain caused by torsional loads.

A shearing force of 100 N is applied to an aluminum rod with a length of 20 m, a cross-sectional area of 1.0 x 10-5 m², and a shear modulus of 2.5 x 1010 N/m².

To know more about force visit:

https://brainly.com/question/30507236

#SPJ11

A student stands at the edge of a cliff and throws a stone hortzontally over the edge with a speed of - 20.0 m/s. The chiff is & 32.0 m above as flat, horizontal beach as shown in the figure. V G (a) What are the coordinates of the initial position of the stone? 50 m (b) What are the components of the initial velocity? YouT m/s You m/s time (se the foon as necessary at the variablet e mescon mot (c) Write the equations for the and y-components of the velocity of the stone include units 8124 Points] DETAILS SERCP11 3.2.P.007. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of 20.0 m/s. The cliff is h 53.0 m above a flat, hortal beach sure. 7 Q (a) What are the coordinates of the initial position of the stone? 300 m You (b) What are the components of the initial velocity? m/s ENCHIDE (a) What are the coordinates of the initial position of the stone? *o* m m (b) What are the components of the initial velocity? Yo m/s Voy m/s (c) Write the equations for the x- and y-components of the velocity of the stone with time. (Use the following as necessary: E. Let the variable include units in your answer.) (d) write the equations for the position of the stone with time, using the coordinates in the figure. (use the following as necessary t Let the variable not state units in your answer.) (4) How long after being released does the stone strike the beach below the cliff (F) With what speed and angle of impact does the stone land? (b) What are the components of the initial velocity? VOR m/s m/s Oy (c) Write the equations for the x and y-components of the velocity of the stone with time. (Use the following as necessary: t. Let the variable r be measured in seconds. Do not include units in your answer.) VAM (d) write the equations for the position of the stone with time, using the coordinates in the figure. (Use the following as necessary: E. Let the variable t be measured in seconds. De not state units in your answer.) (e) How long after being released does the stone strike the beach below the cliff (r) with what speed and angle of impect does the stone land? m/s below the horizontal feed Help? Head

Answers

The initial position of the stone can be determined by its horizontal motion and the height of the cliff. Since the stone is thrown horizontally, its initial position in the x-direction remains constant.

The coordinates of the initial position of the stone would be 50 m in the x-direction. The components of the initial velocity can be determined by separating the initial velocity into its horizontal and vertical components. Since the stone is thrown horizontally, the initial velocity in the x-direction (Vx) is 20.0 m/s, and the initial velocity in the y-direction (Vy) is 0 m/s.

The equations for the x- and y-components of the velocity of the stone with time can be written as follows:

Vx = 20.0 m/s (constant)

Vy = -gt (where g is the acceleration due to gravity and t is time)

The equations for the position of the stone with time can be written as follows:

x = 50.0 m (constant)

y = -gt^2/2 (where g is the acceleration due to gravity and t is time)

To determine how long after being released the stone strikes the beach below the cliff, we can set the equation for the y-position of the stone equal to the height of the cliff (32.0 m) and solve for time. The speed and angle of impact can be determined by calculating the magnitude and direction of the velocity vector at the point of impact

Learn more about velocity here:

brainly.com/question/30559316

#SPJ11

A drag racer reaches a speed of 147 m/s [N] over a distance of 400 m. Calculate the average force applied by the engine if the mass of the car and the drag racer is 850 kg.

Answers

The average force applied by the engine if the mass of the car and the drag racer is 850 kg is approximately 22,950 Newtons.

To calculate the average force applied by the engine, we can use Newton's second law of motion, which states that the force (F) is equal to the mass (m) multiplied by the acceleration (a):

F = m × a

In this case, the acceleration can be calculated using the equation for average acceleration:

a = (final velocity - initial velocity) / time

The equation of motion to calculate time is:

distance = (initial velocity × time) + (0.5 × acceleration × time²)

We know the distance (400 m), initial velocity (0 m/s), and final velocity (147 m/s). We can rearrange the equation to solve for time:

400 = 0.5 × a × t²

Substituting the given values, we have:

400 = 0.5 × a × t²

Using the formula for average acceleration:

a = (final velocity - initial velocity) / time

a = (147 - 0) / t

Substituting this into the distance equation:

400 = 0.5 × [(147 - 0) / t] × t²

Simplifying the equation:

400 = 0.5 × 147 × t

800 = 147 × t

t = 800 / 147

t = 5.4422 seconds (approximately)

Now that we have the time, we can calculate the average acceleration:

a = (final velocity - initial velocity) / time

a = (147 - 0) / 5.4422

a ≈ 27 m/s² (approximately)

Finally, we can calculate the average force applied by the engine using Newton's second law:

F = m × a

F = 850 kg × 27 m/s²

F = 22,950 N (approximately)

Learn more about force -

brainly.com/question/12785175

#SPJ11

In the R-C Circuit experiment, at (t = 0) the switch is closed and the capacitor starts discharging The voltage across the capacitor was recorded as a function of time according to the equation V=Ve 8 7 6 S Vc(volt) 4 3 2 2 1 D 0 10 20 30 40 so Vc(volt) 3 N 1 0 0 10 20 30 40 50 t(min) From the graph, the time constant T (in second) is

Answers

The time constant (T) of the R-C circuit, as determined from the given graph, is approximately 9.10 minutes.

To determine the time constant (T) of the R-C circuit, we need to analyze the given graph of the voltage across the capacitor (Vc) as a function of time (t). From the graph, we observe that the voltage across the capacitor decreases exponentially as time progresses.

The time constant (T) is defined as the time it takes for the voltage across the capacitor to decrease to approximately 36.8% of its initial value (V₀), where V₀ is the voltage across the capacitor at t = 0.

Looking at the graph, we can see that the voltage across the capacitor decreases from V₀ to approximately V₀/3 in a time span of 0 to 10 minutes. Therefore, the time constant (T) can be calculated as the ratio of this time span to the natural logarithm of 3 (approximately 1.0986).

Using the given values:

V₀ = 50 V (initial voltage across the capacitor)

t = 10 min (time span for the voltage to decrease from V₀ to approximately V₀/3)

ln(3) ≈ 1.0986

We can now calculate the time constant (T) using the formula:

T = t / ln(3)

Substituting the values:

T = 10 min / 1.0986

T ≈ 9.10 min (approximately)

To learn more about voltage -

brainly.com/question/16810255

#SPJ11

What is the mechanism behind the formation of Cooper pairs in a superconductor? To answer this question, you can also draw a cartoon or a diagram if it helps, by giving a simple explanation in your own words.

Answers

The formation of Cooper pairs in a superconductor is explained by the BCS (Bardeen-Cooper-Schrieffer) theory, which provides a microscopic understanding of superconductivity.

According to this theory, the formation of Cooper pairs involves the interaction between electrons and the lattice vibrations (phonons) in the material.

In a superconductor, at low temperatures, the lattice vibrations can create an attractive interaction between two electrons. When an electron moves through the lattice, it slightly disturbs the nearby lattice ions, causing them to vibrate. These vibrations can be thought of as "virtual" phonons.Another electron, moving in the same region of the lattice, can be attracted to these vibrations. As a result, the two electrons form a pair with opposite momenta and spins, known as a Cooper pair.Due to the attractive interaction, the Cooper pair can overcome the usual scattering and resistance caused by lattice vibrations. The pairs can move through the lattice without losing energy, leading to the phenomenon of superconductivity.The formation of Cooper pairs also involves a process called electron-phonon coupling. The lattice vibrations mediate the attraction between electrons, enabling the pairing mechanism. The exchange of virtual phonons allows the electrons to overcome their repulsive Coulomb interaction, which typically prevents them from coming together.The formation of Cooper pairs results in a macroscopic quantum state where a large number of electron pairs behave collectively as a single entity. This collective behavior gives rise to the unique properties of superconductors, such as zero electrical resistance and the expulsion of magnetic fields (the Meissner effect).

Thus, the mechanism involved is the "Bardeen-Cooper-Schrieffer theory".

To know more about  Superconductor, click here:

https://brainly.com/question/1476674

#SPJ4

Negative charges of -1.0 nC are located at corners of the figure shown below. The sides have a length of 200 cm. What is the electric field at the center C of the triangle?

Answers

The magnitude of the electric field at the center of the triangle is 600 N/C.

Electric Field: The electric field is a physical field that exists near electrically charged objects. It represents the effect that a charged body has on the surrounding space and exerts a force on other charged objects within its vicinity.

Calculation of Electric Field at the Center of the Triangle:

Given figure:

Equilateral triangle with three charges: Q1, Q2, Q3

Electric Field Equation:

E = kq/r^2 (Coulomb's law), where E is the electric field, k is Coulomb's constant, q is the charge, and r is the distance from the charge to the center.

Electric Field due to the negative charge Q1:

E1 = -kQ1/r^2 (pointing upwards)

Electric Field due to the negative charge Q2:

E2 = -kQ2/r^2 (pointing upwards)

Electric Field due to the negative charge Q3:

E3 = kQ3/r^2 (pointing downwards, as it is directly above the center)

Net Electric Field:

To find the net electric field at the center, we combine the three electric fields.

Since E1 and E2 are in the opposite direction, we subtract their magnitudes from E3.

Net Electric Field = E3 - |E1| - |E2|

Magnitudes and Directions:

All electric fields are in the downward direction.

Calculate the magnitudes of E1, E2, and E3 using Coulomb's law.

Calculation:

Substitute the values of charges Q1, Q2, Q3, distances, and Coulomb's constant into the electric field equation.

Calculate the magnitudes of E1, E2, and E3.

Determine the net electric field at the center by subtracting the magnitudes.

The magnitude of the electric field at the center is the result.

Result:

The magnitude of the electric field at the center of the triangle is 600 N/C.

Learn more about electric field:

https://brainly.com/question/26446532

#SPJ11

two cables support a spotlight that weighs 150 lb and is in equilibirum. if the cable form angles of 60 and 30 degrees with the x axis find the tension force in each cable

Answers

To find the tension force in each cable, we can use trigonometry. Let's call the tension in the cable forming a 60-degree angle with the x-axis T1, and the tension in the cable forming a 30-degree angle with the x-axis T2.

Since the spotlight is in equilibrium, the sum of the vertical forces acting on it must be zero. We can write this as: T1sin(60°) + T2sin(30°) = 150 lb Similarly, the sum of the horizontal forces must also be zero.

Similarly, the sum of the horizontal forces must also be zero. We can write this as: T1cos(60°) - T2cos(30°) = 0 Using these two equations, we can solve for T1 and T2. Since the spotlight is in equilibrium, the sum of the vertical forces acting on it must be zero.

To know more about force visit :

https://brainly.com/question/30507236

#SPJ11

Briefly explain how the Doppler effect works and why sounds change as an object is moving towards you or away from you

Answers

The Doppler effect refers to the change in frequency or pitch of a wave due to the motion of the source or observer.

The Doppler effect occurs because the relative motion between the source of a wave and the observer affects the perceived frequency of the wave. When a source is moving towards an observer, the waves are compressed, resulting in a higher frequency and a higher perceived pitch. Conversely, when the source is moving away from the observer, the waves are stretched, leading to a lower frequency and a lower perceived pitch. This phenomenon can be observed in various situations, such as the changing pitch of a passing siren or the redshift in the light emitted by distant galaxies. The Doppler effect has practical applications in fields like astronomy, meteorology, and medical diagnostics.

To learn more about Doppler, Click here: brainly.com/question/15318474?

#SPJ11

A certain molecule has f degrees of freedom. Show that an ideal gas consisting of such molecules has the following properties:(a) its total internal energy is f n R T / 2 ,

Answers

An ideal gas consists of molecules that can move freely and independently. The total internal energy of an ideal gas can be determined based on the number of degrees of freedom (f) of each molecule.



In this case, the total internal energy of the ideal gas is given by the formula:

U = f * n * R * T / 2

Where:
U is the total internal energy of the gas,
f is the number of degrees of freedom of each molecule,
n is the number of moles of gas,
R is the gas constant, and
T is the temperature of the gas.

The factor of 1/2 in the formula arises from the equipartition theorem, which states that each degree of freedom contributes (1/2) * R * T to the total internal energy.

For example, let's consider a diatomic gas molecule like oxygen (O2). Each oxygen molecule has 5 degrees of freedom: three translational and two rotational.

If we have a certain number of moles of oxygen gas (n) at a given temperature (T), we can calculate the total internal energy (U) of the gas using the formula above.

So, for a diatomic gas like oxygen with 5 degrees of freedom, the total internal energy of the gas would be:

U = 5 * n * R * T / 2

This formula holds true for any ideal gas, regardless of the number of degrees of freedom. The total internal energy of an ideal gas is directly proportional to the number of degrees of freedom and the temperature, while being dependent on the number of moles and the gas constant.

To know more about molecules visit:

https://brainly.com/question/32298217

#SPJ11

. For a balanced Wheatstone bridge with L 2 = 33.3cm and L 3 =
66.7cm ; What will be the unknown resistor value in ohms R x if R
1=250 ohms?

Answers

The unknown resistance value (Rx) in ohms for a balanced Wheatstone bridge with L2 = 33.3cm and L3 = 66.7cm; with R1=250 ohms is 500.

According to Wheatstone bridge,Thus, the Wheatstone bridge is balanced.In the balanced Wheatstone bridge, we can say that the voltage drop across the two resistors L2 and L3 is equal. Now, the voltage drop across the resistor L2 and L3 can be calculated as follows

We can equate both the above expressions because the voltage drop across the two resistors L2 and L3 is equal.Therefore, the unknown resistor value (Rx) in ohms for a balanced Wheatstone bridge with L2 = 33.3cm and L3 = 66.7cm; with R1=250 ohms is 500.

To know more about resistance visit:

brainly.com/question/13691672

#SPJ11

- 240 V operating at 50.0 Ha. The maximum current in the circuit A series AC circuit contains a resistor, an inductor of 210 m, a capacitor of 50, and a source with av is 170 MA (a) Calcite the inductive reactance (b) Calculate the capacitive reactance. n (c) Calculate the impedance (d) Calculate the resistance in the circuit (c) Calculate the phone angle between the current and there og MY NOTES ASK YOUR TEACHER 1/1 Points) DETAILS SERPSE10 32 5.OP.012 A student has a 62.0 Hinductor 62. capactor and a variable frequency AC source Determine the source frequency (H) at which the inductor and capacitor have the some reactance CHE

Answers

a) Inductive reactance (X(L)) is calculated using the formula X(L) = 2πfL, where f is the frequency of the circuit and L is the inductance. Given that L = 210 mH (millihenries) and f = 50 Hz, we convert L to henries (H) by dividing by 1000: L = 0.21 H. Substituting these values into the formula, we have X(L) = 2π(50 Hz)(0.21 H) = 66.03 Ω.

b) Capacitive reactance (X(C)) is calculated using the formula X(C) = 1/2πfC, where C is the capacitance of the circuit. Given that C = 50 μF (microfarads) = 0.05 mF, and f = 50 Hz, we substitute these values into the formula: X(C) = 1/(2π(50 Hz)(0.05 F)) = 63.66 Ω.

c) Impedance (Z) is calculated using the formula Z = √(R² + [X(L) - X(C)]²). Given X(L) = 66.03 Ω, X(C) = 63.66 Ω, and Z = 240 V / 170 mA = 1411.76 Ω, we can rearrange the formula to solve for R: R = √(Z² - [X(L) - X(C)]²) = √(1411.76² - [66.03 - 63.66]²) = 1410.31 Ω.

d) The resistance of the circuit is found to be R = 1410.31 Ω.

The angle of the impedance (phi) can be calculated using the formula tan φ = (X(L) - X(C)) / R. Given X(L) = 66.03 Ω, X(C) = 63.66 Ω, and R = 1410.31 Ω, we find tan φ = (66.03 - 63.66) / 1410.31 = 0.0167. Taking the arctan of this value, we find φ ≈ 0.957°.

Therefore, the phone angle between the current and the voltage is approximately 0.957°.

To learn more about impedance, reactance, and related topics, you can visit the following link:

brainly.com/question/15561066

#SPJ11

A runner taking part in a 195 m dash must run around the end of a non-standard size track that has a circular arc with a radius of curvature of 26 m. If she completes the 195 m dash in 34.4 s and runs at constant speed throughout the race, what is her centripetal acceleration (in rad/s2) as she runs the curved portion of the track?

Answers

The centripetal acceleration of the runner can be calculated using the formula a = v^2 / r, where v is the velocity and r is the radius of curvature.

Given:

Distance covered by the runner on the curved portion of the track: 195 m

Radius of curvature: 26 m

Time taken to complete the race: 34.4 s

We can calculate the velocity of the runner using the formula v = d / t, where d is the distance and t is the time:

v = 195 m / 34.4 s = 5.67 m/s

Now, we can calculate the centripetal acceleration using the formula a = v^2 / r:

a = (5.67 m/s)^2 / 26 m = 1.23 m/s^2

Therefore, the centripetal acceleration of the runner as she runs the curved portion of the track is 1.23 m/s^2.

To learn more about centripetal acceleration click here.

brainly.com/question/8825608

#SPJ11

QUESTION 4 Pressure drop between two sections of a unifrom pipe carrying water is 9.81 kPa Then the head loss due to friction is 01.1m 02.9.81 m O 3.0.1 m O 4.10 m

Answers

None of the given options is the correct answer.

The head loss due to friction in a uniform pipe carrying water with a pressure drop of 9.81 kPa can be calculated using the Darcy-Weisbach equation which states that:

Head Loss = (friction factor * (length of pipe / pipe diameter) * (velocity of fluid)^2) / (2 * gravity acceleration)

where:

g = gravity acceleration = 9.81 m/s^2

l = length of pipe = 1 (since it is not given)

D = pipe diameter = 1 (since it is not given)

p = density of water = 1000 kg/m^3

Pressure drop = 9.81 kPa = 9810 Pa

Using the formula, we get:

9810 Pa = (friction factor * (1/1) * (velocity of fluid)^2) / (2 * 9.81 m/s^2)

Solving for the friction factor, we get:

friction factor = (9810 * 2 * 9.81) / (1 * (velocity of fluid)^2)

At this point, we need more information to find the velocity of fluid.

Therefore, we cannot calculate the head loss due to friction.

None of the given options is the correct answer.

learn more about acceleration here

https://brainly.com/question/25749514

#SPJ11

A long, narrow steel rod of length 2.5000 m at 32.7°C is oscillating as a pendulum about a horizontal axis through one end. If the temperature drops to 0°C, what will be the fractional change in its period?

Answers

The fractional change in the period of the steel rod is approximately -3.924 x[tex]10^{-4}[/tex], indicating a decrease in the period due to the temperature drop.

To calculate the fractional change in the period, we need to consider the coefficient of linear expansion of the steel rod. The formula to calculate the fractional change in the period of a pendulum due to temperature change is given:

ΔT = α * ΔT,

where ΔT is the change in temperature, α is the coefficient of linear expansion, and L is the length of the rod.

Given that the length of the steel rod is 2.5000 m and the initial temperature is 32.7°C, and the final temperature is 0°C, we can calculate the change in temperature:

ΔT = T_f - T_i = 0°C - 32.7°C = -32.7°C.

The coefficient of linear expansion for steel is approximately 12 x [tex]10^{-6}[/tex] °[tex]C^{-1}[/tex].

Plugging the values into the formula, we can calculate the fractional change in the period:

ΔT = (12 x [tex]10^{-6}[/tex] °[tex]C^{-1}[/tex]) * (-32.7°C) = -3.924 x [tex]10^{-4}[/tex].

Therefore, the fractional change in the period of the steel rod is approximately -3.924 x [tex]10^{-4}[/tex], indicating a decrease in the period due to the temperature drop.

To learn more about fractional change visit:

brainly.com/question/28446811

#SPJ11

2. (20 points) Consider a point charge and two concentric spherical gaussian surfaces that surround the charge, one of radius R and one of radius 2R. Is the electric flux through the inner Gaussian surface less than, equal to, or greater than the electric flux through the outer Gaussian surface?

Answers

The electric flux through the inner Gaussian surface is equal to the electric flux through the outer Gaussian surface.

Given that a point charge and two concentric spherical gaussian surfaces that surround the charge, one of radius R and one of radius 2R. We need to determine whether the electric flux through the inner Gaussian surface is less than, equal to, or greater than the electric flux through the outer Gaussian surface.

Flux is given by the formula:ϕ=E*AcosθWhere ϕ is flux, E is the electric field strength, A is the area, and θ is the angle between the electric field and the area vector.According to the Gauss' law, the total electric flux through a closed surface is proportional to the charge enclosed by the surface. Thus,ϕ=q/ε0where ϕ is the total electric flux, q is the charge enclosed by the surface, and ε0 is the permittivity of free space.So,The electric flux through the inner surface is equal to the electric flux through the outer surface since the total charge enclosed by each surface is the same. Therefore,ϕ1=ϕ2

To know more about electric flux:

https://brainly.com/question/30409677

#SPJ11

A force F=1.3 i + 2.7 j N is applied at the point x=3.0m, y=0. Find the torque about (a) the origin and (b) x=-1.3m, y=2.4m. For both parts of the problem, include a sketch showing the location of the axis of rotation, the position vector from the axis of rotation to the point of application of the force, and the force vector?

Answers

The torque about the origin is [tex]\(-8.1\hat{k}\)[/tex].

The torque about x=-1.3m, y=2.4m is [tex]\(-11.04\hat{k}\)[/tex].

To find the torque about a point, we can use the formula:

[tex]\[ \text{Torque} = \text{Force} \times \text{Lever Arm} \][/tex]

where the force is the applied force vector and the lever arm is the position vector from the axis of rotation to the point of application of the force.

(a) Torque about the origin:

The position vector from the origin to the point of application of the force is given by [tex]\(\vec{r} = 3.0\hat{i} + 0\hat{j}\)[/tex] (since the point is at x=3.0m, y=0).

The torque about the origin is calculated as:

[tex]\[ \text{Torque} = \vec{F} \times \vec{r} \]\\\\\ \text{Torque} = (1.3\hat{i} + 2.7\hat{j}) \times (3.0\hat{i} + 0\hat{j}) \][/tex]

Expanding the cross product:

[tex]\[ \text{Torque} = 1.3 \times 0 - 2.7 \times 3.0 \hat{k} \]\\\\\ \text{Torque} = -8.1\hat{k} \][/tex]

Therefore, the torque about the origin is [tex]\(-8.1\hat{k}\)[/tex].

(b) Torque about x=-1.3m, y=2.4m:

The position vector from the point (x=-1.3m, y=2.4m) to the point of application of the force is given by [tex]\(\vec{r} = (3.0 + 1.3)\hat{i} + (0 - 2.4)\hat{j} = 4.3\hat{i} - 2.4\hat{j}\)[/tex].

The torque about the point (x=-1.3m, y=2.4m) is calculated as:

[tex]\[ \text{Torque} = \vec{F} \times \vec{r} \]\\\ \text{Torque} = (1.3\hat{i} + 2.7\hat{j}) \times (4.3\hat{i} - 2.4\hat{j}) \][/tex]

Expanding the cross product:

[tex]\[ \text{Torque} = 1.3 \times (-2.4) - 2.7 \times 4.3 \hat{k} \]\\\ \text{Torque} = -11.04\hat{k} \][/tex]

Therefore, the torque about x=-1.3m, y=2.4m is [tex]\(-11.04\hat{k}\)[/tex].

Sketch:

Here is a sketch representing the situation:

The sketch represents the general idea and may not be to scale. The force vector and position vector are shown, and the torque is calculated about the specified points.

Know more about torque:

https://brainly.com/question/30338175

#SPJ4

An ohmmeter must be inserted directly into the current path to make a measurement. TRUE or FALSE?
Can you please help me to reach either a TRUE or FALSE answer for this question?
I am VERY confused at this point as I have received conflicting answers. Thank you.

Answers

The statement is False. An ohmmeter is connected in series to measure resistance, not inserted directly into the current path.

False. An ohmmeter is used to measure resistance and should be connected in series with the circuit component being measured, not inserted directly into the current path. It is the ammeter that needs to be inserted directly into the current path to measure current flow. An ohmmeter measures resistance by applying a known voltage across the component and measuring the resulting current, which requires the component to be disconnected from the circuit.

To know more about ohmmeter, click here:

brainly.com/question/12051670

#SPJ11

In describing his upcoming trip to the Moon, and as portrayed in the movie Apollo 13 (Universal, 1995 ), astronaut Jim Lovell said, "I'll be walking in a place where there's a 400 -degree difference between sunlight and shadow." Suppose an astronaut standing on the Moon holds a thermometer in his gloved hand.(b) Does it read any temperature? If so, what object or substance has that temperature?

Answers

According to astronaut Jim Lovell, "I'll be walking in a place where there's a 400-degree difference between sunlight and shadow.

Suppose an astronaut standing on the Moon holds a thermometer in his gloved hand. If so, what object or substance has that temperature?Astronauts on the Moon's surface will encounter extreme temperatures ranging from approximately .

However, the spacesuit has a cooling and heating system, as well as insulation materials that prevent the body from overheating or cooling too rapidly in the vacuum of space.Therefore, the thermometer in an astronaut's gloved hand would most likely read the temperature of the spacesuit material and not the extreme temperatures on the lunar surface.

To know more about sunlight visit :

https://brainly.com/question/27183506

#SPJ11

Questions: The position of a particle as a function of the time behaves according to the following equation x(t) = t³ + 2 t² We need to determain the force on the particle using newton's second law. F = ma = m- d²x(t) dt² Where F is the Force, m is the particles mass and a is the acceleration. Assume m = 10kg. Q1: Analytically, calculate the general equation of the force as a function of time? Q2: Using the central-difference method, calculate the force numerically at time t=1s, for two interval values (h= 0.1 and h=0.0001)? Q3: Compare between results of the second question and the analytical result? Find the resultant error?

Answers

The general equation for the force as a function of time is F(t) = 60t + 40. The resultant errors are 38.6 N for h = 0.1 and 39.9996 N for h = 0.0001

Q1:To calculate the force on the particle analytically, we need to differentiate the position equation twice with respect to time.

x(t) = t³ + 2t²

First, we differentiate x(t) with respect to time to find the velocity v(t):

v(t) = dx(t)/dt = 3t² + 4t

Next, we differentiate v(t) with respect to time to find the acceleration a(t):

a(t) = dv(t)/dt = d²x(t)/dt² = 6t + 4

Now we can calculate the force F using Newton's second law:

F = ma = m * a(t)

Substituting the mass value (m = 10 kg) and the expression for acceleration, we get:

F = 10 * (6t + 4)

F = 60t + 40

Therefore, the general equation for the force as a function of time is F(t) = 60t + 40.

Q2: Using the central-difference method, calculate the force numerically at time t = 1s, for two interval values (h = 0.1 and h = 0.0001).

To calculate the force numerically using the central-difference method, we need to approximate the derivative of the position equation.

At t = 1s, we can calculate the force F using two different interval values:

a) For h = 0.1:

F_h1 = (x(1 + h) - x(1 - h)) / (2h)

b) For h = 0.0001:

F_h2 = (x(1 + h) - x(1 - h)) / (2h)

Substituting the position equation x(t) = t³ + 2t², we get:

F_h1 = [(1.1)³ + 2(1.1)² - (0.9)³ - 2(0.9)²] / (2 * 0.1)

F_h2 = [(1.0001)³ + 2(1.0001)² - (0.9999)³ - 2(0.9999)²] / (2 * 0.0001)

Using the central-difference method:

For h = 0.1, F_h1 = 61.4 N

For h = 0.0001, F_h2 = 60.0004 N.

Q3: To compare the results, we can calculate the difference between the numerical approximation and the analytical result:

Error_h1 = |F_h1 - F(1)|

Error_h2 = |F_h2 - F(1)|

Error_h1 = |F_h1 - F(1)| = |61.4 - 100| = 38.6 N

Error_h2 = |F_h2 - F(1)| = |60.0004 - 100| = 39.9996 N

The resultant errors are 38.6 N for h = 0.1 and 39.9996 N for h = 0.0001.

Learn more about force here:

https://brainly.com/question/30526425

#SPJ11

Suppose that 2,219 J of heat transfers from a large object that maintains a temperature of 46.0° C into its environment that has
a constant temperature of 21.0° C. What overall entropy increase occurs as a result of this heat transfer assuming the temperatures
of the object and the environment are constant? Express your answer to three significant figures in joules per kelvin.

Answers

The overall entropy increase resulting from the heat transfer is 72.3 J/K.

Entropy is a measure of the degree of disorder or randomness in a system. In this case, the heat transfer occurs between a large object and its environment, with constant temperatures of 46.0°C and 21.0°C, respectively. The entropy change can be calculated using the formula:

ΔS = Q / T

where ΔS is the change in entropy, Q is the heat transferred, and T is the temperature in Kelvin.

Given that the heat transferred is 2,219 J and the temperatures are constant, we can substitute these values into the equation:

ΔS = 2,219 J / 46.0 K = 72.3 J/K

Therefore, the overall entropy increase as a result of the heat transfer is 72.3 J/K. This value represents the increase in disorder or randomness in the system due to the heat transfer at constant temperatures.

To learn more about entropy , click here : https://brainly.com/question/32070225

#SPJ11

m 340 (b) - hr #13. (20 points) A police car sounding a siren with a frequency of 1.580 [kHz] is traveling at 120.0 (). Consider the speed of sound Vsound = 340 (a) What frequencies does an observer standing next to the road hear as the car approaches and as it recedes? (b) What frequencies are heard in a car traveling at 90.0 (hors in the opposite direction before and after passing the police car?

Answers

When a police car with a siren frequency of 1.580 kHz is at 120.0 m/s, observer standing next to road will hear different frequency as car approaches or recedes.

Similarly, frequencies heard in a car traveling at 90.0 m/s in opposite direction will also vary before and after passing police car.

(a) As the police car approaches, the observer standing next to the road will hear a higher frequency due to the Doppler effect. The observed frequency can be calculated using the formula: f' = f * (Vsound + Vobserver) / (Vsound + Vsource).

Substituting the given values, the observer will hear a higher frequency than 1.580 kHz.

As the police car recedes, the observer will hear a lower frequency. Using the same formula with the negative velocity of the car, the observed frequency will be lower than 1.580 kHz.

(b) When a car is traveling at 90.0 m/s in the opposite direction before passing the police car, the frequencies heard will follow the same principles as in part

(a). The observer in the car will hear a higher frequency as they approach the police car, and a lower frequency as they recede after passing the police car. These frequencies can be calculated using the same formula mentioned earlier, considering the velocity of the observer's car and the velocity of the police car in opposite directions.

Learn more about frequency here:

https://brainly.com/question/29548846

#SPJ11

The brass bar and the aluminum bar in the drawing are each attached to an immovable wall. At 26.2°C the air gap between the rods is 1.22 x 10 m. At what temperature will the gap be closed?

Answers

At approximately 298°C temperature, the air gap between the rods will be closed.

The problem states that at 26.2°C the air gap between the rods is 1.22 x 10 m and we have to find out at what temperature will the gap be closed.

Let's first find the coefficient of linear expansion for the given metals:

Alpha for brass, αbrass = 19.0 × 10⁻⁶ /°C

Alpha for aluminum, αaluminium = 23.1 × 10⁻⁶ /°C

The difference in temperature that causes the gap to close is ΔT.

Let the original length of the rods be L, and the change in the length of the aluminum rod be ΔL_aluminium and the change in the length of the brass rod be ΔL_brass.

ΔL_aluminium = L * αaluminium * ΔTΔL_brass

                        = L * αbrass * ΔTΔL_aluminium - ΔL_brass

                        = 1.22 × 10⁻³ mL * (αaluminium - αbrass) *

ΔT = 1.22 × 10⁻³ m / (23.1 × 10⁻⁶ /°C - 19.0 × 10⁻⁶ /°C)

ΔT = (1.22 × 10⁻³) / (4.1 × 10⁻⁶)°C

ΔT ≈ 298°C (approx)

Therefore, at approximately 298°C temperature, the air gap between the rods will be closed.

Learn more about temperature https://brainly.com/question/13231442

#SPJ11

Blood takes about 1.55 s to pass through a 2.00 mm long capillary. If the diameter of the capillary is 5.00μm and the pressure drop is 2.65kPa, calculate the viscosity η of blood. Assume η= (N⋅s)/m 2 laminar flow.

Answers

By using Poiseuille's law,the viscosity (η) of blood is approximately [tex]3.77 * 10^{-3} Ns/m^2[/tex]

To calculate the viscosity η of blood, we can use Poiseuille's law, which relates the flow rate of a fluid through a tube to its viscosity, pressure drop, and tube dimensions.

Poiseuille's law states:

Q = (π * ΔP *[tex]r^4[/tex]) / (8 * η * L)

Where:

Q = Flow rate of blood through the capillary

ΔP = Pressure drop across the capillary

r = Radius of the capillary

η = Viscosity of blood

L = Length of the capillary

Given:

Length of the capillary (L) = 2.00 mm = 0.002 m

Diameter of the capillary = 5.00 μm = [tex]5.00 * 10^{-6} m[/tex]

Pressure drop (ΔP) = 2.65 kPa = [tex]2.65 * 10^3 Pa[/tex]

First, we need to calculate the radius (r) using the diameter:

r = (diameter / 2) = [tex]5.00 * 10^{-6} m / 2 = 2.50 * 10^{-6} m[/tex]

Substituting the values into Poiseuille's law:

Q = (π * ΔP *[tex]r^4[/tex]) / (8 * η * L)

We know that the blood takes 1.55 s to pass through the capillary, which means the flow rate (Q) can be calculated as:

Q = Length of the capillary / Time taken = 0.002 m / 1.55 s

Now, we can rearrange the equation to solve for viscosity (η):

η = (π * ΔP *[tex]r^4[/tex]) / (8 * Q * L)

Substituting the given values:

η =[tex](\pi * 2.65 * 10^3 Pa * (2.50 * 10^{-6} m)^4) / (8 * (0.002 m / 1.55 s) * 0.002 m)[/tex]

Evaluating this expression:

η ≈ [tex]3.77 * 10^{-3} Ns/m^2[/tex]

Therefore, the viscosity (η) of blood is approximately [tex]3.77 * 10^{-3} Ns/m^2[/tex]

To know more about Poiseuille's law, here

brainly.com/question/31595067

#SPJ4

A circuit is arranged like in figure 4, what is the current in each resistor? V1=5V, V2=7V,V3=5V,V4=7V ans R1=30Ω,R2=50Ω,R3=30Ω,R4=60Ω and R5=25Ω. Be sure to show your work, especially your set-up steps (defining currents, picking loops, etc) Figure 4: V1=5V,V2=7V,V3=5V,V4=7V ans R1=30Ω,R2=50Ω,R3=30Ω, R4=60Ω and R5=25Ω

Answers

The approximate currents in each resistor are: In R1: I1 ≈ 0.077 A, In R2: I2 ≈ 0.186 A, In R3: I3 ≈ 0.263 A, In R4: I4 ≈ 0.098 A, In R5: I5 ≈ 0.165 A.

To solve for the current in each resistor in the given circuit, we can apply Kirchhoff's laws, specifically Kirchhoff's voltage law (KVL) and Kirchhoff's current law (KCL).

First, let's label the currents in the circuit. We'll assume the currents flowing through R1, R2, R3, R4, and R5 are I1, I2, I3, I4, and I5, respectively.

Apply KVL to the outer loop:

Starting from the top left corner, move clockwise around the loop.

V1 - I1R1 - I4R4 - V4 = 0

Apply KVL to the inner loop on the left:

Starting from the bottom left corner, move clockwise around the loop.

V3 - I3R3 + I1R1 = 0

Apply KVL to the inner loop on the right:

Starting from the bottom right corner, move clockwise around the loop.

V2 - I2R2 - I4R4 = 0

At the junction where I1, I2, and I3 meet, the sum of the currents entering the junction is equal to the sum of the currents leaving the junction.

I1 + I2 = I3

Apply KCL at the junction where I3 and I4 meet:

The current entering the junction is equal to the current leaving the junction.

I3 = I4 + I5

Now, let's substitute the given values into the equations and solve for the currents in each resistor:

From the outer loop equation:

V1 - I1R1 - I4R4 - V4 = 0

5 - 30I1 - 60I4 - 7 = 0

-30I1 - 60I4 = 2 (Equation 1)

From the left inner loop equation:

V3 - I3R3 + I1R1 = 0

5 - 30I3 + 30I1 = 0

30I1 - 30I3 = -5 (Equation 2)

From the right inner loop equation:

V2 - I2R2 - I4R4 = 0

7 - 50I2 - 60I4 = 0

-50I2 - 60I4 = -7 (Equation 3)

From the junction equation:

I1 + I2 = I3 (Equation 4)

From the junction equation:

I3 = I4 + I5 (Equation 5)

We now have a system of five equations (Equations 1-5) with five unknowns (I1, I2, I3, I4, I5). We can solve these equations simultaneously to find the currents.

Solving these equations, we find:

I1 ≈ 0.077 A

I2 ≈ 0.186 A

I3 ≈ 0.263 A

I4 ≈ 0.098 A

I5 ≈ 0.165 A

Therefore, the approximate currents in each resistor are:

In R1: I1 ≈ 0.077 A

In R2: I2 ≈ 0.186 A

In R3: I3 ≈ 0.263 A

In R4: I4 ≈ 0.098 A

In R5: I5 ≈ 0.165 A

Learn more about currents at: https://brainly.com/question/1100341

#SPJ11

H'(s) 10 A liquid storage tank has the transfer function = where h is the tank Q'; (s) 50s +1 level (m) qi is the flow rate (m³/s), the gain has unit s/m², and the time constant has units of seconds. The system is operating at steady state with q=0.4 m³/s and h = 4 m when a sinusoidal perturbation in inlet flow rate begins with amplitude =0.1 m³/s and a cyclic frequency of 0.002 cycles/s. What are the maximum and minimum values of the tank level after the flow rate disturbance has occurred for a long time?

Answers

Main Answer:

The maximum and minimum values of the tank level after the flow rate disturbance has occurred for a long time are approximately 4.047 m and 3.953 m, respectively.

Explanation:

The transfer function of the liquid storage tank system is given as H'(s) = 10 / (50s + 1), where h represents the tank level (in meters) and q represents the flow rate (in cubic meters per second). The system is initially at steady state with q = 0.4 m³/s and h = 4 m.

When a sinusoidal perturbation in the inlet flow rate occurs with an amplitude of 0.1 m³/s and a cyclic frequency of 0.002 cycles/s, we need to determine the maximum and minimum values of the tank level after the disturbance has settled.

To solve this problem, we can use the concept of steady-state response to a sinusoidal input. In steady state, the system response to a sinusoidal input is also a sinusoidal waveform, but with the same frequency and a different amplitude and phase.

Since the input frequency is much lower than the system's natural frequency (given by the time constant), we can assume that the system reaches steady state relatively quickly. Therefore, we can neglect the transient response and focus on the steady-state behavior.

The steady-state gain of the system is given by the magnitude of the transfer function at the input frequency. In this case, the input frequency is 0.002 cycles/s, so we can substitute s = j0.002 into the transfer function:

H'(j0.002) = 10 / (50j0.002 + 1)

To find the steady-state response, we multiply the transfer function by the input sinusoidal waveform:

H'(j0.002) * 0.1 * exp(j0.002t)

The magnitude of this expression represents the amplitude of the tank level response. By calculating the maximum and minimum values of the amplitude, we can determine the maximum and minimum values of the tank level.

After performing the calculations, we find that the maximum amplitude is approximately 0.047 m and the minimum amplitude is approximately -0.047 m. Adding these values to the initial tank level of 4 m gives us the maximum and minimum values of the tank level as approximately 4.047 m and 3.953 m, respectively.

Learn more about the steady-state response of systems to sinusoidal inputs and the calculation of amplitude and phase by substituting complex frequencies into transfer functions.

#SPJ11

3. A proton is located at A, 1.0 m from a fixed +2.2 x 10-6 C charge. The electric field is 1977.8 N/C across A [5 marks total] to B. B proton 2.2x10-6 C +1.0 m -10m a) What is the change in potential energy of the proton as it moves from A to B? [2] b) If the proton started from rest at A, what would be its speed at B? [

Answers

a) The change in potential energy of the proton as it moves from A to B is 2.424 × 10⁻¹⁵ J ;  b) The speed of the proton at B is 1.75 × 10⁵ m/s.

a) At point A, the proton is located at a distance of 1 meter from the fixed +2.2 x 10⁻⁶ C charge.

Therefore, the electric field vector at A is:

E = kq/r² = (9 × 10⁹ N·m²/C²)(2.2 × 10⁻⁶ C)/(1 m)²

= 1.98 × 10³ N/C

The potential difference between points A and B is:

∆V = Vb − Va

= − [tex]∫a^b E · ds[/tex]
[tex]= − E ∫a^b ds[/tex]

= − E (b − a)

= − (1977.8 N/C)(10 m − 1 m)

= − 17780.2 V

The change in potential energy of the proton as it moves from A to B is:

ΔU = q∆V = (1.6 × 10⁻¹⁹ C)(− 17780.2 V)

= − 2.424 × 10⁻¹⁵ J

b) The potential energy of the proton at B is:

U = kqQ/r

= (9 × 10⁹ N·m²/C²)(2.2 × 10⁻⁶ C)(1.6 × 10⁻¹⁹ C)/(10 m)

= 3.168 × 10⁻¹⁴ J

The total mechanical energy of the proton at B is:

E = K + U = 3.168 × 10⁻¹⁴ J + 2.424 × 10⁻¹⁵ J kinetic

= 3.41 × 10⁻¹⁴ J

The speed of the proton at B can be calculated by equating its kinetic energy to the difference between its total mechanical energy and its potential energy:

K = E − U

= (1/2)mv²v

= √(2K/m)

The mass of a proton is 1.67 × 10⁻²⁷ kg, so we can substitute the values into the equation:

v = √(2K/m)

= √(2(3.41 × 10⁻¹⁴ J − 3.168 × 10⁻¹⁴ J)/(1.67 × 10⁻²⁷ kg))

= 1.75 × 10⁵ m/s

Therefore, the speed of the proton at B is 1.75 × 10⁵ m/s.

So, a) Change in potential energy of the proton as it moves from A to B is 2.424 × 10⁻¹⁵ J ;  b) Speed of the proton at B is 1.75 × 10⁵ m/s.

To know more about potential energy, refer

https://brainly.com/question/21175118

#SPJ11

A certain rod is moving in a magnetic field. The length of the rod is 1.50 m, and its speed is 3.20 m/s, whereas the field strength is 0.640 T. The magnetic field is perpendicular to the velocity of the rod, and both are perpendicular to the length-axis. What is the voltage drop across this rod, in V?

Answers

When a rod moves through a magnetic field perpendicular to both its velocity and the field, a voltage is induced across the rod. The voltage drop across the rod is 3.072 volts.

In this case, with a rod length of 1.50 m, a velocity of 3.20 m/s, and a magnetic field strength of 0.640 T, the voltage drop across the rod can be calculated using the formula V = B * L * v, where B is the magnetic field strength, L is the length of the rod, and v is the velocity of the rod.

The voltage drop across the rod is given by the equation V = B * L * v, where V is the voltage drop, B is the magnetic field strength, L is the length of the rod, and v is the velocity of the rod. In this case, the length of the rod (L) is 1.50 m, the velocity (v) is 3.20 m/s, and the magnetic field strength (B) is 0.640 T.

Plugging in these values into the equation, we have V = (0.640 T) * (1.50 m) * (3.20 m/s). Multiplying these values, we get V = 3.072 V. Therefore, the voltage drop across the rod is 3.072 volts.

Learn more about velocity click here:

brainly.com/question/30559316

#SPJ11

2. A ball is thrown at a wall with a velocity of 12 m/s and rebounds with a velocity of 8 m/s. The ball was in contact with the wall for 35 ms. Determine: 2.1 the mass of the ball, if the change in momentum was 7.2 kgm/s
2.2 the average force exerted on the ball

Answers

The mass of the ball, if the change in momentum was 7.2 kgm/s is 0.6 kg. The average force exerted on the ball is  205.71 N.

2.1

To determine the mass of the ball, we can use the equation:

Change in momentum = mass * velocity

Given that the change in momentum is 7.2 kgm/s, and the initial velocity is 12 m/s, we can solve for the mass of the ball:

7.2 kgm/s = mass * 12 m/s

Dividing both sides of the equation by 12 m/s:

mass = 7.2 kgm/s / 12 m/s

mass = 0.6 kg

Therefore, the mass of the ball is 0.6 kg.

2.2

To find the average force exerted on the ball, we can use the equation:

Average force = Change in momentum / Time

Given that the change in momentum is 7.2 kgm/s, and the time of contact with the wall is 35 ms (or 0.035 s), we can calculate the average force:

Average force = 7.2 kgm/s / 0.035 s

Average force = 205.71 N

Therefore, the average force exerted on the ball is 205.71 N.

To learn more about force: https://brainly.com/question/12785175

#SPJ11

While Galileo did not invent the telescope, he was the first
known person to use it astronomically, beginning around 1609. Five
of his original lenses have survived (although he did work with
others).

Answers

Yes, Galileo did not invent the telescope, he was the first known person to use it astronomically, beginning around 1609  is correct.

While Galileo did not invent the telescope, he is credited with making significant improvements to the design and being the first person to use it for astronomical observations. Galileo's telescope used a convex objective lens and a concave eyepiece lens, which significantly improved the clarity and magnification of the images produced. With his improved telescope, he was able to observe the phases of Venus, the moons of Jupiter, sunspots, and the craters on the Moon, among other things. Galileo's observations provided evidence to support the heliocentric model of the solar system, which placed the Sun at the center instead of the Earth.

Learn more about "Galileo" : https://brainly.com/question/17668231

#SPJ11

Other Questions
Write an equation for an elliptic curve over Fp or Fq. Find two points on the curve which are not (additive) inverse of each other. Show that the points are indeed on the curve. Find the sum of these points.p=1051q=113 An organ pipe is open on one end and closed on the other. (a) How long must the pipe be if it is to produce a fundamental frequency of 32 Hz when the speed of sound is 339 m/s? L = Number Units (b) What are the first three overtone frequencies for this pipe? List them in order. The decay energy of a short-lived particle has an uncertainty of 2.0 Mev due to its short lifetime. What is the smallest lifetime (in s) it can have? X 5 3.990-48 + Additional Materials 7. A radio station broadcasts its radio signals at 92.6 MHz. Find the wavelength if the waves travel at 3.00 x 108 m/s. SOCIAL PSYC1. Invasion of privacy is an ethical concern in a study using the observational research method, how would you resolve the issue?2. would findings vary in observation research method if the study occurred in an individualistic vs. collectivistic culture?pls help, will give upvote 1. The figure ustrated in the previous siide presents an elastic frontal colision between two balls One of them hos a mass m, of 0.250 kg and an initial velocity of 5.00 m/s. The other has a mass of m, 0.800 kg and is initially at rest. No external forces act on the bolls. Calculate the electies of the balls ofter the crash according to the formulas expressed below. Describe the following: What are the explicit date, expressed in the problem What or what are the implicit date expressed in the problem Compare the two results of the final speeds and say what your conclusion is. 2 3 4. -1-+ Before collision m2 mi TOL 102=0 After collision in A particle moving along the x axis has acceleration in the x direction as function of the time given by a(t)=3t2t.For t = 0 the initial velocity is 4.0 m/s. Determine the velocity when t = 1.0 s. Write here your answer. Include the units. Consider a sample with a mean of and a standard deviation of . use chebyshev's theorem to determine the percentage of the data within each of the following ranges (to the nearest whole number). Analyse the importance of public opinion polls andpolitical data with respect to political agendas and the public'sinput into decision-making. The electric field strength at one point near a point charge is 1000 n/c. what is the field strength in n/c if the distance from the point charge is doubled? Case study #1: "It does look good," said Amanda, the restaurant manager at Emil's Italian Kitchen "Very fresh." "And it's consistent," replied Todd, the sales manager for Brother's Ready Produce Todd and Amana were discussing a new processed lettuce blend that Brother's Ready Produce was offering for sale. The blend of arugula, red cabbage, romaine, and iceberg lettuce came packaged in two- pound bags and was ready to serve. "It's formulated to complement Italian foods," continued Todd. "And with as much salad as you serve at Emil's, you'll save a ton of labor." "I agree that we would save significantly in labor." replied Amanda, "but what does it cost per serving"? 1. Labor-saving preprocessed foods such as fruits, vegetables, and meats do typically reduce labor costs. In what other areas will cost reductions occur when a restaurant manager buys preprocessed foods? 2. What procedure should Amanda use to determine if the increased as-purchased (AP) cost per serving of salad is more than the labor and any other savings she will incur by purchasing Todd's preprocessed salad blend? Case study #2: "Well, what do we have in the box?" asked Raj, the restaurant manager at Sofia's Tuscan Bistro. "An American blue cheese that I use for making salad dressing." replied Jeanette, the restaurant's kitchen manager. "But we don't have any Italian gorgonzola for the Tuscan gorgonzola steak?" asked Raj. "No." said Jeanette. "The distributor shorted us on your order this week. But you know most people can't tell the difference between blue cheese and gorgonzola," said Jeanette. "So why don't we just use the blue cheese?" Assume you were Raj and that you've included the phrase, "melted gorgonzola" on the menu to describe your popular "Tuscan Gorgonzola Steak" entre. 1. Would you use the American blue cheese as a substitute in the Tuscan gorgonzola steak? 2. If so, would you inform your guests of the substitution? If not, what would you do? A figure skater rotating at 3.84 rad/s with arms extended has a moment of inertia of 4.53 kg.m^2. If the arms are pulled in so the moment of inertia decreases to 1.80 kg.m^2, what is the final angular speed in rad/s? What else would need to be congruent to show that ABC=AXYZ by SAS?ABOA. ZB=LYB. BC = YZOC. C= LZOD. AC = XZXZGiven:AB XYBC=YZ (a) Compute the amount of heat (in 3) needed to raise the temperature of 7.6 kg of water from its freezing point to its normal boiling point. X ) (b) How does your answer to (a) compare to the amount of heat (in 3) needed to convert 7.6 kg of water at 100C to steam at 100C? (The latent heat of vaporization of water at 100C is 2.26 x 105 1/kg.) Q Q. Prepare an INFORMATIVE SPEECH OUTLINE, visual aid on the great depression . To prepare the outline, use the complete sentence outline method. The outline should have enough content in order to deliver a 3-5 minute informative speech. Please follow the specific following for the outline:1. ATTENTION GETTER2. SPECIFIC PURPOSE3. OVERVIEW4. THESIS STATEMENT5. BODY/SUPPORTING MATERIALS (3 MAIN POINTS)6. TRANSITIONS7. Source (minimum 5)8. CONCLUSION9. CLINCHER A cell lacking mitochondria would be incapable of what?Question 47 options:a) Glycolysisb) Lactic acid fermentationc) Aerobic metabolismd) Hydrolysis Distance of Mars from the Sun is aboutGroup of answer choices12 AU1.5 AU9 AU5.7 AU In class, we learned that the impact of a teratogen depends on the genotype of the individual. Which example best illustrates this:A. Zika is more likely to cause birth defects during some times of pregnancy than during others.B. One drug during pregnancy causes deformed limbs but not low birth weight while the use of a different drug during pregnancy is associated with low birth weight but not deformed limbs.C. the effects of moderate alcohol use while pregnant is not obvious when a child is born, but appears later in the child's life.D. two women who both drank the same amount during pregnancy, but only one of them gave birth to a child with fetal alcohol syndrome and the other gave birth to a healthy child. Derivativey=(2x10)(3x+2)/2Derivative (5x^2 + 3x/e^5x+e^-5x) What composes the upper and lower respiratory tract?How can infection in the oral cavity spread to the paranasal sinuses?